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Abstract

Studies of the genetics of gene expression have served as a key tool for linking
genetic variants to phenotypes. Large-scale eQTL mapping studies have identified a
large number of local eQTLs, but the molecular mechanism of how genetic variants
regulate expression is still unclear, particularly for distal eQTLs, which these studies
are not well-powered to detect. In this study, we use a heritability partitioning
approach to dissect the functional components of gene regulation. We make use of
an existing method, stratified LD score regression, that leverages all variants (not
just those that pass stringent significance thresholds) to partition heritability across
functional categories, and we extend this method to partition local and distal gene
expression heritability in 15 human tissues. The top enriched functional categories
in local regulation of peripheral blood gene expression included super enhancers
(5.18x), coding regions (3.73x), conserved regions (2.33x) and four histone marks
(p<3x10-7 for all enrichments); local enrichments were similar across the 15 tissues.
We also observed substantial enrichments for distal regulation of peripheral blood
gene expression: super enhancers (1.91x), coding regions (4.47x), conserved
regions (4.51x) and two histone marks (p<3x10-7 for all enrichments). Analyses of
the genetic correlation of gene expression across tissues showed that local gene
expression regulation is largely shared across tissues, but distal gene expression
regulation is highly tissue-specific. Our results elucidate the functional components
of the genetic architecture of local and distal gene expression regulation.
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Introduction

Our understanding of functional elements of the human genome has benefitted
greatly from the explosion of functional data generated by the ENCODE project and
the Roadmap Epigenomics consortium?!2. In particular, researchers have gained new
insights on the functional effects of genetic variants on many complex diseases and
traits3-11. In parallel, large-scale eQTL mapping studies have been carried out to
catalog genetic variants that affect gene expression in multiple human tissues!2-18
(reviewed in ref. 19). Gene expression serves as an important intermediate cellular
phenotype that affects complex diseases and traits20-23, and the functional effects of
eQTLs provide another lens through which researchers can investigate molecular
mechanisms?12-19,24-26,

However, the functional effects of eQTLs are still largely unclear. On one hand,
previous studies have produced different functional characterizations of local eQTLs
(Table S1), perhaps due to differences in the sets of annotations analyzed and/or
the sample size dependence of approaches that assess enrichment using only top
eQTLs. On the other hand, functional characterization of distal eQTLs has been
limited1415, since most studies are under-powered to detect distal eQTLs.

In this study, we applied a recently developed method, stratified LD score
regression, to partition the heritability of local and distal gene expression regulation
across different functional categories!®. This method makes use of summary
association statistics of all genetic variants (not just the top significant variants),
and estimates the heritability explained by each functional category while
accounting for linkage disequilibrium (LD) to other functional categories;
simulations show that this is more powerful than other methods for detecting
functional enrichment (Fig. 7 of ref. 10). We extended the method to produce
aggregate estimates across all genes for both local and distal gene expression
regulation. By applying the method to large gene expression datasets in multiple
human tissues, we aimed to comprehensively assess the functional enrichments of
genetic variants on local and distal gene expression regulation and shed light on the
underlying molecular mechanisms.
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Results

Heritability enrichment of local gene expression regulation in 15 human tissues

We used an extended version of stratified LD score regression!? to partition local
gene expression heritability in three data sets spanning 15 human
tissues121518(Table 1 and Online Methods). We considered 57 functional categories:
the 53 baseline categories from ref. 10, and 4 categories based on super enhancers
and typical enhancers from ref. 27(see Online Methods). We estimated the
enrichment of each functional category, defined as the proportion of heritability in
that category divided by the proportion of SNPs in that category. We also report an
AUC metric that quantifies how informative each enrichment is; this metric
quantifies the fact that larger categories (i.e. spanning a larger fraction of the
genome) are more informative than smaller categories at a given enrichment level
(see Online Methods).

We first analyzed the Netherlands Twin Registry (NTR) gene expression array data
set, which had the largest sample size (N=2,494) and included only a single tissue
type, peripheral blood!>. Many functional categories were significantly enriched
(Figure 1, Table S2). These included several functional enrichments that were not
reported in previous studies of gene expression in humans. We observed a large
enrichment at Vahedi et al.2” super enhancers (5.18x, p=5.78x10-7), supporting the
role of super enhancers in gene expression regulation?”.28, (Hnisz et al.?8 super
enhancers, which span a larger proportion of the genome, produced a smaller but
more significant enrichment; Table S2). Conserved regions were also significantly
enriched (2.33x, p=9.93x10-11). Though the function of conserved regions in gene
regulatory programs has previously been reported in yeast?°, previous evidence of
functional enrichments of conserved regions on gene expression in humans is
limited: ref. 24 reported a 1.9x enrichment of top eQTLs in conserved elements, but
the enrichment was not statistically significant; ref. 25 reported that conserved
regions provided “little information” for predicting eQTL. Our results demonstrate
that conserved regions indeed play an important role in gene expression regulation.

We also confirmed and quantified functional enrichments reported in previous
studies of local gene expression regulation in humans. We observed a large
enrichment in coding regions (3.73%, p<10-12), which confirmed previous findings®13
(Table S1) and is consistent with a recent study reporting that exonic regions are
often involved in transcription factor binding3?. This suggests that the impact of
coding variants on complex traits may often be due to changes in expression levels
rather than changes in coding sequences. The histone marks H3K4me3, H3K9ac,
H3K4mel and H3K27ac were significantly enriched (enrichment>1.2x, p<3x10-7),
consistent with previous findings131825 (Table S1), confirming the important role of
histone marks in local gene expression regulation. Five-prime untranslated regions
(5’ UTRs) were also significantly enriched (4.85%, p<10-12). This enrichment may be
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driven by the transcription start site (TSS), which lies inside the 5’ UTR and directly
affects transcription, or due to the effect of variants in upstream open reading
frames located in the 5’ UTRs on transcript stability31.32. We also observed
significant enrichments at DNase I hypersensitivity sites (DHS), enhancers,
promoters and transcription factor binding sites (TFBS), consistent with previous
studies (Table S1).

We extended our analyses to include additional RNA-seq (GTEx) and gene
expression array (MuTHER) data sets spanning a total of 15 tissues (Table 1 and
Online Methods). The heritability enrichments were highly consistent across the 15
tissues, despite the widely varying sample sizes and different assays (Figure 2, Table
S2, Table S3 and Table S4), which indicates that the functional architecture of local
gene expression regulation is consistent across different tissues. We note that in
contrast to stratified LD score regression, methods for assessing functional
enrichment using only top eQTL may be highly sample size dependent (see
Discussion).

We compared the functional enrichments that we estimated for local gene
expression regulation in peripheral blood to functional enrichments that we
previously reported for a meta-analysis of 9 independent complex traits!? for 53
baseline functional categories. We observed a moderately strong correlation
(Pearson r=0.53), as functional categories with larger enrichments for complex
traits tend to have larger enrichments for local gene expression regulation (Figure
3). The enrichments in local gene expression regulation tended to be smaller than
the enrichments in complex traits: enrichments for 19 (resp. 1) out of 53 categories
were significantly smaller (resp. larger) for local gene expression regulation (Table
S5). For example, conserved regions were 2.33x enriched in local gene expression
regulation vs. 13.31x in complex traits (p=4.36x10-13 for difference), coding regions
were 3.73x enriched in local gene expression regulation vs. 7.12x in complex traits
(p=1.20x10-*for difference), and H3K4me1l were 1.20x enriched in local gene
expression regulation vs. 1.86x in complex traits (p=2.29x10- for difference).
Notably, because of the large number of genes in each gene expression dataset,
analyzing gene expression as an intermediate phenotype resulted in much smaller
standard errors as compared to analyses of complex traits in very large sample
sizes, leading to enrichments that were more statistically significant despite their
lower magnitude (Figure 3, Table S5). For example, the 1.40x enrichment of
H3K27ac in local gene expression was more significant (p<10-12) than the 1.82x
enrichment of H3K27ac in complex traits (p=4.30x10-%). Thus, gene expression data
can be a particularly valuable means to assess functionally important genomic
regions.

Heritability enrichment of distal gene expression regulation in four human
tissues
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We next used an extended version of stratified LD score regression to partition
distal gene expression heritability (see Online Methods). We first analyzed the NTR
gene expression array data set!>. Many functional categories were significantly
enriched in the distal analysis (Figure 4, Figure S1 and Table S6). In particular, we
again observed significant enrichments at Vahedi et al.?” super enhancers (1.91x,
p<10-12), coding regions (4.47x, p=1.79x10-11) and conserved regions (4.51x, p< 10-
12). In addition, two histone marks were significantly enriched: H3K27ac (1.56x,
p<10-12) and H3K4me3 (1.56x, p=2.29x10-7). H3K4me1 and H3K9ac were not
significant after correcting for 57 hypotheses tested, but broadly defined H3K4me1l
regions (H3K4me1l extended by 500bp; 60.9% of SNPs) explained 98.0% of
heritability (1.61x, p<10-12). These results highlight the role of histone
modifications in distal gene expression regulation. We note that previous results on
functional enrichment of distal eQTLs has been limited: ref. 15 reported distal
enrichment in 5’ UTR regions (which were nominally enriched in our analyses:
2.96x, p=0.013). Ref. 14 reported enrichment of blood derived distal eQTLs in
enhancers regions of myeloid and lymphoid cell lines, and we similarly detected
distal enrichment (1.52%, p=8.30x10-7) in enhancers as defined by ref. 33. We are
not aware of any other previous results on distal enrichment.

We compared the distal gene expression regulation enrichments to the local
enrichments estimated above, across the 57 categories. We observed a moderately
strong correlation (Pearson r=0.48) (Figure 4, Table S6). The enrichments in distal
gene expression regulation tended to be somewhat larger than the enrichments in
local gene expression regulation; enrichments for 21 (resp. 6) out of 57 categories
were significantly larger (resp. smaller) for distal gene expression regulation (Table
S6). This suggests that the dearth of previously reported functional enrichments for
distal gene expression regulation is due to the low power of approaches based on
top distal eQTLs (which most studies are underpowered to detect), and not due to
the absence of strong enrichments. Further partitioning of distal regions into intra-
chromosomal and inter-chromosomal distal regions produced larger functional
enrichments for inter-chromosomal distal regulation than for intra-chromosomal
distal regulation (Figure S2 and Table S7). We also analyzed distal enrichment in
the MuTHER gene expression array data set (Table 1) and observed many
significant enrichments (Figure S3 and Table S8). We did not include the GTEx data
set in the distal analysis, due to its smaller sample size.
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Genetic correlation of gene expression between different tissues

We used an extended version of cross-trait LD score regression34 to estimate the
pairwise genetic correlations of local gene expression between different tissues (see
Online Methods). Pairwise genetic correlations were estimated separately in 11
GTEx tissues and in three MuTHER tissues (Figure 5, Table S9 and Table S10). The
average pairwise genetic correlation was 0.738. The lowest genetic correlation was
observed in whole blood versus esophagus mucosa (r=0.247, s.e.= 0.021). The
remaining 57 pairwise correlations were all larger than 0.568, indicating that local
regulation of gene expression is highly correlated across tissues, consistent with
previous studies?218.35-37. Among the 11 GTEX tissues, whole blood had the lowest
genetic correlation with other tissues, with an average genetic correlation of 0.663.
This is consistent with GTEx findings that whole blood is an outlier tissue for gene
expression patterns and eQTLs discovery18.

We also used an extended version of cross-trait LD score regression to estimate the
pairwise genetic correlations of distal gene expression in the three MuTHER tissues
(Figure 5 and Table S10). The average pairwise genetic correlation was 0.084,
indicating that distal regulation of gene expression is highly tissue-specific. This is
also consistent with previous work3>, although few previous studies have
investigated the sharing of distal gene expression regulation across tissues due to
the low power to detect distal eQTLs.

Discussion

In this study, we comprehensively investigated functional enrichments for both
local and distal gene expression regulation in multiple human tissues by applying an
extended version of stratified LD score regression!? to large gene expression
datasets. We detected widespread functional enrichments for both local and distal
gene regulation, including enrichments at super enhancers, coding regions,
conserved regions, and several histone marks. We also found that local gene
expression regulation is highly genetically correlated across tissues, whereas distal
gene expression regulation is highly tissue-specific.

The functional enrichments that we detected for local gene expression regulation
were more statistically significant than enrichments that we previously reported for
analyses of complex traits in very large sample sizes'0. This emphasizes the value of
studying gene expression as an intermediate phenotype for studying complex
diseases and traits, particularly in analyses of functional enrichment. Our systematic
investigation of enrichment of local gene expression regulation across 15 tissues
identified highly consistent enrichments across tissues, despite the widely varying
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samples sizes and different assays. This conclusion was possible because the
heritability approach employed by stratified LD score regression produces
enrichment estimates that are independent of sample sizel9. On the other hand,
methods for assessing functional enrichment using only top eQTL may be highly
sample size dependent, because the enrichment of associated variants in regulatory
annotations may vary with effect size (see Table 1 of ref. 11). In addition, our
results on enrichment of distal gene expression regulation represent a substantial
advance over previous results on functional enrichment of distal eQTLs, which were
limited by the small number of individually significant distal eQTL detected by
previous studies. Our results highlight the advantages of leveraging genome-wide
polygenic signals, instead of restricting to top eQTLs, in efforts to identify functional
enrichments.

Despite these findings, our work has several limitations. First, stratified LD score
regression only models additive effects and cannot capture non-additive effects or
epistasis, which may play an important role in gene expression regulation38-41,
Second, stratified LD score regression is designed for highly polygenic traits and
does not take full advantage of non-infinitesimal genetic architectures, which are a
particularly likely characteristic of local gene expression regulation. Our highly
consistent local enrichments across 15 tissues indicate that the method does
produce robust results for local gene expression analyses, but future methods that
account for non-infinitesimal genetic architectures might produce even more
precise estimates. Third, stratified LD score regression is designed to partition the
heritability explained by common variants, but rare variants may also play an
important role in gene expression regulation*2. Fourth, our results on functional
enrichment were based on eQTLs and did not consider splicing QTLs (sQTLs), a rich
area for future investigation174344, Fifth, we detected no significant cell-type-specific
local enrichments and only limited cell-type-specific distal enrichments (see
Supplementary Note and Figure S4), though similar analyses have detected strong
cell-type specific enrichments for complex traits'?. The absence of local cell-type-
specific enrichments is consistent with our observation that local functional
enrichments are highly consistent across different tissues, and future analyses may
need to restrict to appropriate gene sets (and/or consider sQTLs) to detect cell-
type-specific signals. Sixth, we observed smaller enrichments in local gene
expression regulation compared to previously reported enrichments in complex
traits10. Again, future analyses may need to restrict to appropriate gene sets that are
relevant to the phenotype of interest (Figure S5). It is also possible that variants in
some functional categories contribute to the heritability of complex traits via
mechanisms other than local gene expression regulation.

In conclusion, we have identified significantly enriched functional categories for
local and distal gene expression regulation in multiple human tissues. These
findings shed light on the genetic architecture and molecular mechanism underlying
gene expression regulation, and demonstrate that gene expression is an appropriate
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intermediate phenotype for analyzing functional enrichments of complex diseases
and traits.

URLs

GTEx summary statistics: http://gtexportal.org/home/datasets.

GenABEL and ProbABEL packages: http://www.genable.org.

LD score regression software, including stratified LD score regression and cross-
trait LD score regression: http://www.github.com /bulik/ldsc/.

Annotations for 57 functional categories:
http://data.broadinstitute.org/alkesgroup/LDSCORE/.
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Online Methods

Gene expression datasets

We analyzed gene expression in 15 human tissues: peripheral blood from the NTR
cohort?5, 11 tissues from GTEx!8 with sample size larger than 200, and adipose, skin
and LCL from the MuTHER cohort!? (Table 1). Our analyses required summary
association statistics for genome-wide SNPs. For the NTR data set, we used
summary statistics from ref. 15, using the t statistics as z scores. For the GTEx data
set, we used version 6 of publicly available GTEx summary statistics in local regions
(see URLs); for this data set, we considered local regulation only. For the MuTHER
data set, we recomputed summary statistics as described in ref. 12. The procedure
involves a two-step mixed model-based score test using GenABEL/ProbABEL
packages*>46 (see URLSs). The first step fits a mixed model. The fixed effects include
age and batch for adipose and LCL, and age, batch and sample processing for skin.
The kinship matrix was built by randomly choosing 10,000 SNPs from the dataset.
This step was performed using the polygenic() function of the GenABEL software.
The second step performs a score test using the ProbABEL software. This step was
performed using the -mmscore option of the ProbABEL software.

Extended version of stratified LD score regression
In a simple linear model,

yi =X XijBj + & (1
where y; is a quantitative phenotype in individual i, Xj;is the standardized genotype

of individual i at SNP j, f;is the effect size of SNP j, and ¢; is mean-zero noise. The
total SNP-heritability is defined as
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h2(total) = z B2

J
and the SNP-heritability of a category C is defined as

HOEDYS

jec

Stratified LD score regression!? (see URLs) relies on the fact that LD to a functional
category that is enriched for heritability will increase the chi-square association
statistics of a SNP more than LD to other categories. More precisely,

E[y?]=NY.7.l(j,C) + Na+1

where N is the sample size, I(],C) is the LD score of SNP j to category C, defined as
1(j,C) = Yrec 2, k) 1(j, C) = Yiecr?(j, 1), and a measures the contribution of
confounding biases. (In this study, we employed constrained-intercept LD score
regression34,in which a is fixed at 0.) Performing multiple linear regression of y?on
[(j,C)gives us an estimate 7-of tc, which represents the per-SNP contribution to

heritability of each category C. We estimate h3(C) with

B =y var(g)=y » @

Jjec Jjec ¢’ ijec’

Following ref. 10, we excluded SNPs with chi-square statistics > 80 to reduce
variance. We evaluated different chi-square thresholds (excluding SNPs with chi-
square > 25, 40, 80 or 300). In both local and distal analyses, the enrichment
estimations were not sensitive to the choice of threshold (Table S11 and S12).
Following ref.10, we included in our regression only SNPs that appear in HapMap3,
which we use as a proxy for SNPs we believe to be confidently imputed. We used the
1000G (phase 1)Europeans*’ as a reference panel to calculate LD scores. Thus, the
LD score [(j,C) for regression SNP j is computed using reference SNPs k from 1000
Genomes.

We extended stratified LD score regression to analyze gene expression data. For
each gene, we applied stratified LD score regression for both local and distal regions
of the gene. We defined local regions as the regions within 1Mb of the transcription
starting site (TSS) of each gene, and distal regions as the rest of the genome. In local
(resp. distal) analyses, both regression SNPs and reference SNPs were restricted to
SNPs in local (resp. distal) regions. We also considered a different definition of local
regions (within 2Mb of TSS), and determined that the estimates were not sensitive
to this choice (Figure S6). We estimated hg?(C) and total heritability hg?(total) for
each gene for both local and distal analyses.
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To compute a genome-wide estimate of the proportion of heritability of a category
(for either local or distal regions), we sum the category-specific heritability
estimates across probes and divide by the sum of total heritability estimates across
probes:

¥ih2,(0)
200) — _21"i©
Prop_hZ(C) = $ihZ, (total)’

where héi(C) denotes the estimated heritability of probe i expression in category C,
héi (total) denotes the total estimated heritability of probe i expression, and the sum
is taken over probes i such that héi (total) > 0. We applied this threshold both

because negative heritability is biologically infeasible, and because this reduced
estimation noise and resulted in more stable estimates (see Table S13 and Figure
S7).

The enrichment of heritability is defined as:

. Prop_h%(C)
Enrichment(C) = —Prop_SNi o
where Prop_SNPs(C) is the proportion of reference SNPs that lie in category C
(Table S14).

Standard errors were computed via block-jackknife. In detail, the standard error of
Prop_h4?(C) was computed by partitioning the probes by genomic location into 200
blocks and jackknifing on probes. This accounts for possible correlations of nearby
probes (analogous to the standard block-jackknife on SNPs employed by stratified
LD score regression!?). The standard error of Enrichment(C) was computed by
dividing the standard error of Prop_h3 (C) by Prop_SNPs(C). The statistical
significance of enrichment was computed by assuming a normal approximation. We
used the significance threshold of 0.05/nc, where nc is the number of categories
analyzed, to correct for multiple testing. Open-source software implementing the
extended version of stratified LD score regression will be made publicly available as
part of the LD score regression software (see URLSs) prior to publication

We also computed an AUC metric, which quantifies the fact that larger categories (i.e.
spanning a larger fraction of the genome) are more informative than smaller
categories at a given enrichment level. In detail, for each category, we calculate the
area A under the curve y=f(x), wherey is Prop_h; (C), x is Prop_SNPs(C) (0<x<1).
The AUC is A, or 1-A if A<0.5 (so that the AUC of a category is equal to the AUC of its
complement). The standard error of AUC is calculated as the standard error of
Prop_h;(C) divided by 2.
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Baseline and cell type specific functional categories

The 57 functional categories that we analyzed consist of the 53 basic categories
from ref. 10 and an additional 4 categories. The 53 baseline categories from ref. 10
include coding, UTR, promoter and intronic regions, histone marks, DHS, conserved
regions, and other annotations, as well as 500bp windows around each of those
annotations. The 4 additional categories include super enhancers and typical
enhancers in T cells from ref. 27 as well as 500bp windows around each of those
annotations. Details of all 57 categories are described in Table S14, and the
annotations are publicly available (see URLSs).

Extended version of cross-trait LD score regression

Cross-trait LD score regression34 relies on the fact that SNPs with high LD score will
a have higher product of z-scores (for two genetically correlated traits) on average
than SNPs with low LD scores. More precisely,

_ VN1Nzpg PN,
E[lezzj] = Y, l] + S

JN1N;

where N; is the sample sizes for study i, p, is genetic covariance, M is the number of
SNPs, liis the LD score of SNP j, defined as lj = Y, 1%(j, k), Ng is the number of

overlapping samples in the two studies, and p is the phenotypic correlation among
the common samples.

In the simple model defined by equation (1), let 5; ibe the effect sizes of trait 1 at
SNP j and let y; be the effect sizes of trait 2 at SNP j. The genetic covariance between
trait 1 and trait 2 is defined as

Pg = z Bjv;
j

Genetic correlation is defined as

_ Py
Ty = ——
/h;lhéz

Regressing the product of z scores of two traits on /; gives an estimate of pg, pg. We

can also estimate hgl2 and hgz2 from standard LD score regression*8; the genetic
correlation can be estimated from the equation above.

We further extended the method to estimate, for a given pair of tissues, the
aggregate genetic correlation of the expression over a large set of common probes.
We estimated genetic correlation separately for local and distal regions. For each
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pair of tissues, for each common probe i, we estimated the genetic covariance (o),

as well as the total heritability of probe i in each tissue (hgll and hgz ;). An
aggregated genetic correlation across all the shared probes is defined as

~._ _Pg

Tg- —
’hz h2

,where pg, hz1 and hZ, g1 are the averages ofpg hgl ;and hgzl respectively, taken over

probes i whose h§1,i and h;zli are both greater than 0. Standard errors of fywere

estimated by dividing the probes by genomic locations into 200 blocks and
performing a block jackknife on the probes, analogous to ref. 34. Open-source
software implementing the extended version of cross-trait LD score regression will
be made publicly available as part of the LD score regression software (see URLSs)
prior to publication.
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Tables

Table 1. Gene expression data sets. We analyzed gene expression data spanning
15 human tissues from 3 data sets. For each tissue we list the sample size, data type,
number of SNPs analyzed, and number of probes analyzed. We note that stratified
LD score regression restricts to HapMap3 SNPs from the target data set, as a proxy
for SNPs with high quality imputation.

Data set Tissue g{azr:ple Data type # SNPs # probes

NTR!S Peripheral 2494 | SXPTESSION g 140515 | 42,044
blood array

GTEx!8 Adipose 298 | RNA-seq 1,145,366 | 26,213
subcutaneous

GTEx18 Artery tibial 285 | RNA-seq 1,141,287 24,383
Cells

GTEx18 transformed 272 | RNA-seq 1,145,366 22,963
fibroblasts

GTEx1® Esophagus 241 | RNA-seq 1,131,019 25,070
mucosa

GTEx!8 Esophagus 218 | RNA-seq 1,130,356 | 24,416
muscularis

GTEx!8 Lung 278 | RNA-seq 1,144,671 27,671

GTEx18 Muscle Skeletal 361 | RNA-seq 1,136,801 23,109

GTEx18 Nerve Tibial 256 | RNA-seq 1,145,068 26,808

GTEx!8 Skin-sun 302 | RNA-seq 1,147,848 | 26,849
exposed

GTEx!8 Thyroid 278 | RNA-seq 1,147,844 27,497

GTEx18 Whole blood 338 | RNA-seq 1,114,337 23,164

MuTHER!2 | Adipose 776 | EXPression 878,954 | 22,058

array
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MuTHER!?2 | Skin 667 | EXPression 878,954 22,058
array

MuTHER2 | LCL 777 | €¥pression 878,954 22,058
array
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Figures

Figure 1. Functional enrichments of 13 categories for local gene expression
regulation in peripheral blood (NTR data set). The 13 categories are ordered by
the proportion of SNPs in the category. We report (A) The heritability enrichment of
each category and (B) the AUC for enrichment of each category. Error bars
represent 95% confidence intervals. Numerical results for all 57 categories
analyzed are reported in Table S2.
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Figure 2. Functional enrichments of 13 categories for local gene expression
regulation in 15 tissues. Red shading indicates enriched categories (enrichment
>1), blue shading indicates depleted categories (enrichment < 1), and * indicates
significant enrichment or depletion after correction for 57 hypotheses tested.
Numerical results are reported in Table S2, Table S3 and Table S4.
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Figure 3. Comparison of functional enrichments of 13 categories for local gene
expression regulation in peripheral blood (NTR data set) vs. 9 complex traits .
Enrichments for local gene expression regulation (red bars) are identical to Figure
1A. Enrichments for complex traits (blue bars) are meta-analyzed enrichments of 9
complex traits and diseases from ref. 10. The categories are ordered by enrichment
in the local gene expression analysis. We note that two categories have point
estimates with discordant effect directions (enrichment>1 vs. enrichment<1), but in
each case the complex trait enrichment is not significantly different from 1. Error
bars represent 95% confidence intervals. Numerical results are reported in Table

S5.
= Enrichments of local gene regulation in peripheral blood
® Enrichments in 9 complex traits
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Figure 4. Comparison of functional enrichments of local and distal gene
expression. We report enrichments for local gene expression regulation (red bars;
identical to Figure 1A) and enrichments for distal gene expression (blue bars).

The categories are ordered by proportion of SNPs of functional categories. All
categories had point estimates with concordant effect directions (enrichment>1 vs.
enrichment<1). Error bars represent 95% confidence intervals. Results for the AUC
metric are displayed in Figure S1, and numerical results are reported in Table Sé.
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Figure 5. Pairwise genetic correlation across tissues. We report (A) Pairwise
local genetic correlations across 11 tissues using GTEx data, (B) Local (upper left)
and distal (lower right) genetic correlations across 3 tissues using MuTHER data.
Numerical results are reported in Table S9 and Table S10.

A B
Whole_Blood - e
oo [ BN - B
- IR
<
)
Skin—. &
Nel : ;
bi o & v
Nerve_lelaI—. & <F NS
>
v
Muscle_Skeletal -
-
Esophagus_Muscularis = .
Genetic
Esophagus_Mucosa - . Correlation
1.00
Cells_Transformed_fibroblasts -
Tastomed e
Artery_Tibial - . 0.50
_ 0.25
Adipose_Subcutaneous -
! 0.00
Q
&
>
S
N ¥
o‘be'/ 1\0K
. o
R N
v N
o/
o

21


https://doi.org/10.1101/046383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/046383; this version posted March 31, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

1. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes.
Nature 518, 317-330 (2015).

2. ENCODE Project Consortium et al. An integrated encyclopedia of DNA
elements in the human genome. Nature 489, 57-74 (2012).

3. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine
human cell types. Nature 473, 43-49 (2011).
4. Maurano, M. T. et al. Systematic Localization of Common Disease-Associated

Variation in Regulatory DNA. 337, 1190-1195 (2012).

5. Trynka, G., Sandor, C.,, Han, B., Xu, H. & Stranger, B. E. Chromatin marks
identify critical cell types for fine mapping complex trait variants. Genetics
(2013).

6. Gusev, A. et al. Partitioning Heritability of Regulatory and Cell-Type-Specific
Variants across 11 Common Diseases. Am. J. Hum. Genet. 95, 535-552 (2014).

7. Pickrell, ]. K. Joint Analysis of Functional Genomic Data and Genome-wide
Association Studies of 18 Human Traits. Am. J. Hum. Genet. 94, 559-573
(2014).

8. Kichaev, G. et al. Integrating Functional Data to Prioritize Causal Variants in
Statistical Fine-Mapping Studies. PLoS Genet 10, 1004722 (2014).

9. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune

disease variants. Nature 518, 337-343 (2015).

10. Finucane, H. K. et al. Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat Genet 47, 1228-1235
(2015).

11. Sveinbjornsson, G. et al. Weighting sequence variants based on their
annotation increases power of whole-genome association studies. Nat Genet
48,314-317 (2016).

12.  Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple
tissues in twins. Nat Genet 44, 1084-1089 (2012).

13. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers
functional variation in humans. Nature 501, 506-511 (2013).

14. Westra, H.-]. et al. Systematic identification of trans eQTLs as putative drivers
of known disease associations. Nat Genet 45, 1238-1243 (2013).

15.  Wright, F. A. et al. Heritability and genomics of gene expression in peripheral
blood. Nat Genet 46, 430-437 (2014).

16. Battle, A. et al. Characterizing the genetic basis of transcriptome diversity
through RNA-sequencing of 922 individuals. Genome Research 24, 14-24
(2014).

17. Zhang, X. et al. Identification of common genetic variants controlling
transcript isoform variation in human whole blood. Nat Genet 47, 345-352
(2015).

18. GTEx Consortium et al. The Genotype-Tissue Expression (GTEx) pilot analysis:
Multitissue gene regulation in humans. Science 348, 648-660 (2015).

19. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits
and disease. Nat Rev Genet 16, 197-212 (2015).

22


https://doi.org/10.1101/046383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/046383; this version posted March 31, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

20. Davis, L. K. et al. Partitioning the Heritability of Tourette Syndrome and
Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture.
PLoS Genet 9, e1003864 (2013).

21. Torres,]. M. et al. Cross-Tissue and Tissue-Specific eQTLs: Partitioning the
Heritability of a Complex Trait. Am. J. Hum. Genet. 95, 521-534 (2014).

22. Gamazon, E. R. et al. A gene-based association method for mapping traits
using reference transcriptome data. Nat Genet 47, 1091-1098 (2015).

23. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide
association studies. Nat Genet 48, 245-252 (2016).

24. Veyrieras, ].-B. et al. High-Resolution Mapping of Expression-QTLs Yields
Insight into Human Gene Regulation. PLoS Genet 4, e1000214-15 (2008).

25. Gaffney, D.]. et al. Dissecting the regulatory architecture of gene expression
QTLs. Genome Biol 13, R7 (2012).

26. Battle, A. et al. Impact of regulatory variation from RNA to protein. Science
347, 664-667 (2015).

27. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory
nodes in T cells. Nature 520, 558-562 (2015).

28. Hnisz, D. et al. Super-Enhancers in the Control of Cell Identity and Disease. Cell
155, 934-947 (2013).

29. Lee, S.-l. et al Learning a Prior on Regulatory Potential from eQTL Data. PLoS
Genet 5,e1000358 (2009).

30. Stergachis, A. B. et al. Exonic Transcription Factor Binding Directs Codon
Choice and Affects Protein Evolution. Science 342, 1367-1372 (2013).

31. Kervestin, S. & Jacobson, A. NMD: a multifaceted response to premature
translational termination. Nature Reviews Molecular Cell Biology 13, 700-712
(2012).

32. Cenik, C. et al. Integrative analysis of RNA, translation, and protein levels
reveals distinct regulatory variation across humans. Genome Research 25,
1610-1621 (2015).

33. Hoffman, M. M. et al. Integrative annotation of chromatin elements from
ENCODE data. Nucl. Acids Res. 41, gks1284-841 (2012).

34. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat Genet 47, 1236-1241 (2015).

35. Price, A. L. et al. Single-Tissue and Cross-Tissue Heritability of Gene
Expression Via Identity-by-Descent in Related or Unrelated Individuals. PLoS
Genet 7,e1001317-9 (2011).

36. Nica, A. C. et al. The Architecture of Gene Regulatory Variation across Multiple
Human Tissues: The MuTHER Study. PLoS Genet 7,e1002003 (2011).

37. Flutre, T., Wen, X,, Pritchard, J. & Stephens, M. A Statistical Framework for
Joint eQTL Analysis in Multiple Tissues. PLoS Genet 9, e1003486 (2013).

38. Lappalainen, T., Montgomery, S. B., Nica, A. C. & Dermitzakis, E. T. Epistatic
Selection between Coding and Regulatory Variation in Human Evolution and
Disease. Am. . Hum. Genet. 89, 459-463 (2011).

39. Hemani, G. et al. Detection and replication of epistasis influencing
transcription in humans. Nature 508, 249-253 (2014).

40. Wood, A. R. et al. Another explanation for apparent epistasis. Nature 514, E3-

23


https://doi.org/10.1101/046383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/046383; this version posted March 31, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

E5 (2014).

41. Bulil, A. et al. Gene-gene and gene-environment interactions detected by
transcriptome sequence analysis in twins. Nat Genet 47, 88-91 (2015).

42. Zhao,]. et al. A Burden of Rare Variants Associated with Extremes of Gene
Expression in Human Peripheral Blood. Am. J. Hum. Genet. 98, 299-309
(2016).

43.  Ongen, H. & Dermitzakis, E. T. Alternative Splicing QTLs in European and
African Populations. Am. . Hum. Genet. 97, 567-575 (2015).

44. Gutierrez-Arcelus, M. et al. Tissue-Specific Effects of Genetic and Epigenetic
Variation on Gene Regulation and Splicing. PLoS Genet 11, 1004958 (2015).

45.  Aulchenko, Y.S., de Koning, D.-]. & Haley, C. Genomewide Rapid Association
Using Mixed Model and Regression: A Fast and Simple Method For
Genomewide Pedigree-Based Quantitative Trait Loci Association Analysis.
Genetics 177,577-585 (2007).

46. Chen, W.-M. & Abecasis, G. R. Family-Based Association Tests for Genomewide
Association Scans. Am. J. Hum. Genet. 81, 913-926 (2007).

47. 1000 Genomes Project Consortium et al. An integrated map of genetic
variation from 1,092 human genomes. Nature 491, 56-65 (2012).

48.  Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat Genet 47, 291-295
(2015).

24


https://doi.org/10.1101/046383
http://creativecommons.org/licenses/by-nc-nd/4.0/

