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Abstract  
Background 
Although metatranscriptomics—the study of diverse microbial population activity 
based on RNA-seq data—is rapidly growing in popularity, there are limited options 
for biologists to analyze this type of data. Current approaches for processing 
metatranscriptomes rely on restricted databases and a dedicated computing cluster, or 
metagenome-based approaches that have not been fully evaluated for processing 
metatranscriptomic datasets. We created a new bioinformatics pipeline, SAMSA, 
designed specifically for metatranscriptome dataset analysis, which runs either in-
house or in conjunction with Metagenome-RAST (MG-RAST) servers. Designed for 
use by researchers with relatively little bioinformatics experience, SAMSA offers a 
breakdown of metatranscriptome activity by organism or transcript function, and is 
fully open source. We next used this new tool to evaluate best practices for 
sequencing stool metatranscriptomes. 

Results 
Working with the MG-RAST annotation server, we constructed the Simple 
Annotation of Metatranscriptomes by Sequence Analysis (SAMSA) software 
package, a complete pipeline for the analysis of gut microbiome data. In creating this 
package, we determined optimal parameters in data collection and processing. 
SAMSA can summarize and evaluate raw annotation results, identifying abundant 
species and significant functional differences between metatranscriptomes. 
 
Using pilot data and simulated subsets, we determined experimental requirements for 
fecal gut metatranscriptomes. Sequences need to be either long reads (longer than 
100bp) or paired-end reads that can be joined. Each sample nees 40-50 million raw 
sequences which can be expected to yield the 5-10 million annotated reads necessary 
for accurate abundance measures. We also demonstrated that ribosomal RNA 
depletion does not equally deplete ribosomes from all species within a sample, and 
remaining rRNA sequences should be discarded. Using publicly available 
metatranscriptome data in which rRNA was not depleted, we were able to 
demonstrate that organism activity can be measured using mRNA counts. We were 
also able to detect significant differences between control and experimental groups in 
both organism activity and functional activity. 

Conclusions 
By making this new pipeline publicly available, we have created a powerful new tool 
for metatranscriptomics research, offering a new method for greater insight into the 
activity of diverse microbial communities. We further recommend that stool 
metatranscriptomes be ribodepleted and sequenced in a 100bp paired end format with 
a minimum of 40 million reads per sample. 
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Background  
 Metatranscriptomics, the large-scale sequencing of mRNAs from complex 
microbial communities, allows for the observation of gene expression patterns [1-4]. 
Metatranscriptomics is a relatively new field, with the first mention around 2008[5], 
but it is growing quickly. Using high-throughput techniques developed in conjunction 
with “big data” computer-automated analysis approaches, metatranscriptomics offers 
a novel and complete method for looking at not just the organisms present, but also 
the activity occurring within a complex and diverse population at any chosen specific 
point in time[2, 3]. Metatranscriptomics is especially useful for analyzing complex 
populations in flux, such as the gut microbiome, which can be impacted and altered 
by a large number of transitory factors [6-8]. 
 However, because of the complexity of metatranscriptomic data, extensive 
analysis is needed to convert raw data into simplified and easily understood results. 
The raw data comprise tens of millions of individual reads per sample[4]. Simplifying 
and condensing this very large data set requires multiple steps in a software pipeline 
and generally requires a dedicated bioinformatician to perform the analysis. Current 
pipelines or in-house methods often require significant computing power or use 
several different tools, many of which were not originally intended for 
metatranscriptome analysis [2, 3, 9]. For researchers who want to utilize 
metatranscriptomic analysis but may not have the necessary bioinformatics 
experience, there is a strong need for a complete pipeline, designed to analyze this 
data from beginning to end without requiring extensive technical expertise. 
 In addition, as metatranscriptomics is a new area of genomic exploration, there 
are few established guidelines or standard protocols. Standardized protocols exist for 
mRNA collection [5] and for stool-specific extraction [10, 11], but there is also a 
pressing need for an investigation of necessary sequencing parameters and depth, 
minimum read quality standards, and reliable reference databases against which 
metatranscriptome reads can be aligned. Any researcher planing to sequence 
metatranscriptomic data must know the target sequencing depth and minimum 
recommended read length, whether to filter out ribosomal sequences, and the relative 
confidence of their predicted results based on these parameters.  
 In this paper, to develop a standard metatranscriptomic analysis pipeline that 
can be applied to a wide range of microbiome samples, we extracted and sequenced 
RNA from human fecal material using experimentally validated protocols [10]. By 
testing various parameters and modifications, we determined the best practices at each 
step in obtaining and analyzing the metatranscriptomic data. In addition, we 
incorporated a publicly available metatranscriptomic data set examining the fecal gut 
microbiome in tyrosine kinase 2 knockout (Tyk2-/-) mice compared to wild-type 
controls over time during the outbreak of dextran sodium sulfate (DSS) induced 
colitis [12]. Examining this data, we provide new insights into differences in 
functional expression between the two different microbiomes over the course of the 
colitis development. By applying the approaches detailed here, researchers wishing to 
include metatranscriptomic analysis in their experiments can obtain accurate results 
without an investment in the development of bioinformatics tools. 
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Results  
Creation of SAMSA, a new pipeline for metatranscriptome analysis  

We created the SAMSA (Simple Analysis of Metatranscriptome Sequence 
Annotations) pipeline, designed to fully analyze and characterize activity within a 
metatranscriptome, illustrating relative level of activity split by both organism and 
functional category. There are four phases to the pipeline: the preprocessing phase 
trims and combines reads for input to the annotation phase, the annotation phase 
provides an annotation for each read, the aggregation phase aggregates organsim and 
function information across all reads, and the analysis phase provides visualizations 
and statistical analysis (Figure 1).  

Preprocessing phase. During preprocessing, raw sequences are trimmed to 
remove reads containing low-quality bases and eliminate adaptor contamination using 
Trimmomatic, a flexible read trimming tool for Illumina NGS data[13]. Next, each 
pair of paired-end reads are aligned to each other using FLASh, a short read aligning 
program [14]. In our pilot samples, approximately 32-54% of the raw reads in each 
sample were successfully aligned, with an average aligned read length of 178 base 
pairs.  

Annotation phase. Next, these sequences are submitted for annotation to 
Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST) [15]. 
MG-RAST includes several steps, including an initial sequence quality control check 
through SolexaQA, gene calling through FragGeneScan, clustering of amino acid 
sequences at 90% identity through the uclust implementation of QIIME, and then 
using sBLAT on each protein sequence cluster to locate the best match reference. For 
each sequence cluster, MG-RAST selects the best match through the sBLAT 
similarity search. If multiple reference database matches tie for best matching score, 
they are both included in the final results. If the read does not achieve a match score 
above the minimum e-value cutoff, it is discarded. Each match is linked to MG-
RAST’s internal identifier system and assigned an M5nr ID, correlating with linked 
matches in all subsystems databases. The annotated output can be provided on a per-
match basis, using the M5nr ID to link each read to its best match from the 
subsystems database of choice. To create sorted abundance measures of the 
metatranscriptome using the SAMSA pipeline, all annotations with an acceptable 
best-match to the NCBI Reference Database (RefSeq) [16] are downloaded from MG-
RAST. Annotations are downloaded for the best match to both organism and 
individual transcript. Annotations are downloaded directly in tab-delimited form using 
MG-RAST’s RESTful API interface [17] and a custom Python program to assemble 
the API call command. In addition, the annotated output is also downloaded from the 
SEED Subsystems reference database [18] to provide ontology annotations. 
 Aggregation phase. A custom Python program parses each annotated output, 
storing each unique annotation match in a dictionary and maintaining counts of the 
number of occurrences of each unique annotation. After the annotation file is 
processed, unique annotations are sorted by abundance and exported as output.  

Analysis phase. Annotation and abundance information from the Aggregation 
phase are inputs to custom R scripts, which generate barplots and dendograms (see 
Figure 1). To compare experimental versus control metatranscriptomes and determine 
significantly differentially expressed transcripts, R’s DESeq2 package is used to test 
the output files for differential expression [19]. DESeq2’s testing method adjusts for 
multiple hypothesis testing, performing pairwise comparisons in the scope of a larger 
overall data set. The pipeline’s R scripts export sorted lists of log2fold change in both 
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organism and functional category activity, sorted by adjusted p-value. Results are also 
stored in the local R environment and can be used for graphical output. 

 

 

Figure 1 - the SAMSA pipeline. This organizational chart shows the flow of data through 
the pipeline, beginning with raw reads at the top of the chart and ending with the graphical 
output of the results at the bottom. Note that blue boxes denote intermediate generated output 
files, red boxes denote Python scripts, orange boxes denote R scripts, and green boxes denote 
external reference databases. 
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This complete pipeline, coded in Python and R, is fully open source, is set up 
for streamlined use from the command line, does not require a local server for intense 
computation, and is freely available for download through GitHub. 

Measurement of host transcripts in fecal metatranscriptomes 
Given that metatranscriptomes theoretically contain the transcriptional profile 

of all organisms present, we asked whether the transcriptomes of host cells could still 
be elucidated from fecal metatranscriptomes for which the primary goal was bacterial 
metatranscriptome analysis. We tried two methods of RNA extraction followed by 
either ribosomal depletion or poly(A) enrichment (see Methods). Neither method 
yielded many reads aligning to the human genome.We found 417 and 340 
ribodepleted reads (0.0019% and 0.0085% of all ribodepleted reads) matching the 
human genome, and 2273 and 2100 poly(A) enriched reads (0.116% and 0.097% of 
all poly(A) enriched reads) matching the human genome. Thus, we conclude that host 
transcriptomes cannot be reliably extracted from stool metatranscriptomes that have 
been isolated and sequenced using standard methods. 

Use of ribosomal depletion methods in metatranscriptome preparation 

 Transcriptomic and metatranscriptomic extractions are often treated with 
ribodepletion methods before sequencing for the removal of ribosomal reads, 
increasing the relative mRNA yield [4, 20]. Comparing ribodepleted and non-depleted 
RNA, we found that the Ribo-Zero Gold ribodepletion kit from Illumina showed an 
overall 63-82% reduction in ribosomal reads present within our sample, but certain 
microbial ribosomes did not show any reduction, including members of the 
Actinobacteria, Cyanobacteria, and Spirochaetes phyla (Figure 2, Table 1). 
Ribodepletion appears effective at depleting rRNA reads within a sample, but also 
preferentially removes ribosomes from certain bacterial phyla over others, skewing 
ribosomal output within the metatranscriptome’s sequencing results. 
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Phylum 4012, P4 4012, P1 4015, P4 4015, P1 % depleted 
Gemmatimonadetes 3 1 28 5 74.40 
Spirochaetes 3 4 14 55 163.10 
Nitrospirae 4 1 22 0 87.50 
Fusobacteria 5 5 24 9 31.25 
Fibrobacteres 6 0 21 0 100.00 
Synergistetes 6 5 14 2 51.19 
Thermi 6 1 11 1 87.12 
Chlorobi 6 1 34 0 91.67 
Chloroflexi 7 6 29 2 53.69 
Caldiserica 8 0 64 0 100.00 
Caldithrix 11 0 70 2 98.57 
Tenericutes 67 6 411 28 92.12 
Chlamydiae 74 1 410 15 97.50 
Acidobacteria 94 5 453 7 96.57 
Euryarchaeota 175 15 942 693 58.93 
Parvarchaeota 241 8 1298 22 97.49 
Cyanobacteria 262 210 974 59 56.89 
Planctomycetes 303 7 2019 23 98.28 
Crenarchaeota 514 183 2474 106 80.06 
Lentisphaerae 1045 19 6324 151 97.90 
Verrucomicrobia 1107 29 6679 117 97.81 
Actinobacteria 2739 5432 8394 5326 30.89 
Proteobacteria 43585 3780 61436 2612 93.54 
Bacteroidetes 486595 218584 1163164 98778 73.29 
Firmicutes 939246 127130 2178859 38923 92.34 
TOTALS 1476112 355433 

  
68.57 

Table 1 - Comparison of rRNA abundance in control vs. ribodepleted samples. 
Two pilot metatranscriptomes were sequenced twice; the P1 protocol involved a 
ribodepletion step, while the P4 protocol did not. Comparisons of the organism 
annotations reveal that ribodepletion led to a decrease in 16S rRNA reads for most, 
but not all, bacterial phyla. 
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Figure 2 – Level of depletion in ribodepleted vs. control metatranscriptomes. Identical 
pilot metatranscriptome samples were sequenced; protocol 1 included a ribodepletion step, 
while protocol 4 did not include this step. As is demonstrated, not all species were equally 
depleted, skewing the perceived abundances of different organisms within the 
metatranscriptome. Normalized data shows the combined average depletion percentage for 
each phylum of bacteria present within the sample. 

 

Optimal sequencing depth for gut microbiome metatranscriptomics 
 An important consideration when creating a metatranscriptome is sequencing 
depth: how many reads must be obtained in order to provide proper representation of 
all reads within a sample? As the proportionality of different reads within the sample 
is of crucial importance, sequencing depth must be large enough to ensure a balanced 
representation of each read’s relative abundance within the total sample. Too little 
depth can result in inaccurate abundance and activity measurements. 
 To evaluate necessary sequencing depth using a bioinformatics based 
approach, we generated 100 randomly selected subsets of a large and comparatively 
over-sequenced metatranscriptome of 21.6 million annotated reads (derived from 38M 
raw reads), creating ten smaller stand-alone simulated metatranscriptomes for each 
size point measured, moving in ten percent increments from 1 million up to 20 
annotated million reads per subset. Within each simulated metatranscriptome, the 
relative percentage of various reads was measured, and these results were compared 
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by simulated metatranscriptome size. This approach was performed looking at both 
high (in the 90th percentile of all reads by sorted abundance), medium (in the 50th 
percentile of all reads by sorted abundance), and low (in the 10th percentile of all 
reads by sorted abundance) abundance reads within the parent metatranscriptome 
(Figure 3). By comparing relative abundance in each subset metatranscriptome to the 
final full data, we quantified the accuracy of the abundance measurements. We 
defined accuracy as percentage deviation from final, stable abundance counts. This 
data shows that, for the human gut metatranscriptomes examined, a minimum a 
minimum of five and ten million read annotations are needed to achieve above 90% 
accuracy in low abundance reads. This is equivalent to about 40-50 million raw 
sequence reads. Note that abundance estimates for medium and high abundance reads 
can be reasonably accurate with fewer annotations (Figure 3).  

 

Figure 3 - Effects of metatranscriptome size on read abundance variation. As the number 
of annotations in a metatranscriptome increases along the X axis, accuracy of abundance 
measurements increases for all reads. Red denotes the top 5 most abundant transcripts within 
the sampled metatranscriptome (by counts), while blue denotes transcripts of medium 
abundance (top 50% by sorted counts) and green denotes low-abundance transcripts (bottom 
10% by sorted counts). Approximately 10-15 million annotations are needed before 
abundance accuracy for all transcripts tops 90%. Abundance accuracy was measured out to 20 
million annotations, but the accuracy was 100% in all categories beyond 15 million (data not 
shown). 

  

Paired or single end sequencing for metatranscriptome analysis 
 Another important consideration when sequencing a metatranscriptome is 
whether paired-end sequencing is necessary for proper read annotation. Paired-end 
sequencing is more expensive on a per-read basis but the average output read length is 
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significantly increased, allowing for a more accurate best-match annotation in the 
pipeline.  
 Statistical comparisons of the relative organism activity results and the relative 
transcript abundance between single and paired end read versions of the same original 
metatranscriptome file show significant differences in both organism-of-origin and 
transcript identification by the annotation pipeline. In identical metatranscriptomes 
containing either paired-end or single end reads, the paired-end reads resulted in 
fewer reads removed due to quality controls (51,507 versus 123,518, or 0.3% vs. 
0.6%), and a greater percentage of all reads matching at least one alignment in the 
reference database (77.2%, or 4,321,429 paired end reads versus 65.9%, or 3,194,911 
single end reads) (Table 2).  
 
 
 4012, single 

read 
4012, paired 
end 

4015, single 
read 

4015, paired 
end 

Forward 
reads 

38,763,820 -  22,613,426 - 

Reverse 
reads 

 38,763,820 -  22,613,426 - 

Paired 
assembled 
reads 

- 19,269,224 - 7,245,834 

Total 
annotations 

11,840,915 21,683,084 1,928,992 3,041,963 

Unique 
annotations 

8,658,502 13,310,506 1,280,940 1,875,267 

Table 2 - Read count comparison between single and paired end files. Two pilot 
paired-end metatranscriptomes were analyzed both in paired configuration, and 
using only the forward reads (to simulate a single-end metatranscriptome from the 
same data). Despite higher numbers of total reads, the single-end data matched to 
fewer total and unique annotations in both cases. 
 
 

The paired-end sequencing data matched to a higher number of unique 
transcripts than the single read data (270,384 unique transcripts versus 215,599 
transcripts), suggesting that increased read length leads to greater specificity in 
transcript annotation. Correlations between paired-end and single-read processed 
identical metatranscriptomes averaged only 0.72 between both pilot samples. Given 
that these paired-end and single read metatranscriptomes were originally identical 
before the trimming of excess bases beyond 100 bases per read, these results indicate 
significant mislabeling or lost information in the single read approach when compared 
to the more accurate paired-end sample.  

Taken with the organism matching results, these numbers suggest that the 
increased read length generated either through paired-end sequencing or through 150-
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bp single-end sequencing is necessary to ensure accurate metatranscriptome 
annotation.  

 

 

Figure 4 - Comparison of mRNA vs. rRNA based abundance estimates. A) Stacked bar 
graph measuring percentage distribution of total metatranscriptome activity by organism, with 
pairwise comparisons between mRNA and rRNA transcripts. To reduce potential mislabeling 
of organisms in the “long tail” of low-abundance organisms, only the top 30 most abundant 
organisms are displayed; other results are included in the purple “Other” catchall category. B) 
The same measurement, expressed in total number of annotations per metatranscriptome 
sample. Due to a lack of ribodepletion, rRNA transcripts dominate all samples. 

Determining organisms present within fecal metatranscriptomes 
 Using publicly available metatranscriptomes that were not depleted of 
ribosomal RNAs [12], we compared estimates of organism abundance using either 
mRNA or rRNA transcripts, using matches in NCBI’s RefSeq database for mRNA 
and matches in the SILVA small subunit (SSU) database for rRNA. We found a 
consistent correlation between abundance estimates from mRNA vs. rRNA (Figure 4) 
across all samples, suggesting that mRNA abundance estimates may be able to 
provide useful representative population data within a sample. With filtering to 
remove non-bacterial annotations, we observed an average Pearson correlation of 0.99 
at the order level, 0.85 at the family level, and 0.81 at the genus level of identification 
across all 15 samples. 
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Applying this pipeline to a public metatranscriptomic data set: organism and 
functional analysis 

Publicly available metatranscriptomic data [12] was analyzed using the 
SAMSA pipeline described above (Figure 1). Output tables generated by the pipeline 
are imported into R, where a stacked bar graph allows for comparing of relative 
activity levels both by organism (Figure 5) and by functional category (Figure 6). Due 
to the large number of both organism and functional categories, the R analysis scripts 
generate graphs which show only the top 30 most abundant organisms and/or 
functional categories, with remaining categories grouped under an “other” catch-all 
category (Figure 6A) or removed from display (Figure 6B). 

 

 

Figure 5 - Organism output of 15 metatranscriptomes. A) Stacked bar graph measuring 
percentage distribution of total metatranscriptome activity by organism, comparing 6 wild-
type to 9 tyrosine kinase 2 knockout gut microbiomes. To reduce potential mislabeling of 
organisms in the “long tail” of low-abundance organisms, only the top 30 most abundant 
organisms are displayed; other results are included in the purple “Other” catchall category. B) 
The same measurement, expressed in total number of annotations per metatranscriptome 
sample. 
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Figure 6 - Transcript functional category output of 13 metatranscriptomes. A) Stacked 
bar graph measuring percentage distribution of total metatranscriptome activity by functional 
category, comparing 5 wild-type to 8 tyrosine kinase 2 knockout mouse gut microbiomes. To 
reduce graph complexity, only the top 30 most abundant functions in each sample are 
displayed. Two samples were excluded due to very low total read counts. B) The same 
measurements, expressed in total number of annotations per metatranscriptome. 

 
In the original paper [12], which focused primarily on the response of mouse 

gut epithelial cells to dextran sodium sulfate (DSS) induced colitis, the authors used 
primarily only the rRNA sequences from 16S amplicon sequencing of the samples to 
examine shifts in mouse gut microbiomes. They did report an increase in mRNA 
matching Enterobacteriaceae species in Tyrosine Kinase 2 (Tyk2) deficient mice, 
rising on day 3 of treatment, but provided no other mRNA analysis of these samples. 
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Examining the results of our pipeline, we observed a 1.558-fold increase in 
Enterobacteriaceae mRNA expression in day 3 samples (p=0.0055). Indeed, looking 
across all bacterial species with greater than 100 average expressed transcripts, we 
found significant increases in transcriptional activity in Escherichia and Providencia 
species, both of which are associated with ulcerative colitis [21]. In addition, we noted 
a significant decrease in Butyrivibrio species (p=0.03), when comparing between 
wild-type and Tyk2-deficient mice over the course of DSS-induced colitis. 
Butyrivibrio is a probiotic-associated strain that may normally offer protection against 
colitis [22]. We also observed several significant changes in functional activity 
between the two groups, identifying more than 300 protein-coding transcripts 
differentially expressed between wild-type and Tyk2-deficient mice (adjusted p<0.05, 
Additional File 1).  

Discussion  
Although still an emerging field, metatranscriptomics offers a powerful 

approach for analyzing complex activity within a heterogeneous microbial population, 
such as that found within the gut microbiome. Previous approaches for the study of 
the gut microbiome provide an incomplete picture, limited to only identifying 
variations in organism population levels and not including data on the activity of 
different species within the environment. 

Our pipeline fulfills the need for four main steps in metatranscriptomic data 
analysis: preprocessing, annotation, aggregation, and analysis. By leveraging MG-
RAST’s annotation server, we can provide comprehensive annotation and analysis of 
a metatranscriptome without requiring a dedicated private server. SAMSA generates 
outputs at each step, creating a streamlined pipeline where each stage in data analysis 
can be independently examined. 

Using the SAMSA pipeline, we have established a set of “best practices” for 
metatranscriptome sequencing. Our work demonstrates that the increased specificity 
provided by a paired-end sequencing approach significantly increases specificity of 
read annotations. In addition, to provide a complete and accurate measure of read 
abundance within a metatranscriptome, approximately forty million raw reads must be 
sequenced, providing an estimated ten million mRNA annotations.  

Due to the vast majority of extracted total RNA originating from ribosomes, 
ribodepletion is strongly recommended for all metatranscriptome sample processing. 
We demonstrate that although ribodepletion is not successful at removing all rRNA, 
and skews the proportions of remaining rRNA within a sample, it greatly increases the 
number of mRNA annotations obtained per metatranscriptome. Although we only 
tested one commercially available ribodepletion kit, we believe that all ribodepletion 
methods based on hybridization with complementary rRNA oligonucleotide probes 
will carry some intrinsic bias, skewing the proportions of remaining rRNA within the 
sample. Therefore, we recommend discarding all remaining ribosomal reads before 
performing further analysis on these samples. 

Although ribodepletion results in a loss of information regarding organism 
abundance within a metatranscriptomic sample, we show that total mRNA can be 
used as an alternate method of evaluating overall organism activity within a sample. 
Compared to mRNA results, we found a higher level of mismatches and false 
annotations among the rRNA data, particularly for eukaryotic organisms, including 
plant species such as Sisymbrium (cabbage), Arabidopsis, and Populus (cottonwood), 
Bos taurus, human, and Coptotermes (termite). This increased mismatch rate may be 
due to the fact that MG-RAST is not tailored to work with eukaryotic organisms. 
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Another reason that mRNA and rRNA results were not perfectly correlated is that 
there were insufficient mRNA reads in the data set used for direct comparison. Our 
data (Figure 3) suggested that a minimum of 10 million annotated reads are required 
for accurate annotations, while the non-ribosomal depleted data set averaged only 1-2 
million annotated mRNA reads per sample. While total mRNA may not be a perfect 
proxy of organism activity, the extent of mismatches in the rRNA data suggest that 
mRNA is at least better than total rRNA for judging activity. 

Analyzing a public data set, we confirmed the rRNA patterns previously 
described by the producers of that data [12], and also identified significant changes in 
other, more specific genera of microbial species, including increases in Escherichia 
and Providencia and decreases in Butyrivibrio. Both the increase in Escherichia and 
Providencia and the decrease in Butyrivibrio species were only notable at the genus 
level and would not be identifiable in 16S data, demonstrating the value of mRNA-
based metatranscriptomics analysis. In addition, we successfully identified a variety 
of functional activities of gut microbes that significantly differed between wild-type 
and Tyk2-/- strains of mice strains.  

As the field of metatranscriptomics continues to grow and expand, we expect 
that metatranscriptome analysis will become increasingly important to understand the 
functional responses of gut microbiome communities. By using mRNA transcripts to 
identify both the activity levels of organisms within a sample and changes in specific 
gene or functional expression, we can gain a better understanding of the capabilities 
and actions within an active gut microbiome at any chosen point in time. Because all 
parts of SAMSA are open source and publicly accessible, this tool can be used even 
by researchers with little previous experience in working with metatranscriptomes. 
We hope to encourage the more widespread use of metatranscriptomics as the next 
“big data” tool for determining activity within complex microbiome populations. 
 Although the SAMSA pipeline successfully annotated and summarized gut 
microbiome metatranscriptome data without the need for large server resources, 
several limitations still exist. MG-RAST’s annotation servers require waiting in a 
queue, and processing may be slowed by days to weeks. Additionally, although 
SAMSA can reveal shifts in activity patterns, shifts in microbial population sizes 
cannot be measured as accurately as using shotgun metagenomics, and future 
approaches may focus on incorporating both techniques to ensure completeness. 
 Future versions of this pipeline will focus on a more rapid in-house annotation 
step, using custom built reference databases and allowing for greater speed and 
additional analysis options, drawing from multiple reference databases as data 
progresses through the pipeline. 

Conclusions  
We have created a new pipeline for metatranscriptome analysis, functioning in 

conjunction with the MG-RAST annotation pipeline. This pipeline is capable of 
determining expression activity within a sample at the transcript level, and provides 
measures of total activity, differentiated either by organism or by functional category 
of transcript. This pipeline will enable more rapid adoption of metatranscriptomics 
methods. Finally, we recommend that stool metatranscriptomes be ribodepleted and 
sequenced in a 100bp paired end format with a minimum of 40 million reads per 
sample. 
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Methods 
Sample Collection 
Stool samples were collected from two normal healthy adults. Stool was added to 
50mL tubes containing 25mL RNAlater until the total volume reached 30mL. 
Samples were then sealed and shaked vigourously until the contents appeared to be 
uniform in consistency. The samples were then temporarily stored at -20 C before 
being moved to -80 C. These samples were derived from a study that is registered on 
clinicaltrials.gov (NCT01814540). The UC Davis Institutional Review Board 
approved all aspects of the study and written informed consent was obtained from all 
participants prior to study procedures. 

RNA extraction  
Two different RNA extraction protocols were applied to the two human subject stool 
samples, adapted from Giannoukos et al.[10]. Samples were initially frozen at -80 
degrees C in RNAlater. Samples were partially thawed and mixed with bacterial lysis 
buffer, incubated, and then homogenized through both bead-beating and QIAshredder 
treatments. Extraction was performed using the Qiagen RNeasy isolation kit, with 
additional rigorous Turbo DNAse treatment to remove DNA contamination. 
Ribodepletion was performed on two of the samples (designated P1) using the 
RiboZero Magnetic GOLD kit. Poly(A) selection was performed on two samples 
(designated P4) using the Illumina TruSeq kit protocol. 

RNA sequencing 
For each sample, RNA-Seq libraries were prepared from 20uL of >2000ng/uL at the 
DNA Sequencing Core of the UC Davis Genome Center. RNA extracted using the 
bacterial metatranscriptome protocol (P1) was first ribodepleted using the RiboZero 
Magnetic Gold Kit (Epidemiology), catalog number MRZE706. The Illumina TruSeq 
protocol, without poly(A) selection, was then used to prepare RNA-Seq libraries. For 
the TRIzol-extract RNA (P4), the Illumina TruSeq protocol with poly(A) selection 
was used to prepare RNA-Seq libaries. All four samples were run on a single lane of 
Illumina HiSeq 2000 with indexing to allocate ~40% of the lane to each bacterial 
metatranscriptomes and ~10% of the lane to each poly(A)-selected 
metatranscriptome. The four metatranscriptomes have been deposited in the NCBI 
SRA repository, in BioProject PRJNA313102, SRA study SRP071017. 

Preprocessing and annotation of metatranscriptome reads 
Raw sequences were obtained for two pilot samples, labeled as 4012 and 

4015. Cleaning of the raw sequences to remove reads containing low-quality bases 
and eliminate adaptor contamination was performed using Trimmomatic, a flexible 
read trimming tool for Illumina NGS data. At default parameters, Trimmomatic 
removed low-quality reads to meet the minimum threshold of acceptability for MG-
RAST submission. 

Paired end raw sequence files were aligned using FLASh, a short read aligning 
program. Approximately 32-54% of the raw reads in each sample were successfully 
aligned, with an average aligned read length of 178 base pairs. 
The trimmed and aligned sequences were submitted for annotation to Metagenomic 
Rapid Annotations using Subsystems Technology (MG-RAST) [15]. MG-RAST 
includes several steps, including an initial sequence quality control check through 
SolexaQA, gene calling through FragGeneScan, clustering of amino acid sequences at 
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90% identity through the uclust implementation of QIIME, and then using sBLAT on 
each protein sequence cluster to locate the best match reference. 
 For each sequence cluster, MG-RAST selects the best match through the 
sBLAT similarity search. If multiple reference database matches tie for best matching 
score, they are both included in the final results. If the read does not achieve a match 
score above the minimum e-value cutoff, it is discarded. Each match is linked to MG-
RAST’s internal identifier system and assigned an M5nr ID, correlating with linked 
matches in all subsystems databases. The annotated output can be provided on a per-
match basis, using the M5nr ID to link each read to its best match from the 
subsystems database of choice. 

Post-annotation processing and analysis 
 To create sorted abundance measures of the metatranscriptome, all annotations 
with an acceptable best-match to the NCBI Reference Database (RefSeq) were 
downloaded from MG-RAST. Annotations were downloaded for the best match to 
both organism and individual transcript. Annotations were downloaded directly in 
tab-delimited form using MG-RAST’s RESTful API interface and a custom Python 
program to assemble the API call command. In addition, the annotated output was 
also downloaded from the SEED Subsystems reference database to provide ontology 
annotations. 
 A custom Python program parsed through each annotated output, storing each 
unique annotation match in a dictionary and maintaining counts of the number of 
occurrences of each unique annotation. After the annotation file was processed, the 
unique annotations were sorted by abundance and exported as output.  

Evaluating minimum viable metatranscriptome read counts 
 To determine minimum viable metatranscriptome size, the original samples, 
which were very deeply sequenced, were digitally broken down and reshuffled to 
create smaller, randomly generated subset metatranscriptomes. 100 smaller subset 
metatranscriptomes were generated for each subset size, with the subset sizes 
consisting of 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90 percent of the final 
metatranscriptome size. 

Each of these smaller subsets was subjected to identical analysis using the 
same programs and pipeline to determine variation in annotation abundance. By 
comparing relative variation in the abundance of different transcripts, the minimum 
necessary metatranscriptome size needed for stable abundance percentage estimates 
could be computed.  

To determine whether paired-end sequencing was necessary for ensuring 
accuracy of the annotation process, the paired-end reads were digitally trimmed to 
100 base pairs, creating a simulated single-read metatranscriptome containing the 
same number of identical sequences to the paired-end file. This digitally created 
single-read metatranscriptome was analyzed using the same pipeline as the paired-end 
original file, and the results were compared for to determine level of variation using 
statistical testing in R via the DESeq2 package. 

Comparison of tyrosine kinase 2 knockout versus wild-type mice in colitis 
The constructed pipeline was tested using publicly available RNA-seq data from 
Hainzl et al. [12]. The original authors obtained Illumina-sequenced 
metatranscriptomes from 15 gnotobiotic mice, 9 with a tyrosine kinase 2 knockout 
genotype (Tyk2-/-) and 6 wild-type controls, at different stages of dextran sodium 
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sulfate (DSS) induced colitis. The original authors used only the rRNA gene copies 
from the metatranscriptomes, demonstrating through PCA analysis that both the wild-
type and Tyk2-/- mice showed similar shifts in organism population based on stage of 
DSS-induced inflammation. Their raw data was made publicly available through 
NCBI’s Short Read Archive (SRA), accession numbers SRP026343 and SRP026649. 

Access to the SAMSA pipeline 
 All components and tools used in the SAMSA pipeline, as well as 
documentation files, are freely available from GitHub at 
http://github.com/transcript/SAMSA. 
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