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ABSTRACT

Identification of drug targets and mechanism of action (MoA), particularly for new and
uncharacterized drugs, is important for the optimization of drug efficacy. Current approaches
towards determining drug MoA largely rely on prior information such as side effects, therapeutic
indication and chemo-informatics. However, such information is not transferable or applicable
for newly identified small molecules. Despite continuous release of large-scale
pharmacogenomic datasets, these valuable data remain underused to classify drugs.
Accordingly, a systematic and unbiased approach towards MoA prediction is imperative to
efficiently classify new compounds and infer their potential targets of MoA. Here, we propose a
method that only relies on basic drug characteristics, including drug structural information, drug
perturbation and drug sensitivity profiles, which have not been previously combined towards
predicting drug targets and MoA. We harnessed the full potential of pharmacogenomics data
using our Similarity Network Fusion approach to implement Drug Network Fusion (DNF), a
scalable, integrative drug taxonomy. We demonstrate that DNF is effective towards prediction of
drug targets and anatomical therapeutic chemical (ATC) classification). Our method enables
robust inference of drug MoAs for new and existing compounds, using integrative computational
pharmacogenomics.
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INTRODUCTION

Continuous growth and ongoing deployment of large-scale pharmacogenomic datasets has
opened new avenues of research for the prediction of biochemical interactions of small drug
molecules with their respective targets, also referred to as drug mechanisms of action (MoA).
Several computational strategies have relied on chemical structure similarity to infer drug-target
interactions [1-3], based on the assumption that structurally-similar drugs share similar targets,
and ultimately, similar pharmacological and biological activity [4]. However, sole reliance on
chemical structure information fails to consider drug-induced genomic and phenotypic
perturbations, which directly connect with biological pathways and molecular disease
mechanisms [5,6]. Recent approaches have thereby integrated drug-induced transcriptional
profiles from Connectivity Map (CMAP) [7] into their algorithms, creating new ways for
identification of drug-drug similarities and MoA solely based on gene expression profiles [8].
Other methods have integrated prior knowledge such as adverse effects annotations [9,10] and
recent approaches showed that integrating multiple layers of information had improved ATC
prediction for FDA-approved drugs [11]. While these initiatives have undoubtedly paved great
strides towards characterizing drug MoA, determining the consistency of such efforts towards
prediction of new, uncharacterized small molecules remains a challenge.

The advent of high-throughput molecular profiling to identify patterns of small-molecule
sensitivities across cell lines promises to shed additional insight into drug MoA. This type of
drug bioactivity information remains largely unexploited in drug classification algorithms, despite
its ongoing development over the past decade. The pioneering initiative of the NCI60 panel
provided an assembly of tumour cell lines that have been treated against a diverse panel of
over 100,000 small molecules [12,13]. The NCI60 dataset was the first large-scale resource
enabling identification of lineage-selective small molecule sensitivities [14]. However, the
relatively small number of 59 cancer cell lines of the NCI60 panel restricted the relevance of
these data for prediction of drug MoA. The Cancer Therapeutics Response Portal (CTRP) has
recently addressed this limitation by providing a resource of sensitivity measurements for
extensively characterized cancer cell lines tested against a set of nearly 300 small molecules
[15,16]. The latest CTRP release, coined CTRPv2, presents the largest quantitative in vitro
sensitivity dataset available to date, spanning 860 cancer cell lines screened against a set of
481 small molecule compounds [16]. Individual assessment of these in vitro sensitivity datasets
have highlighted their use towards determining mechanism of growth inhibition, and inference of
MoA of compounds from natural products. It remains to be demonstrated, however, whether
integration of these drug sensitivity data with other drug-related data, such as drug structures
and drug-induced transcriptional signatures, can be used to systematically infer drug MoA.

Comprehensive molecular characterization of drug MoA for newly identified compounds
requires high-throughput datasets that encapsulate a widespread range of drugs across multiple
cancer cell lines. The aforementioned CTRPv2 sensitivity data perfectly qualifies for these
requirements. However, such a dataset is unmatched by corresponding drug perturbation
signatures from CMAP, which only characterizes 1309 drugs across 5 cancer cell lines. The
CMAP project has recently been superseded by the L1000 dataset from the NIH Library of
Integrated Network-based Cellular Signatures (LINCS) consortium [17], which has expanded
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upon the conceptual framework of CMAP and contains over 1.4 million gene expression profiles
spanning 20,413 chemical perturbations. Accordingly, the L1000 dataset provides an
unprecedented compendium of both structural and transcriptomic drug data. A recent integrative
study of the LINCS data showed that structural similarity are significantly associated with similar
transcriptional changes, supporting the complementarity of these drug-related data [6].

To improve inference of drug MoA for new compounds, we leveraged our recent
Similarity Network Fusion algorithm [18] to efficiently integrate drug structure, sensitivity, and
perturbation data towards developing a large-scale molecular drug taxonomy, called Drug
Network Fusion (DNF) (Figure 1). DNF significantly outperformed taxonomies based on single
data types at classifying drugs based on drug targets and therapeutic annotations. Our
explorative analysis sheds light on how data integration approach can substantially improve
characterization of MoA, both for existing drugs, but more specifically, for new compounds that
lack deep pharmacological and biochemical characterization. Our results support DNF as a
valuable resource to the cancer research community by providing new hypotheses on the
compound MoA and potential insights for drug repurposing.

MATERIAL AND METHODS
A schematic overview of the analysis design is presented in Figure 2.
Processing of drug-related data and identification of drug similarity

Drug structure annotations: Canonical SMILES strings for the small molecules were extracted
from PubChem [19], a database of more than 60 millions unique structures. Tanimoto similarity
measures [20] between drugs were calculated by first parsing annotated SMILES strings for
existing drugs through the parse.smiles function of the rcdk package (version 3.3.2). Extended
connectivity fingerprints (hash-based fingerprints, default length 1,024) across all drugs was
subsequently calculated using the rcdk::get.fingerprints function [21].

Drug perturbation signatures: We obtained transcriptional profiles of cancer lines treated with
drugs from the L1000 dataset recently released by the Broad Institute [22], which contains over
1.4 million gene expression profiles of 1000 ‘landmark’ genes across 20,413 drugs. We used
our PharmacoGx package (version 1.1.4) [23] to compute signatures for the effect of drug
concentration on the transcriptional state of a cell, using a linear regression model adjusted for
treatment duration, cell line identity, and batch to identify the genes whose expression is
significantly perturbed by drug treatment:

G:BO+BiCi+BtT+BdD+BbB

where
G = molecular feature expression (gene)
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C, = concentration of the compound applied
T = cell line identity

D = experiment duration

B = experimental batch

Bs = regression coefiicients.

The strength of the feature response is quantified by pi. G and C are scaled variables
(standard deviation equals to 1) to estimate standardized coefficients from the linear model. The
transcriptional changes induced by drugs on cancer cell lines are subsequently referred to
throughout the text as drug perturbation signatures. Similarity between estimated standardized
coefficients of drug perturbation signatures was computed using the Pearson correlation
coefficient, with the assumption that drugs similarly perturbing the same set of genes might
have similar mechanisms of action.

Drug sensitivity signatures: We obtained summarized dose-response curves from the
published drug sensitivity data of the NCI60 [14] and CTRPv2 [16] datasets integrated in the
PharmacoGx package. We relied on the calculated Z-score and area under the curve (AUC)
metrics for NCI60 and CTRPv2, respectively. Drug similarity was defined as the Pearson
correlation of drug sensitivity profiles.

Development of a drug network fusion (DNF) taxonomy

We used our Similarity Network Fusion algorithm [18] to identify drugs that have similar
mechanisms of actions by integrating three data types representing drug structure, drug
perturbation, and drug sensitivity profiles. Drug structure and drug perturbation taxonomies were
based on drug-drug similarity matrices computed from the PubChem SMILES and the the
L1000 dataset, respectively. The drug sensitivity taxonomy was composed of the drug-drug
similarity matrix of the sensitivity signatures extracted from either the NCI60 or CTRPv2
datasets. For each dataset, an affinity matrix was first calculated using the affinityMatrix function
as described in the SNFtool package (version 2.2), using default parameters. We combined the
three affinity matrices of the structure, perturbation, and sensitivity taxonomies into a Drug
Network Fusion (DNF) matrix using the SNFtool::SNF function (Figure 2). Two separate DNF
matrices were generated dependant on the sensitivity layer used (either CTRPv2 or NCI60).
The developed DNF taxonomies, as well as the single data type taxonomies, were subsequently
tested against benchmark datasets to validate their drug mode of action (MoA).

Assessment of drug mode of action across drug taxonomies
Drug-target associations. Known target associations for drugs pertaining to the NCI-60

dataset were downloaded from CHEMBL (file version 15-3-46-00) [24]. Drug-target associations
for drugs of the CTRPv2 dataset were obtained from the CTRPv2 website
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(http://www.broadinstitute.org/ctrp.v2/?page=#ctd2Target). Drugs with annotated targets were
filtered to retain only targets with at least two drugs.

Anatomical therapeutic classification system (ATC). ATC annotations [25] for the drugs
common to the NCI60 and CTRPv2 datasets were downloaded from ChEMBL (file version
15-3-18-59) [24]. These ATC codes were filtered to retain only those categories with at least
one pair of drugs sharing a pharmacological indication. The drugs with known ATC annotations
from the NCI60 and CTRPv2 datasets were subsequently used as a validation benchmark
against singular drug taxonomies and the DNF taxonomy.

Evaluation of drug mechanism of action across taxonomies

We assessed the predictive value of our developed taxonomies against drug-target and ATC
benchmark datasets to determine the extent to which single data type taxonomies and the DNF
taxonomy recapitulate known drug MoA (Figure 3). We adapted the method from Cheng et al
[26] to compare benchmarked datasets against singular drug taxonomies (Drug Perturbation,
Drug Structure, or Drug Sensitivity) as well as the integrated DNF taxonomy. This method is
further detailed below for the benchmark datasets used in our study. First, we created
adjacency matrices that indicate whether each pair of drugs share a target molecule or ATC
annotation. The drug-target and ATC adjacency matrices were then converted into a vector of
similarities between every possible pair of drugs where the value ‘1’ was assigned in the vector
if the paired drugs were observed the same target/ATC set, and ‘0’ otherwise. Similarly, the
affinity matrices of singular drug taxonomies as well as the DNF taxonomy matrix were
converted into vectors of drug pairs, with the similarity value of the drug pairs retained from their
original corresponding matrix. Binary vectors of the benchmarks were compared to the four
continuous vectors of the drug taxonomies by computing the receiver-operating curves (ROC)
using the ROCR package (version 1.0.7) [27], and the area under the curve (AUC) using the
concordance.index function of the survcomp package (version 1.18.0) [28]. The AUC estimates
the probability that, for two pairs of drugs, drugs that are part of the same drug set (same
therapeutic targets or ATC functional annotations) have higher similarity than drugs that do not
belong to the same drug set. AUC calculations for each of the four taxonomies were statistically
compared against each other using the survcomp::compare.cindex function.

Detection of drug communities and visualization

Clusters of drug communities were determined from the DNF taxonomy using the affinity
propagation algorithm [29,30] from the apcluster package (version 1.4.2). The apcluster
algorithm generates non-redundant drug communities, with each community represented by an
exemplar drug. An elevated g value parameter, which determines the quantiles of similarities to
be used as input preference to generate small or large number of clusters, was set at g=0.9
within the apcluster function to produce a large number of communities. Networks of exemplar
drugs were rendered in Cytoscape (version 3.3.0) [31]. Drug structures were rendered using the
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chemViz plugin version 1.0.3 for cytoscape [32]. A minimal spanning tree of the exemplar drugs
was determined using Kruskal’s algorithm as part of the CySpanningTree plugin version 1.1 [33]
for cytoscape.

Research Reproducibility

All the code and data links required to reproduce this analysis is publicly available on
https://github.com/bhklab/drugSNF. The procedure to setup the software environment and run
our analysis pipeline is also provided. This work complies with the guidelines proposed by
Robert Gentleman [34] in terms of code availability and reproducibility of results.

RESULTS

We developed a large-scale molecular taxonomy, Drug Network Fusion (DNF), by integrating
drug structure, drug sensitivity, and perturbation signatures using our recently developed
Similarity Network Fusion algorithm [18]. Drug structure (SMILES representations) were
extracted from the PubChem database, containing 60 million compounds. Drug perturbation
signatures, representing drug-induced gene expression changes, were extracted from the
recent LINCS L1000 dataset. Drug sensitivity signatures representing cell line viability across
cancer cell lines were extracted from the CTRP portal, which contains pharmacological profiles
of several hundred cell lines (Supplementary Figure 1). We have tested the robustness of our
approach by also generating a DNF taxonomy using the NCI60 sensitivity dataset, which
contains pharmacological profiles for only 60 cell lines but spans thousands of drugs
(Supplementary Figure 1). Collectively, both tests serve to span a large spectrum of sensitivity
signatures across both drug compounds and cancer cell lines. Using CTRPv2, our DNF
taxonomy is composed of 239 drugs for which all of drug structure, drug perturbation, and drug
sensitivity information could be fused. Using NCI60, a total of 238 common drugs were used.
Notably, the overlap between the drugs of the NCI60 and CTRP datasets is small (64 drugs;
Supplementary Figure 1), which underscores the complementarity of these two datasets.

To demonstrate the benefit of our integrative approach, we assessed the predictive
value of the DNF taxonomy for drug targets and functional classification and compared it to only
using structure, sensitivity, or perturbation data alone. In addition, we used affinity propagation
clustering (APC) on the DNF taxonomy to determine communities of drugs which share a similar
MoA.

Performance of drug taxonomies against known drug targets

Determining drug-target interactions is important in the drug development process. The
identification of new targets opens new avenues for drug repurposing efforts, and suggests new
pathways and mechanisms by which drugs can operate in cells. Drug targets were identified for
193 drugs in CTRPv2 and these drugs were filtered to retain target categories with more than
one drug, resulting in a set of 141 drugs available for benchmarking. Similarly, drug targets were
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identified for 101 drugs in NCI60, from which 73 drugs shared a target with at least another
drug.

We assessed the predictive value of our single-data layer and integrative drug
taxonomies against drug targets and ATC functional classification. We performed a ROC
analysis to quantify how well our drug taxonomies align with established drug target (Figure 3).
By statistically comparing the resulting AUC values, we were able to determine whether our
integrative drug taxonomy outperformed taxonomies based on a singular data analyses (Figure
3, Table 1). We tested how our integrated taxonomy using the CTRPv2 drug sensitivity
taxonomy compares against single-layers for drug-target designations from ChEMBL (Figure
4A). Of the three single-layer taxonomies validated against annotated drug targets from
CTRPv2, the drug sensitivity layer outperformed the structure and perturbation taxonomies
(AUC of 0.83, 0.71 and 0.64 for sensitivity, structural and perturbation data layers, respectively)
(Figure 4A). Importantly, DNF yielded the best predictive value (AUC of 0.89, Figure 4A), and
was significantly higher than any single-layer taxonomy (one-sided t test p-value < 1E-16, Table
1).

We replicated our integrative taxonomy approach using the set of drug sensitivity
signatures obtained from the NCI60 dataset where a much smaller panel of cell lines has been
screened (60 vs. 860 cell lines for NCI60 and CTRPV2, respectively). This integrative taxonomy
(Supplementary Figure 2) was generated and validated against the drug-target benchmark
from ChEMBL databases since no drug-targets annotation were provided from the NCI60 site.
Our evaluation of single-layer taxonomies demonstrates that drug similarities based on
sensitivity signatures were the most efficient in predicting drug-target associations (AUC of 0.69;
Supplementary Figure 2A) compared to structure and perturbation (AUC of 0.61 and 0.49,
respectively; Supplementary Figure 2A). DNF was significantly more predictive of drug-target
associations compared to single-layer taxonomies from structure and perturbation but not
sensitivity (AUC of 0.70 and one-sided superiority test p-values < 0.05, Supplementary Figure
2A, Table 1).

Performance of drug taxonomies against known functional classes

Predicting the anatomical classification (ATC) of a drug provides existing and new insights
about its pharmacological mechanism, and ultimately presents new potential indications for
previously uncharacterized drugs. ATC codes were identified for 59 and 122 drugs pertaining to
CTRPv2 and NCI60, respectively. These codes were filtered to retain only those categories with
at least one pair of drugs sharing a pharmacological indication. A total of 43 and 88 drugs with
known ATC annotations from the CTRPv2 and NCI60 datasets, respectively, were subsequently
used for performance assessment.

We conducted a second validation of our taxonomies against ATC drug classification
(Figure 4B). Drug sensitivity was not the most predictive layer for ATC classification and
exhibited comparable predictive power as drug perturbation (Figure 4B). The structure-based
taxonomy (Figure 4B) was the most predictive amongst single-layer taxonomies (AUC of 0.72,
0.57 and 0.54 for structure, sensitivity, and perturbation layers, respectively). The integrative
drug taxonomy significantly outperformed single-layer taxonomies (AUC of 0.77 with one-sided t
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test p-value < 0.05; Figure 4B, Table 1). Interestingly, DNF outperforms single-layer
taxonomies when tested for functional classification based on ATC (AUC of 0.87 with one-sided
t test p-values < 0.05; Supplementary Figure 2B, Table 1). Similarly, as observed with
CTRPV2, structural similarity remains the best performing single-layer taxonomy when tested
against ATC classification (Supplementary Figure 2).

Identification of Drug Communities Using DNF Taxonomy

To assess the biological relevance of integrative drug taxonomy in discovering drugs with
similar MoA, we applied the affinity cluster propagation algorithm [30] to identify clusters of
highly similar drugs referred to as drug communities (Figure 5, Supplementary Figure 3).
These communities can be represented by their most representative drug and the similarities
between communities represented a network where each node is labeled by the exemplar drug.
Our initial analysis of the DNF taxonomy based on CTRPV2 sensitivity identified 53 communities
(Table 2). Of these, we identified 39 drug communities (Table 3), which have at least two drugs
with a known mechanism of action.

Overall, our integrative taxonomy developed using the CTRPv2 has produced a
substantial and consistent classification of drugs for a variety of functional classes (Table 4).
Briefly our classifications recapitulate most of the protein target-drug associations represented
in CTRPv2: Receptor tyrosine kinases and non-receptor tyrosine kinases (including EGFR,
VEGFR, ALK, ABL1, SRC, RAF, MEK, IGFR-1) inhibitors, PISBK/mTOR family inhibitors,
proapoptotic (including the p53 tumor suppressor) and anti-apoptotic (including the MDM2 and
BCL-2 oncogenes) inhibitors, epigenetic regulators (HDACSs) inhibitors, glycosyltransferase
NAMPT inhibitors, cell cycle kinases inhibitors (CDKs, PLK, ATM), DNA replication
(topoisomerases), repair and synthesis (TYMS) inhibitors, HMG CoA and proteasome inhibitors
(Table 2 and Supplementary Table 3).

We replicated our integrative taxonomy using the NCI60 sensitivity dataset
(Supplementary Figure 1), and identified 51 communities (Supplementary Table 1), of which
20 communities (Supplementary Table 2) showed at least two drugs with a known mechanism
of action. We are aware that an important number of drugs has unannotated target and ATC
codes, as most of the drugs in this study are experimental or uncharacterized chemicals in
NCI60, however for reproducibility and validation concerns we did not manually annotated our
compound collections (Table 4).

DISCUSSION

Identification of MoA for newly uncharacterized compounds is a key challenge towards
characterizing on-targets responsible of pharmacological effect and off-targets associated with
unexpected physiological effects. Shortcomings of current approaches include a degree of
reliance on pharmacological, biochemical, and functional annotations that pertain to existing,
well-characterized drugs, and which may not be applicable towards prediction of a new small
compounds (Figure 6) [11][35]. Compounding this issue is the absence of a high-throughput,
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integrative classification that merges complementary and basic drug characteristics, such as
chemical structure, in vitro drug sensitivity and transcriptional perturbation signatures. Such
shortcomings have not only hindered efficient classification of new drugs, but also pose an
obstacle towards proper evaluation of the current methods for drug taxonomy inference (Figure
6). Our analysis addresses these issues by conducting, to our knowledge, the first large-scale
integration of drug structure, sensitivity and perturbation signatures towards prediction of drug
MoA. We demonstrate how the DNF taxonomy represents a new resource that can be mined to
uncover relationships between small molecule compounds and new mechanisms of action.

We have capitalized upon our integrative Similarity Network Fusion method [18] to
construct a high-throughput drug similarity network (DNF), based on the fusion of drug structure,
sensitivity, and perturbation data. The construction of drug-similarity networks and their
subsequent fusion allows us to fully harness the complementary nature of several drug
datasets, and generate an informative clustering of drugs across multiple data types. We have
previously demonstrated how Similarity Network Fusion substantially outperforms single data
type analysis [18] in an analysis of genomic data across several cancers and we demonstrated
here that this holds true in the context of drug taxonomy inference. Testing how well different
drug taxonomies correctly predict drug targets (Figure 4A) and anatomical (ATC) drug
classifications (Figure 4B), indicates that DNF constitutes a marked improvement towards drug
classification, compared to single data type analyses using either drug sensitivity, structure, or
perturbation information alone. This observation is sustained even with the use of a different
type and scale of in vitro sensitivity data (Supplementary Figure 1) to generate the DNF matrix
(Supplementary Figure 2). Accordingly, our integrative approach succeeds in combining
several drug data types into a single comprehensive network that represents the full spectrum of
the underlying data.

Relying on drug-related data that only encompasses drug sensitivity, structure, and
perturbation profiles ultimately presents a flexible approach towards comprehensive drug
classification. We have removed any reliance on existing pharmacological, biochemical, or
functional annotations that pertain to existing drugs, such as drug-target classifications or
knowledge of the anatomical and organ system targeted by the drug compounds. Accordingly,
our DNF method only requires basic drug information, including drug structures, sensitivity, and
perturbation profiles, to determine drug MoA. These types of data, compared to other
mechanistic annotations including ATC or drug target information, are much easier to generate
for newly uncharacterized compounds, which ultimately facilitates proper characterization of
new compounds. This promises to provide a more extensive characterization of the compound
across multiple manifolds of drug associations, and ultimately allows us to test our DNF drug
associations against both drug-target and anatomical therapeutic classifications (ATC).

Comparing our integrative DNF taxonomy with single data layers revealed the
importance of drug sensitivity information towards improving prediction performance of
drug-target associations (Figure 4A). Such findings support the relevance of bioactivity assays
to predict drug targets, and underscore the comprehensive nature of the CTRPv2 dataset (860
cell lines screened with 16 drug concentrations, tested in duplicate) [16]. Similarity, we have
observed a priority for drug structure information towards prediction of ATC drug classification
(Figure 4B). Our approach thus exemplifies how DNF and singular taxonomies are compared
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against a number of drug benchmarks, and highlights the interplay between different types of
data for generating relevant drug classifications.

The DNF taxonomy highlights many cases of drug clusters with known mechanism of
action, capturing context-specific features associated to drug sensitivity and genomic profiles in
cancer cells. These cases, to some extent, serve as experimental validation of our method. We
classified correctly all BRAF (V600E mutation) inhibitors, which include drugs already tested in
metastatic melanoma (community C18:dabrafenib, GDC0879, PLX4720) and mitogen-activated
protein kinase/ERK kinase (MEK) inhibitors (C41: namely trametinib and selumetinib). BRAF
regulates the highly conserved MAPK/ERK signaling pathway, and BRAF mutational status has
been proposed as a biomarker of sensitivity towards selumetinib and other MEK inhibitors
[36,37]. This explains the tight connection of these two communities (Figure 5).

The DNF taxonomy also represents a new and comprehensive resource that can be
mined to uncover new relationships between drugs and mechanisms of action. We identified a
community of HMG Co-A reductase inhibitors (statins) composed of fluvastatin, lovastatin, and
simvastatin (C30; Figure 5). These are a class of cholesterol-lowering drugs, and which have
been found to reduce cardiovascular disease. Interestingly, parthenolide is the only drug
clustering with this community, and has been experimentally observed to inhibit the NF-Kb
inflammatory pathway in atherosclerosis and in colon cancer [38,39], thereby exhibiting similar
behavior to statin compounds. By inhibiting similar targets and modulating similar pathways as
statins, these findings suggest that parthenolide may present a statin-like MoA. We also
classified correctly drugs with unannotated mechanisms/targets in CTRPv2 such as ifosfamide,
cyclophosphamide and procarbazine (C17; Figure 5) which are known alkylating agents (ATC
code: LO1A). Furthermore, this was also true for docetaxel and paclitaxel (C21; Figure 5), two
taxanes drugs with unannotated target in CTRPv2 (ATC code: LO1CD).

Our integrative drug taxonomy is also able to identify targets for drugs with poorly
understood mechanisms and to infer new mechanism for other drugs. Community C15, for
example, contains tigecycline and Col-3 (Figure 5); both are derivatives of the antibiotic
tetracycline [40]. Tigecycline is an approved drug, however its target is not characterized in
humans. Col-3 showed antitumor activities by inhibiting matrix metalloproteinase [40].
Interestingly, tosedostat (CHR-2797), a metalloenzyme inhibitor with antiproliferative potential, is
also a member of this community [41]. Another drug in this community, phloretin, is a natural
compound with uncharacterized targets and has been recently shown to deregulate matrix
metalloproteinases at both gene and protein levels [42]. Our results suggest that matrix
metalloproteinases would be the preferred target for drugs in this community, supporting the
need for further experimental investigation. DNF also consolidated previous findings for drugs
that may serve as tubulin polymerization disruptors, and which have not been previously
classified as such. We identified a community of 3 drugs (C49) in which LY2183240, and
YK-4-279 have been recently identified to decrease alpha-tubulin levels [16]. TIVANTINIB a
c-MET tyrosine kinase inhibitor also blocked microtubule polymerization [43]. Interestingly, this
community is tightly connected to known microtubule perturbators (community C21; Figure 5).

Our results also concur with the study of Rees et al. [44] regarding cluster of the BCL-2
inhibitors ABT-737 and navitoclax (community C33; Figure 5), where the authors reported that a
high expression of BCL-2 confers sensitivity to these two drugs. This was not the case for
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another BCL-2 inhibitor, obatoclax. They proposed that a metabolic modification of obatoclax in
cells impacts its interaction with BCL-2 proteins, therefore reducing its potency. We showed
indeed that obatoclax did not cluster with the other two BCL-2 inhibitors (ABT-737 and
navitoclax). Such an example demonstrates how the structural and sensitivity profiles of these
two BCL-2 inhibitors are largely coherent in contrast to obatoclax, which previously showed
off-target effects compared to ABT-737 [45]. This provides a good evidence to consider
sensitivity profiles when developing new potent and specific BCL-2 inhibitors.

Our results suggest the existence of “super communities”, that are a grouping of several
communities sharing similar MoA, or contributing to a larger, systems-based MoA. An example
is provided by the tightly connected communities C3, C21, C23, C43. One of these communities
(C3: Alvocidib, PHA-793887 and staurosporine) includes well-characterized inhibitors of cyclin
dependant kinases (CDKs) that are known to be major regulators of the cell cycle. BMS-345541
for example, which also clusters with drugs in C3, is an ATP non-competitive allosteric inhibitor
of CDK [46]. Those compounds are positioned close in the community network to
topoisomerase | and Il inhibitors (C43: SN-38, topotecan, etoposide, teniposide), microtubule
dynamics perturbators (C21: paclitaxel, docetaxel, vincristine, parbendazole) and polo-like
kinase inhibitors (C23: GSK461364, GW843682X). lorio et al., reported that the similarity
between CDK inhibitors and the other DNA-damaging agents is mediated through a p21
induction, which explains the interconnection and rationale of similar transcriptional and
sensitivity effects [8] of these regulators of cell cycle progression.

Our study suggests that drug sensitivity data is an important asset for computational
methods that predict drug mechanism of action. To test the stability of the fusion algorithm with
respect to the scale of the drug sensitivity profiles, we also applied our methodology on the
NCI60 dataset, which comprises a much smaller panel of cell lines (60 vs. 860 for NCI60 and
CTRPv2, respectively). The NCI60 panel compensates for its small cell line panel by the large
number of screened drugs (>40,000 drugs tested on the full panel; Supplementary Figure 1).
Testing DNF using the NCI60 sensitivity information reveals that our integrative taxonomy
continues to supersede single-layer drug taxonomies across varying benchmarks
(Supplementary Figure 2). Interestingly, some of the identified communities using NCI60, such
as the tight connection between BRAF/MEK inhibitor drugs (C42; Supplementary Figure 3),
had also been identified in our original analysis using CTRPv2 sensitivity profiles. This
demonstrates a high degree of specificity of drug-target associations across cell lines and
experimental platforms, which is crucial in biomarker identification and translational research.

The DNF taxonomy encompassing the NCI60 dataset has also identified a number of
well-characterized drug communities (Supplementary Tables 1-3). These include the
community composed of EGFR inhibitors (C20; Supplementary Figure 3). Our results for
community C14 (cardiac glycosides) also concur with the study of Khan et al [5]
(Supplementary Figure 3). These compounds inhibit Na+/K+ pumps in cells. Using a 3D
chemical descriptor approach combined with genomic features, Khan et al had also identified
bisacodyl, a laxative drug, as sharing a similar mechanism with cardiac glycosides, despite its
structural dissimilarity to that class of compounds [5]. Notably, our integrative taxonomy
recapitulates these findings, which demonstrates that combination of structural and genomic
drug information is a promising strategy towards elucidating drug mechanisms.


https://doi.org/10.1101/046219
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/046219; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Our DNF based on NCI60 sensitivity information enabled identification of new drugs with
uncharacterized MoA that we believe warrant further experimental investigation. We found that
communities C2, C5, C32, and C51 were closely connected (Supplementary Figure 3). These
communities contain a number of compounds which showed antitumor activity by generating
reactive oxygen species (e.g. C2: elesclomol, fenretinide; C5: ethacrynic acid, curcumin; C32:
bortezomib, menadione; C51: celastrol, withaferin A, parthenolide, thapsigargin). Interestingly,
ethacrynic acid, an FDA approved drug indicated for hypertension, clustered with curcumin, a
component of turmeric. Ethacrynic acid inhibits glutathione S-transferase (GSTP1) and induced
mitochondrial dependant apoptosis through generation of reactive oxygen species (ROS) and
induction of caspases [47]. Curcumin showed antitumor activity by production of ROS and
promotion of apoptotic signaling. Thus, we suggest that GSTP1 could be a potential target of
the widely-used natural compound curcumin.

In conclusion, we have developed Drug Network Fusion (DNF), an integrative taxonomy
inference approach leveraging the largest quantitative compendiums of structural information,
pharmacological phenotypes and transcriptional perturbation profiles to date. We used DNF to
conduct a cross-comparative assessment between our integrative taxonomy, and single-layer
drug taxonomies based on either drug structure, perturbation, or sensitivity signatures. Our
exploratory analysis indicates the superiority of DNF towards drug classification, and also
highlights singular data types that are pivotal towards prediction of drug categories in terms of
anatomical classification as well as drug-target relationships. Overall, the DNF taxonomy has
produced a consistent classification of drugs for multiple functional classes in both CTRPv2 and
NCI60 (Table 4). The comprehensive picture of drug-drug relationships produced by DNF has
also succeeded in identifying new and potentially interesting drug MoA. The integrative DNF
taxonomy has the potential to serve as a solid framework for future studies involving inference
of MoA of new, uncharacterized compounds, which represents a major challenge in drug
development for precision medicine.
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FIGURES

Figure 1: Schematic representation of the SNF method and its use towards integration of
different types of drug information. Datasets representing drug similarity, drug sensitivity, and
drug perturbation profiles are first converted into drug-drug similarity matrices. Similarity
matrices are fully integrated within the SNF method to generate a large-scale, multi-tier, Drug
Fusion Network (DNF) taxonomy of drug-drug relationships.

Figure 2: Overview of the study design. Drug sensitivity profiles from the NCI60 and the
CTRPv2 datasets, along with drug perturbation and drug structure data from the L1000 dataset,
are first parsed into drug-drug similarity matrices that represent single-dataset drug taxonomies.
Two DNF taxonomies are generated using the drug perturbation and drug structure taxonomies
and the drug sensitivity taxonomy from either the NCI60 or CTRPv2 datasets. DNF taxonomies
and single-dataset taxonomies are tested against benchmarked datasets containing ATC drug
classification and drug-target information, to validate their efficacy in predicting drug MoA.
Additional clustering is conducted on DNF taxonomies to identify drug communities sharing a
MoA.

Figure 3: Schematic representation of the validation of the DNF and single data type analyses
against drug benchmarks. Drug taxonomies are converted into a continuous vector of drug-drug
pairs. Benchmark datasets are converted into binary vectors, whereby a given drug-drug pair is
assigned a value of ‘1’ if the drugs share a common drug target or ATC classification, and ‘0’
otherwise. Vectors are compared using the concordance index and the area under the curve
(AUC) is calculated from the receiver-operating curves (ROCs).

Figure 4: Validation of the DNF taxonomy (using CTRPV2 sensitivity data) and single dataset
taxonomies against the ATC and Drug-target benchmarks. ROC curves are shown for each of
the taxonomies generated with the CTRPv2 sensitivity dataset, tested against ATC annotations
and drug-target information from Chembl or internal benchmarks. A diagonal (red) representing
the null case (AUC=0.5) is drawn for clarity. A) ROC curve against drug-targets B) ROC curve
against ATC drug classifications.

Figure 5: Network representation of 51 exemplar drugs that are representative of the drug
communities identified by the DNF taxonomy (using CTRPv2 sensitivity data). Each node
represents the exemplar drugs, and node sizes reflect the size of the drug community
represented by the exemplar node. Nodes are colored to reflect shared MoA as determined
using the drug-target benchmark used for Figure 4. Communities sharing similar MoA and
proximity in the network are highlighted, with the community number indicated next to each
community. Drug communities pertaining to the super-community are labelled in red.

Figure 6: Schematic of the adaptability of DNF towards prediction of new experimental
compounds.
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TABLES

Table 1. Statistical comparison of the DNF taxonomy against single datasets taxonomies, using
one-sided superiority tests. Comparisons were conducted for both DNFs generated using the
CTRPv2 or the NCI60 datasets. Reported scores pertain to comparisons conducted using both
drug benchmarks (Drug-target information as well as ATC).

Table 2. List of identified communities using the APC cluster algorithm against the DNF
(generated using CTRPv2). Exemplar drugs for each community are identified, along with the
number of drugs in that community. The list of drugs pertaining to each community is indicated.
Drug populations are coloured to indicate communities that have in green means that they have
at least 2 drugs with a known mechanism of action intersecting with the GMT file (total 139
drugs in case of ctrpv2, green), and those communities where drugs are unlabeled or
unclassified (orange).

Table 3. Refined list of identified communities using the APC cluster algorithm against the DNF
(generated using CTRPV2), selected for communities that have at least two drugs with a known
mechanism of action. Exemplar drugs for each community are identified, along with the number
of drugs in that community. The list of drugs pertaining to each community is indicated.

Table 4. Summary of Functional Drug Classes Identified Using DNF
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SUPPLEMENTARY FIGURES

Supplementary Figure 1: Overlap of drug annotations across the L1000 and the NCI60 and
CTRPV2 sensitivity datasets.

Supplementary Figure 2: Validation of Single-dataset and DNF taxonomies against drug
benchmark datasets, based on the replicated DNF using NCI60 sensitivity data. ROC curves
are shown for each of the taxonomies, tested against ATC annotations and drug-target
information from Chembl or internal benchmarks. A diagonal (red) representing the null case
(AUC=0.5) is drawn for clarity. A) ROC curve for NCI60 against drug-targets B) ROC curve for
NCI60 against ATC

Supplementary Figure 3: Community of 53 Exemplar drugs of the DNF taxonomy using the
NCI60 sensitivity datasets. Communities sharing similar MoA and proximity in the network are
highlighted, with the community number indicated.

SUPPLEMENTARY TABLES

Supplementary Table 1. List of identified communities using the APC cluster algorithm against
the DNF (generated using NCI60). Exemplar drugs for each community are identified, along
with the number of drugs in that community. The list of drugs pertaining to each community is
indicated. Drug populations are coloured to indicate communities that have in green means that
they have at least 2 drugs with a known mechanism of action intersecting with the GMT file, and
those communities where drugs are unlabeled or unclassified (orange).

Supplementary Table 2. Refined list of identified communities using the APC cluster algorithm
against the DNF (generated using NCI60), selected for communities that have at least two
drugs with a known mechanism of action. Exemplar drugs for each community are identified,
along with the number of drugs in that community. The list of drugs pertaining to each
community is indicated.

Supplementary Table 3. Summary of communities generated from CTRPv2/L1000 integrative
layers showing positive controls cases (at least 2 drugs sharing a mechanism of action from the
same community).
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TABLE 1
CTRPv2 (targets) NCI60 (targets)
Taxonomy  C-Index pval (DNF vs. Single) Taxonomy C-Index pval (DNF vs. Single)
DNF 0.8872687 DNF 0.698599
structure 0.7076697 1.01E-42 structure 0.6077617 8.44E-08
sensitivity 0.8274693 3.75E-06 sensitivity  0.6862717 ||| G
perturbation 0.6352601 1.25E-58 perturbation  0.489481 5.13E-25
CTRPv2 (ATCs) NCI60 (ATCs)
Taxonomy  C-Index pval (DNF vs. Single) Taxonomy C-Index pval (DNF vs. Single)
DNF 0.765503 DNF 0.8700235
structure 0.7210044 2.64E-02 structure 0.8024505 8.22E-06
sensitivity 0.5751178 4.77E-12 sensitivity 0.7005064 2.94E-23

perturbation 0.5374916 3.27E-16 perturbation 0.6237462 1.11E-33
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TABLE 2
Target/| i Ci ity number.of.drugs Drugs
ABIRATERONE ? 1 S ABIRATERON BRIVANIB  ERISMODEGI EX527 TAMOXIFEN
AFATINIB Receptor tyrosine kinase EGFR 2 9 AFATINIB  CANERTINIB CYANOQUIN'ERLOTINIB ~ GEFITINIB  [BRUTINIB  LAPATINIB  NERATINIB WZ4002
ALVOCIDIB CDKs 3 9 ALVOCIDIB  BMS345541 DOXORUBICIHLI373  MYRICETIN NARCICLASIN PHA793887 STAUROSPOITRIPTOLIDE
AZD6482 PI3Ks 4 3 AZD6482  GSK1059615 TGX221
BIX01294 EHMT2 5 4 BIX01294  BOSUTINIB NSC23766 UNC0321
BMS754807 IGFIR 6 4 AZD1480  BMS536924 BMS754807 LINSITINIB
BORTEZOMIB Proteasome 7 3 BORTEZOMIIMG132  MLN2238
BRDK01737880 Aurora kinase 8 4 ALISERTIB  BARASERTIB BRDK017378 BRDKS5116708
BRDK27224038 B 9 5 BRDK139994 BRDK272240 BRDK279866 BRDK507999 VELIPARIB
BRDK33514849 ? 10 4 BRDK148442 BRDK335148 BRDK634312 SILDENAFIL
BRDK71935468 ? 1 2 BRDK719354 BRDK94991378
BRDK88742110 B 12 2 BRDK887421 ISONICOTINOHYDROXAMICACID
BRDK96431673 ? 13 4 BRDK024921 BRDK492906 BRDK865357 BRDK96431673
CD1530 RAR family 14 5AC55649 AMS80  CD1530 (D437  SALERMIDE
coL3 ? 15 7 coL3 FULVESTRAN GOSSYPOL  LE135 PHLORETIN TIGECYCLINE TOSEDOSTAT
CRIZOTINIB ALK 16 4 AT7867  CRIZOTINIB NVPTAE684 RUXOLITINIB
CYCLOPHOSPHAMIDE [DNATII | 17 6 CYCLOPHOSF DEXAMETHA GANT61  IFOSFAMIDE NECROSTATI PROCARBAZINE
DABRAFENIB BRAF mutant 18 3 DABRAFENIBGDC0879  PLX4720
DACARBAZINE ? 19 4 CIMETIDINE DACARBAZIN FLUOROURA TEMOZOLOMIDE
DECITABINE DNMTL 20 4 AZACITIDINE DECITABINE QS11 ZEBULARINE
DOCETAXEL microtubule dynamics 21 5 DOCETAXEL PACLITAXEL PARBENDAZ(SB225002  VINCRISTINE
GMX1778 NAMPT 2 3 CAY10618 GMX1778  TIPIFARNIBP2
GW843682X PLKL 23 4 GSK461364 GW843682X MK1775  PRL3INHIBITORI
IMATINIB ABLL 2 5 AXITINIB  CHIR99021 IMATINIB  MASITINIB  NILOTINIB
ISOLIQUIRITIGENIN  [? 25 4 ISOLIQUIRITI ITRACONAZC PIFITHRINALIRITA
1SOX HDACs 2 3 APICIDIN  BELINOSTAT ISOX
k0143 ? 27 5 GW405833 KO143 PURMORPH/RG108 ~ SID26681509
KU0063794 AKT/PI3K/mTOR axis 28 8 AZD8055  GDCO941  KUOO63794 MK2206  NVPBEZ235 0SI027  PI103 Z5TK474
KUS5933 ATM 29 3 AZD7762  KUS5933  KU60019
LOVASTATIN HMGCR 30 4 FLUVASTATIT LOVASTATIN PARTHENOLI SIMVASTATIN
MANUMYCINA ? 31 3 CCT036477 MANUMYCIN TANESPIMYCIN
MYRIOCIN B 32 4 BETULINICACETOMOXIR  MYRIOCIN  TRETINOIN
NAVITOCLAX BCL2 33 3 ABT737  NAVITOCLAX NUTLIN3
NINTEDANIB ? 34 3 GSK3INHIBIT NINTEDANIB SU11274
OLIGOMYCINA B 35 7 AZD7545  BREFELDINA HYPERFORIN OLIGOMYCINOUABAIN  PF750 VALDECOXIB
PIPERLONGUMINE 36 7 CERULENIN CUCURBITAC CURCUMIN NSC632839  PIFITHRINMUPIPERLONGU PX12
PRIMAIMET mutant p53 37 6 DARINAPARS FUMONISINEPRIMAL ~ PRIMALMET SRT1720  VER155008
SARACATINIB multikinases 38 3 DASATINIB  SARACATINIE TANDUTINIB
58431542 TGFBRL 39 258431542  SB525334
SCH79797 ? 40 4 IMPORTAZOI METHOTREX SCH79797  YM155
SELUMETINIB MEK 41 2 SELUMETINII TRAMETINIB
SITAGLIPTIN ? PP 6 BLEBBISTATIIFGINI27 ~ SGX523  SITAGLIPTIN SJ172550  TG100115
SN38 Topoisomerase/DNA repair,synt 43 8 CHLORAMBL CLOFARABIN ETOPOSIDE  GEMCITABIN OBATOCLAX SN38 TENIPOSIDE TOPOTECAN
SORAFENIB B 44 5 BIBRIS32  CI976 ERASTIN ~ 0SI930  SORAFENIB
TACEDINALINE HDACs 45 S ENTINOSTAT MERCK60  TACEDINALIN TUBASTATIN VORINOSTAT
TEMSIROLIMUS mTOR 46 S AVICIND  CYTOCHALASSIROLIMUS  TACROLIMUS TEMSIROLIMUS
16101348 B 47 3BI2536  KUOD60648 TG101348
THALIDOMIDE ? 48 3 AGK2 OLAPARIB  THALIDOMIDE
TIVANTINIB ? 49 31Y2183240 TIVANTINIB YK4279
TIVOZANIB VEGFRs 50 8 CEDIRANIB  FORETINIB  KI8751  LINIFANIB  MGCD265 PAZOPANIB QUIZARTINIE TIVOZANIB
TPCAL ? 51 3 PYRAZOLANTSUNITINIB ~ TPCAL
TRIFLUOPERAZINE  [dopamine receptor antagonist 52 6 BAXCHANNE CAY10594  PF543 PROCHLORPI SERDEMETAI TRIFLUOPERAZINE
W37 ? 53 5 CICLOPIROX MST312  NICLOSAMID PAC1 TW37
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Receptor tyrosine kinase EGFR

CDKs

PI3Ks

EHMT2

IGFIR

Proteasome

Aurora kinase

RAR family

ALK

BRAF mutant

DNMT1

NAMPT

PLK1

ABL1

HDACs
AKT/PI3K/mTOR axis

[aT™m

HMGCR

BCL2

mutant p53

multikinases

TGFBR1

MEK

Topoisomerase/DNA repair,synthesis

VEGFRs

dopamine receptor antagonist
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Drugs (communities with at least 2 drugs with a known target in CTRPv2)
ABIRATERON BRIVANIB ERISMODEGI EX527 TAMOXIFEN

AFATINIB ~ CANERTINIB CYANOQUIN ERLOTINIB ~ GEFITINIB  IBRUTINIB  LAPATINIB  NERATINIB WZ4002
ALVOCIDIB BMS345541 DOXORUBICI HLI373 MYRICETIN NARCICLASINPHA793887 STAUROSPOITRIPTOLIDE
AZD6482 GSK1059615 TGX221

BIX01294  BOSUTINIB NSC23766 UNC0321

AZD1480 BMS536924 BMS754807 LINSITINIB

BORTEZOMIEMG132 MLN2238

ALISERTIB  BARASERTIB BRDK017378 BRDK55116708

AC55649 AMS580 CD1530 CD437 SALERMIDE

coL3 FULVESTRAN GOSSYPOL  LE135 PHLORETIN TIGECYCLINE TOSEDOSTAT

AT7867 CRIZOTINIB NVPTAE684 RUXOLITINIB

DABRAFENIB GDC0879  PLX4720

AZACITIDINE DECITABINE QS11 ZEBULARINE

CAY10618 GMX1778  TIPIFARNIBP2

GSK461364 GW843682X MK1775 PRL3INHIBITORI

AXITINIB CHIR99021 IMATINIB  MASITINIB  NILOTINIB

BRDK887421ISONICOTINOHYDROXAMICACID

APICIDIN BELINOSTAT ISOX
AZD8055 GDC0941  KU0063794 MK2206 NVPBEZ235 0S1027 PI103 ZSTKA474
AZD7762 KU55933 KU60019

FLUVASTATII LOVASTATIN PARTHENOLI SIMVASTATIN
ABT737 NAVITOCLAX NUTLIN3
GSK3INHIBIT NINTEDANIB SU11274

DARINAPARS FUMONISINE PRIMA1 PRIMALIMET SRT1720 VER155008
DASATINIB  SARACATINIE TANDUTINIB

SB431542  SB525334

SELUMETINIE TRAMETINIB

BLEBBISTATIIFGIN127 SGX523 SITAGLIPTIN §J172550  TG100115

CHLORAMBL CLOFARABIN ETOPOSIDE  GEMCITABIN OBATOCLAX SN38 TENIPOSIDE TOPOTECAN
BIBR1532  CI976 ERASTIN 0S1930 SORAFENIB

ENTINOSTAT MERCK60  TACEDINALIN TUBASTATIN VORINOSTAT

AVICIND CYTOCHALAS SIROLIMUS - TACROLIMUS TEMSIROLIMUS

BI2536 KU0060648 TG101348

AGK2 OLAPARIB  THALIDOMIDE

LY2183240 TIVANTINIB YK4279

CEDIRANIB  FORETINIB  KI8751 LINIFANIB  MGCD265 PAZOPANIB QUIZARTINIE TIVOZANIB
PYRAZOLANTSUNITINIB  TPCA1

BAXCHANNE CAY10594  PF543 PROCHLORPISERDEMETAI TRIFLUOPERAZINE

CICLOPIROX MST312 NICLOSAMID PAC1 TW37
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Table 4: Summary of Common Functional Drug Classes Identified Using DNF (CTRPv2 and NCI60)

- Statins (HMG-CoA reductase inhibitors)

- mTOR/PI3Ks axis inhibitors

- EGFR (epidermal growth factor receptor) inhibitors

- MEK/BRAF (Mitogen-activated protein kinase kinase) inhibitors

- BCR-ABL (fusion protein in chronic myelogenous leukemia) inhibitors
- Tubulin polymerisation/depolymerisation regulators

- DNA topoisomerase inhibitors

- Histone deacetylase inhibitors

- DNA synthesis inhibitors

- Intercalating and DNA damaging agents
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SUPPLEMENTARY TABLE 1

Exemplar
6AMINOCHRYSENE
AG957
ALVESPIMYCIN
ARTEMETHER
BRDK00910650
CAFFEICACID
CARMOFUR
CINCHONINE
CLADRIBINE
CYCLOPHOSPHAMIDE
DACARBAZINE
DAUNORUBICIN
DECITABINE
DIGOXIN
DIHYDROERGOCRISTINE
EMETINE
ETHINYLESTRADIOL
FLUOROMETHOLONE
FORSKOLIN
GEFITINIB
GEMCITABINE
HONOKIOL
HYPERICIN
ISOTRETINOIN
ITRACONAZOLE
KINETINRIBOSIDE
LEFLUNOMIDE
LORATADINE
MALONOBEN
MEBENDAZOLE
MELPHALAN
MENADIONE
MEVASTATIN
NILOTINIB
NOBILETIN
OLIGOMYCINA
OXIDOPAMINE
PACLITAXEL
PIMOZIDE
PROCARBAZINE
PYRIMETHAMINE
SELUMETINIB
STAUROSPORINE
TEMSIROLIMUS
TENIPOSIDE
TERREICACID
THIORPHAN
TOPOTECAN
VINBLASTINE
VORINOSTAT
WITHAFERINA

Target/

|

TYMS
?
DNA synthesis

DNA i

?

DNA intercalation/repair
DNA methylation

m

?

Glucocorticoid receptor
?

Receptor kinase/EGFR
TYMS

?
?
?
Lanosterol 14-alpha demethylas|

mv |

HMGCR
BCR-ABL fusion
?

microtubules stabilizers

?
DHFR
BRAF/MEK

mTOR
Topoisomerase Il

HDACs

|i .v.‘)

aCC-BY-NC-ND 4.0 International license.

number.of.d Drugs

4 6AMINOCHR BENZO(A)PYI CLIOQUINOL ELLIPTICINE

6 AG957 CADMIUMCH ELESCLOMOL FENRETINIDE RADICICOL ~ STAT3INHIBITORVI

2 ALVESPIMYC TANESPIMYCIN

3 ARTEMETHEI ARTESUNATE YOHIMBINE

5 BRDK009106 CURCUMIN ETACRYNICA PHENETHYLI! RALOXIFENE

3 CAFFEICACID CAFFEICACID LAVENDUSTINA

3 CARMOFUR FLUOROURA TEGAFUR

4 CINCHONINE GEDUNIN  SULFAQUINC SULOCTIDIL

3 CLADRIBINE CLOFARABIN FLUDARABINE

4 BERBAMINE CYCLOPHOSFFLUCONAZOI IFOSFAMIDE

4 ALLOPURINC DACARBAZIN MITOTANE  WORTMANNIN
10 ACTINOMYCIALVOCIDIB  CHROMOMY DAUNORUBI DOXORUBICI EPIRUBICIN  IDARUBICIN KENPAULLOM MITOXANTR(ROTENONE
5 AMONAFIDE AZACITIDINE DECITABINE PHENYLBUTY TUNICAMYCIN

7 BISACODYL DIGOXIN GITOXIGENIN LANATOSIDE OUABAIN  PROSTRATIN SOLANINE

4 CYCLOPIAZO DIHYDROERC LASALOCID  NELFINAVIR

4 ACETYLCYSTE CYCLOHEXIV EMETINE HOMOHARRINGTONINE

3 ETHINYLESTF FULVESTRAN NOSCAPINE
10 DEXAMETHA FLUMETHAS(I FLUOCINOLC FLUOROMET FLUPHENAZII IDEBENONE ISOFLUPRED! METHYLPREL NICOTINAMI TRIAMCINOLONE
3 FORSKOLIN  PYRAZOLANTSUNITINIB
11 AFATINIB BOSUTINIB  CRIZOTINIB DASATINIB ERLOTINIB  FOSTAMATIN GEFITINIB
5 CYTARABINE FLOXURIDINI GEMCITABIN IDOXURIDINI RALTITREXED
4 CLOTRIMAZCHONOKIOL PROBUCOL RYANODINE

4 EMODIN GOSSYPOL  HYPERICIN ~ PIPAMPERONE

4 IMIQUIMOD ISOTRETINOI MIFEPRISTOI PROGESTERONE

3 ABIRATERONITRACONAZC TERCONAZOLE

4 KINETINRIBO PUROMYCIN ROSCOVITINITRICIRIBINE

3 CELECOXIB LEFLUNOMIL NICLOSAMIDE

5 AXITINIB CLOFAZIMIN LORATADINE RITONAVIR  VALPROICACID
4 HEXACHLOR(MALONOBEM TAMOXIFEN TYRPHOSTINAS

9 CHELIDONIN FENBENDAZ( FLUBENDAZ( LOBENDAZO MEBENDAZC NOCODAZOL OXFENDAZO OXIBENDAZC PARBENDAZOLE
6 CHLORAMBL CISPLATIN ~ DIBENZOYLN MELPHALAN THIOTEPA ~ TRYPTOPHAN

4 BORTEZOMIE MENADIONE PLUMBAGIN SA792541

4 FLUVASTATII LOVASTATIN MEVASTATIN SIMVASTATIN

4 IMATINIB  NILOTINIB  0S1027 PONATINIB

3 NOBILETIN  PD98059 RHAMNETIN

5 AMPHOTERI¢ METHYLENEI NONOXYNOL OLIGOMYCIN OLIGOMYCINC

4 OXIDOPAMII PENTAMIDIN PURPUROGA TERTBUTYLHYDROQUINONE

3 BACCATINIII DOCETAXEL PACLITAXEL

4 ALLANTOIN CALYCANTHI PIMOZIDE ~ SPIPERONE

7 HEXAMETHY MONASTROL NITAZOXANII OFLOXACIN PROCARBAZI SULFATHIAZ( TREMULACIN

5 DIPYRIDAMC METHOTREX NIFUROXAZII PEMETREXEL PYRIMETHAMINE

5 DABRAFENIB PD184352  SELUMETINIETRAMETINIB VEMURAFENIB

3 LESTAURTINI MIDOSTAUR STAUROSPORINE

5 CYTOCHALAS EVEROLIMUS LY294002  OLAPARIB  TEMSIROLIMUS

5 AMSACRINE ETOPOSIDE PODOPHYLL(RAZOXANE TENIPOSIDE

5 ASCORBICAC NBROMOACI PMSF PRIMA1 TERREICACID

4 CYCLOPAMIM HALOPERIDC NAVITOCLAX THIORPHAN

4 BISBENZIMIC CAMPTOTHE IRINOTECAN TOPOTECAN

4 COLCHICINE VINBLASTINE VINCRISTINE VINORELBINE

5 BELINOSTAT ENTINOSTAT PYROXAMIDI THMI94 VORINOSTAT

6 CELASTROL HALOPROGI! OBATOCLAX PARTHENOLI THAPSIGARG WITHAFERINA

IBRUTINIB  LAPATINIB  PAZOPANIB TYRPHOSTINAG1478
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SUPPLEMENTARY TABLE 2
population number.of.diV1 V2 V3 v4 V5 V6 V7 V8 V9 V10 Vi1
1 1 3 CLADRIBINE CLOFARABIN FLUDARABIN NA NA NA NA NA NA NA NA
2 2 4 BERBAMINE CYCLOPHOSFFLUCONAZOIIFOSFAMIDE NA NA NA NA NA NA NA
3 3 10 ACTINOMYCIALVOCIDIB. CHROMOMY DAUNORUBI DOXORUBICI EPIRUBICIN  IDARUBICIN KENPAULLOM MITOXANTR(ROTENONE NA
4 4 5 AMONAFIDE AZACITIDINE DECITABINE PHENYLBUTY TUNICAMYCINA NA NA NA NA NA
5 5 10 DEXAMETHA FLUMETHAS(FLUOCINOLC FLUOROMET FLUPHENAZI IDEBENONE ISOFLUPREDIMETHYLPREL NICOTINAMI TRIAMCINOL NA
6 6 11 AFATINIB BOSUTINIB CRIZOTINIB DASATINIB ERLOTINIB FOSTAMATINGEFITINIB  IBRUTINIB  LAPATINIB  PAZOPANIB TYRPHOSTINAG1478
7 7 5 CYTARABINE FLOXURIDINI GEMCITABIN IDOXURIDINI RALTITREXEL NA NA NA NA NA NA
8 8 4 IMIQUIMOD ISOTRETINOI MIFEPRISTOI PROGESTERC NA NA NA NA NA NA NA
9 9 3 ABIRATERON ITRACONAZC TERCONAZOINA NA NA NA NA NA NA NA
10 10 5 AXITINIB CLOFAZIMIN LORATADINE RITONAVIR VALPROICAC NA NA NA NA NA NA
11 11 6 CHLORAMBL CISPLATIN  DIBENZOYLN MELPHALAN THIOTEPA  TRYPTOPHANNA NA NA NA NA
12 12 4 FLUVASTATII LOVASTATIN MEVASTATIN SIMVASTATII NA NA NA NA NA NA NA
13 13 4 IMATINIB  NILOTINIB  0SI027 PONATINIB NA NA NA NA NA NA NA
14 14 3 BACCATINII DOCETAXEL PACLITAXEL NA NA NA NA NA NA NA NA
15 15 5 DIPYRIDAMC METHOTREX NIFUROXAZII PEMETREXEL PYRIMETHAN NA NA NA NA NA NA
16 16 5 DABRAFENIB PD184352  SELUMETINIETRAMETINIB VEMURAFEN NA NA NA NA NA NA
17 17 5 CYTOCHALAS EVEROLIMUSLY294002  OLAPARIB  TEMSIROLIM NA NA NA NA NA NA
18 18 5 AMSACRINE ETOPOSIDE PODOPHYLL(RAZOXANE TENIPOSIDE NA NA NA NA NA NA
19 19 4 COLCHICINE VINBLASTINE VINCRISTINE VINORELBINI NA NA NA NA NA NA NA
20 20 5 BELINOSTAT ENTINOSTAT PYROXAMIDITHMI94 VORINOSTATNA NA NA NA NA NA
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SUPPLEMENTARY TABLE 3

SUPP Table 3. Summary of communities generated from CTRPv2/L1000 integrative layers
(positive controls, at least 2 drugs sharing same mechanism)

Traget/mechanism ., |Number of |Source of drug-
Exemplar Drug* . Community

(positive control) drugs target/ATC
* Communities are summerized
by an exemplar drug,
representative of each
community. A detailed
description of all 53
communities is found in table 2
AFATINIB Receptor tyrosine kinase E( 2 9(CTRPv2
ALVOCIDIB CDKs 3 9|CTRPv2
AZD6482 PI3Ks 4 3|CTRPv2
BIX01294 EHMT2 5 4[(CTRPv2
BMS754807 IGF1R 6 4(CTRPv2
BORTEZOMIB Proteasome 7 3[CTRPv2
BRDK01737880 Aurora kinase 8 4|CTRPv2
CD1530 RAR family 14 5|CTRPv2
CRIZOTINIB ALK 16 4(CTRPv2
DABRAFENIB BRAF mutant 18 3|CTRPv2
DECITABINE DNMT1 20 4|CTRPv2
DOCETAXEL microtubule dynamics 21 5[CTRPv2
GMX1778 NAMPT 22 3|CTRPv2
GW843682X PLK1 23 4[(CTRPv2
IMATINIB ABL1 24 5|CTRPv2
ISOX HDACs 26 3|CTRPv2
KU0063794 AKT/PI13K/mTOR axis 28 8|CTRPv2
KU55933 ATM 29 3|CTRPv2
LOVASTATIN HMGCR 30 4[(CTRPv2
NAVITOCLAX BCL2 33 3|CTRPv2
PRIMA1IMET mutant p53 37 6(CTRPv2
SARACATINIB multikinases 38 3[CTRPv2
SB431542 TGFBR1 39 2|CTRPv2
SELUMETINIB MEK 41 2|CTRPv2
SN38 Topoisomerase/DNA repai 43 8|CTRPv2
TACEDINALINE HDACs 45 5|CTRPv2
TEMSIROLIMUS mTOR 46 5|CTRPv2
TIVOZANIB VEGFRs 50 8|CTRPv2
TRIFLUOPERAZINE dopamine receptor antagol 52 6|CTRPv2
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