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Abstract

Whenever we engage in a cognitive task, multiple brain regions are en-
gaged. Understanding how these regions interact is a fundamental step to
uncover the neural mechanisms that make behavior possible. The major-
ity of the investigations of interactions between brain regions have focused
on the overall univariate responses in the regions. However, in the context
of ‘static’ analyses, drastic advantages have derived from the application
of multivariate techniques considering the fine-grained spatial structure of
responses within each region (multivariate pattern analysis - MVPA). In
the present article, we introduce and apply a technique to study connec-
tivity in terms of the relations between multivariate patterns of responses
within brain regions: multivariate pattern connectivity (MVPC). Consid-
ering the fusiform face area (FFA) as a seed region, we show that MVPC
provides novel information about the interactions between regions that
goes beyond univariate functional connectivity analyses.

1 Introduction

When we engage in a task - from recognizing the identity of a face to attributing
mental states to others or understanding a sentence - multiple brain regions are
engaged (Ishai [2008], Anzellotti and Caramazza [2015], Gallagher and Frith
[2003], Fedorenko and Thompson-Schill [2014]). How do these regions work
together to generate behavior? The investigation of large-scale interactions
between multiple brain regions has attracted increasing interest in neuroscience,
and a variety of methods have been developed to study connectivity both in
terms of the anatomical structure of the brain (Le Bihan et al. [2001]), and of
the relations between timecourses of responses during rest (Biswal et al. [1995])
and during specific experimental tasks (Friston et al. [2003], Roebroeck et al.
[2005]). Functional Magnetic Resonance Imaging (fMRI) has proven to be a
valuable instrument in this enterprise, offering noninvasive recording with good
spatial resolution and whole-brain coverage.
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In parallel with the development of methods for the study of connectivity,
the fMRI literature has seen the introduction and diffusion of multivariate anal-
ysis techniques (multivariate pattern analysis or MVPA; Haxby et al. [2001])
that exploit the fine-grained spatial patterns of response within individual brain
regions to achieve a better characterization of those regions’ functional roles.
MVPA has drastically increased the potential of fMRI for ‘static’ analyses of
representational content, making it possible to detect information at a level of
specificity that was unthinkable with previous univariate analyses (Kriegeskorte
et al. [2007], Nestor et al. [2011], Anzellotti et al. [2013], Soon et al. [2008],
Koster-Hale et al. [2013]). ‘Static’ analyses here are intended as analyses that
average across time and do not exploit the temporal dimension of the data.
Despite the success of MVPA for ‘static’ analyses of neural representations in
individual brain regions, relatively few attempts have been made to transport
the potential of multivariate analyses to the domain of dynamics and connec-
tivity.

A recent study (Coutanche and Thompson-Schill [2014]) used successful vs
unsuccessful classification of color and shape in area V4 and in the lateral occip-
ital complex (LOC) to predict successful vs unsuccessful object classification in
the anterior temporal lobe (ATL), providing evidence that classification accu-
racy in ATL in a given experimental block can be predicted from classification
in V4 and the fusiform face area (FFA; Kanwisher et al. [1997]) in the same
block. This study is an important first step towards exploiting multivariate
voxel patterns to study interactions between brain regions, but it is limited
by the use of a single discrete measure of a region’s representational content
(1 for successful classification, 0 for unsuccessful classification). An additional
property of this method is that it uses classification along experimenter defined
categories, which can be useful to probe a specific hypothesis about the type of
interactions between a set of regions, but does not guarantee to capture proper-
ties of the stimuli and tasks that play a predominant role in driving the regions’
responses. A large portion of the variance in the regions’ responses might be
determined by properties that are orthogonal to the categories determined by
the experimenter.

Another innovative study (Henriksson et al. [2015]) investigated the relations
between brain regions in terms of fine-grained patterns of response measuring
correlation between representational dissimilarity matrices in different regions.
Pairs of dissimilarity matrices calculated with the same set of trials showed
higher correlations than pairs of dissimilarity matrices each of which was calcu-
lated with separate sets of data, showing that trial-specific fluctuations in the
regions’ responses can affect the information they encode in a manner that is
trial-dependent but related across regions. This approach provides a richer char-
acterization of each region’s representational structure by comparing similarity
matrices instead of successful vs unsuccessful classification. However, to make
the dissimilarity matrices comparable across regions, the same set of conditions
need to be used to generate the dissimilarity matrices in the different regions.
This can be very effective when the conditions correspond to individual stimuli
as in Henriksson et al. [2015], but if stimulus categories were used (e.g. faces vs.
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animals vs. artifacts) it would raise the question of whether it is appropriate
to characterize the representational spaces of brain regions as disparate as early
visual cortex, inferior temporal cortex and the anterior temporal lobes in terms
of the dissimilarities between the same set of categories. Adopting the same set
of experimenter defined categories across all regions may be effective to test a
specific hypothesis about the interactions between regions concerning a specific
representational subspace, but it would be less suitable to evaluate the overall
extent of the interaction between two regions.

Starting from these considerations, we developed a method (multivariate
pattern connectivity - MVPC) to investigate the relations between brain re-
gions in terms of fine-grained spatial patterns of responses. The method is
composed of three main stages. In the first stage, the representational space
in each brain region is modelled extracting a set of dimensions that correspond
to spatial response patterns that ‘best’ characterize a region’s responses over
time. In the second stage, the multivariate timecourses of responses in each
region are reparametrized as trajectories in the representational spaces defined
by these dimensions. In the third stage, the relations between the trajectories
in the representational spaces of different regions are modelled. In a procedure
analogous to MVPA, independent data are used to train and test the models.
Parameters modelling the relationship between two regions are estimated with
all runs but one, and then used to model the relation between those regions in
the remaining run.

In this article, we discuss the details of MVPC, and we compare the re-
sults obtained with MVPC to standard functional connectivity analyses using
as a test case the connectivity of the fusiform face area and the rest of the
brain (with a searchlight approach). The results indicate that MVPC provides
complementary information about the connectivity of FFA and can enrich our
understanding of the interactions between brain regions.

2 Multivariate Pattern Connectivity

Multivariate Pattern Connectivity (MVPC) is based on the idea of modelling
the representational space in a brain region and reparametrizing the patterns
of response in the region over time as trajectories in the representational space.
The trajectories in the representational space in one region can then be used
to predict trajectories in the representational space of other regions yielding a
multivariate measure of connectivity.

2.1 Preprocessing

Let S1 be a n1 × T matrix and S2 a n2 × T matrix of Blood-Oxygen Level
Dependent (BOLD) signal, where n1 is the number of voxels in a region r1, n2

is the number of voxels in a region r2 and T is the number of acquired func-
tional volumes. Before modelling the representational spaces in regions r1, r2,
we need to apply some preprocessing to the BOLD timecourses. Removal of

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2016. ; https://doi.org/10.1101/046151doi: bioRxiv preprint 

https://doi.org/10.1101/046151
http://creativecommons.org/licenses/by-nc-nd/4.0/


multiple sources of noise can be achieved with compcor (Behzadi et al. [2007]).
A control region of interest (ROI) that does not contain gray matter such as
the ventricles is defined, and principal components are extracted. Since the
control ROI does not contain gray matter, its responses are thought to reflect
noise. The timecourses of the components extracted from the control ROI are
regressed out from the timecourses of every voxel in regions r1, r2 obtaining ma-
trices of residuals E1, E2 of size n1×T and n2×T respectively. Preprocessing is
applied to m functional runs yielding multivariate timecourses E1

1 , . . . , E
m
1 and

E1
2 , . . . , E

m
2 .

If the goal is to obtain a measure of multivariate connectivity that reflects inter-
actions beyond what could be detected with functional connectivity, the mean
response in the ROI needs to be subtracted from each voxel in the ROI at each
timepoint. After this step, the average timecourse in the ROI is constantly zero
and standard functional connectivity calculated after this stage would also be
zero. Alternatively, if the aim is to investigate with the same measure the inter-
actions attributable to both the mean timecourse and to finer-grained patterns,
the mean can be kept. These alternatives are similar to the choice between
using correlation distance vs. euclidean distance in MVPA.

2.2 Modelling Representational Spaces

Since we aim to generate a model of representational space that is not specific
to an individual run but is common to the entire experiment, the multivariate
timecourses E1

1 , . . . , E
m
1 and E1

2 , . . . , E
m
2 are first concatenated in time, yielding

new timecourses Ẽ1, Ẽ2 of size n1×T̃ and n2×T̃ respectively, where T̃ =
∑m

i=1 Ti

and Ti is the number of functional volumes acquired in run i. Singular value
decomposition is then used to perform principal component analysis (PCA) in
each region, obtaining:

Ẽ1 = U1Σ1V
T
1 (1)

Ẽ2 = U2Σ2V
T
2 (2)

The first k1 and k2 components are extracted, with k1 ≤ n1 and k2 ≤ n2.
To obtain the new, dimensionality-reduced timecourses, it suffices to calculate

Ẽ1,red = U1Σ1 (3)

Ẽ2,red = U2Σ2 (4)

Many techniques can be used to decide how many components to select, for
example the scree test (Cattell [1966], Zoski and Jurs [1996]) or cross validation
methods (Josse and Husson [2012]). A recent study has shown that in the case
of resting state, 5 components provide a good characterization of the data (Diez
et al. [2015]), therefore in the applications in this article we use 5 components,
leaving it for future work to test the effectiveness of different methods to de-
termine the number of components. This procedure leaves us with multivariate
timecourses Ẽ1,red, Ẽ2,red of size k1 × T̃ and k2 × T̃ respectively, and for the
applications in the present article we have k1 = k2 = 5.
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We can take a moment to reflect on the interpretation of the procedure we
just completed. For each region, each dimension obtained with PCA is a linear
combination of the voxels in the region, whose weights define a multivariate
pattern of response over voxels. Considering as an example region 1, the loadings
of a dimension i are encoded in the i-th row of Ẽ1,red, and represent the intensity
with which the multivariate pattern corresponding to dimension i is activated
over time.

2.3 Modelling Connectivity

In the previous processing stages, the timeseries of BOLD signal have been
corrected for brain-wide noise with compcorr and the representational space has
been modeled with PCA. We are now ready to model connectivity. As a first
step, we split the multivariate timeseries Ẽ1,red, Ẽ2,red into different runs (in
order to estimate connectivity parameters and then test them with independent
data), obtaining dimensionality reduced timeseries Ei

1,red and Ei
2,red for each

run i, with i = 1, . . . ,m. We can then predict the timeseries Ei
2,red using as

predictors the timeseries Ei
1,red:

Ei
2,red = BiEi

1,red + F i (5)

where F i are the residuals of the model. This model can be estimated using
ordinary least squares (OLS). Fitting this model for all runs yields matrices of
parameters B1, . . . , Bm.

2.4 Predicting Multivariate Timecourses

After having estimated multivariate connectivity parameters for each run, a
leave-one-run-out cross validation procedure can be used to predict for each run
the multivariate timecourses in region 2 as a function of the multivariate time-
courses in region 1 using the average of the connectivity parameters estimated
using data from all the other left-out runs. More formally, for each run i, we
obtain mean parameters

B\i =

(∑i−1
j=1 B

j +
∑m

j=i+1 B
j
)

m− 1
(6)

and using these parameters we calculate predicted timecourses in region 2 for
run i

Êi
2,red = B\iEi

1,red. (7)

We can now calculate the proportion of variance explained by this model with
zero free parameters in run i for each dimension k of the representational space
of region 2:

R2
k(i) =

var
(
Êi

2,red(k, :)
)

var
(
Ei

2,red(k, :)
) . (8)
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In order to facilitate comparison with functional connectivity (Biswal et al.
[1995]), which uses correlation, we can also calculate the multiple correlation
coefficient

Rk(i) =
√

R2
k(i) (9)

for each component k. Note that unlike the case of functional connectivity, we
have k2 values Rk(i), and they are calculated on the basis of the proportion
of variance explained in independent data. We can obtain a summary measure
across all components computing the mean of the multiple correlation coeffi-
cients:

R̄(i) =

∑k2

k=1 Rk(i)

k2
. (10)

2.5 Searchlight

For each run i, with i = 1, . . . ,m the procedure described thus far can be ap-
plied to a fixed seed region of interest and spherical ROIs centered in all voxels
of gray matter, following a searchlight procedure (see Kriegeskorte et al. [2006],
Kriegeskorte and Bandettini [2007] for a description of searchlight in a MVPA
context). The searchlight produces for each run i and for each voxel v a corre-
sponding mean multiple correlation value R̄(i)(v) (Figure 1). In the empirical
applications described in this paper, searchlight analysis was performed within
spheres of radius 6mm.

2.6 Statistical Inference

Since the multivariate connectivity map Rsj is always positive, before proceed-
ing with statistical testing the whole-brain mean R̄sj is subtracted from Rsj ob-

taining centered maps R̃sj , to make a permutation test possible.Subsequently,
a moderate smoothing can be applied to the searchlight MVPC maps R̄(i)
for the individual runs, which are then averaged into a single map Rsj for
each participant sj . Statistical testing will individuate brain regions that show
above-average multivariate connectivity with the seed region. The significance
of multivariate connectivity can finally be tested with statistical nonparametric
mapping (Nichols and Holmes [2002]).

3 Materials and Experimental Procedures

3.1 Participants

A total of ten volunteers (age range 18-50, mean 27.1) participated in the ex-
periment. The volunteers’ consent was obtained according to the Declaration of
Helsinki (BMJ, 1991, pp. 302, 1194). The project was approved by the Human
Subjects Committees at the University of Trento and Harvard University. Data
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Figure 1: Analysis pipeline.

from one participant were discarded from the analysis because of poor perfor-
mance during a behavioral training session administered on the day before the
scanning.

3.2 Stimuli

Computer generated 3D models (using DAZ-3D) of 5 face identities were used to
generate images at 5 different orientations for each identity (Figure 2). Stimuli
were presented with Psychtoolbox (Brainard [1997], Pelli [1997]) running on
MATLAB, with the add-on ASF (Schwarzbach [2011]), using an Epson EMP
9000 projector. Images were projected on a frosted screen at the top of the
bore, viewed through a mirror attached to the head coil.

3.3 Experimental design

One of the five face identities was designated as the target, and participants
were instructed to respond with the index finger of the right hand to the target
face and with the middle finger to the other distractor faces (Figure 1A). Each
trial consisted of the presentation of a face image (500ms) followed by a fixation
cross (1500ms). The experiment was composed of three 12-minute runs, each
consisting of approximately 320 trials. The order of presentation of the stimuli
was generated with optseq2 (http://surfer.nmr.mgh.harvard.edu/optseq/). A
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Figure 2: Experimental stimuli.

block-design functional localizer with faces, houses and scrambled images was
administered at the beginning of the fMRI session. None of the faces shown in
the localizer were presented during the other parts of the experiment.

3.4 Data acquisition and analysis

3.4.1 MRI Scanning Parameters

The data were collected on a Bruker BioSpin MedSpec 4T at the Center for
Mind/Brain Sciences (CIMeC) of the University of Trento using a USA Instru-
ments eight-channel phased-array head coil. Before collecting functional data, a
high-resolution (1×1×1 mm3) T1-weighted MPRAGE sequence was performed
(sagittal slice orientation, centric phase encoding, image matrix = 256 × 224
[Read × Phase], field of view = 256 × 224 mm2 [Read×Phase], 176 partitions
with 1 mm thickness, GRAPPA acquisition with acceleration factor = 2, du-
ration = 5.36 minutes, repetition time = 2700, echo time = 4.18, TI = 1020
msec, 7◦ flip angle). Functional data were collected using an echo-planar 2D
imaging sequence with phase oversampling (image matrix = 7064, repetition
time = 2000 msec, echo time = 21 msec, flip angle = 76◦, slice thickness = 2
mm, gap = 0.30 mm, with 3 × 3 mm in plane resolution). Over three runs,
1095 volumes of 43 slices were acquired in the axial plane aligned along the long
axis of the temporal lobe.
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3.4.2 Preprocessing

Data were preprocessed with SPM8 (http://www.fil.ion.ucl.ac.uk/ spm/software/spm8/)
and regions of interest were generated with MARSBAR (Brett et al. [2002])
running on MATLAB 2010a. Subsequent analyses were performed with custom
MATLAB software. The first 4 volumes of each run were discarded and all im-
ages were corrected for head movement. Slice-acquisition delays were corrected
using the middle slice as reference. Images were normalized to the standard
SPM8 EPI template and resampled to a 3 mm isotropic voxel size. The BOLD
signal was high pass filtered at 128s and prewhitened using an autoregressive
model AR(1).

3.4.3 MVPC

The preprocessed volumes were then analyzed with MVPC as described above,
using 5 principal components in the seed ROI and in the spheres, and smooth-
ing with a 6mm FWHM gaussian kernel. Importantly, for the purposes of
the present article, the univariate signal in each region was removed from the
multivariate timecourses before performing PCA, subtracting from the multi-
variate pattern of response in a region the mean response across voxels for
each timepoint. This was done by analogy with the removal of the mean in
correlation-based MVPA, and enabled us to generate a measure of connectivity
complementary to univariate functional connectivity(see Coutanche [2013] for a
discussion). In other words, after mean removal, univariate functional connec-
tivity measures would yield zero correlations between the regions: MVPC with
mean removal measures the connectivity that can be detected between regions
above and beyond univariate connectivity.

3.4.4 Functional connectivity

In addition to the MVPC analysis, standard functional connectivity analyses
were performed for comparison. To facilitate comparison, functional connectiv-
ity was calculated with a searchlight procedure, calculating for the seed and for
each sphere of 6mm radius (the same radius used for MVPC) the mean response
at each timepoint, which was then low-pass filtered at 0.1Hz and correlated. As
for MVPC, for each run the whole-brain mean functional connectivity was re-
moved. The same amount of smoothing (6mm FWHM) was applied to the
functional connectivity maps, and statistical testing was performed with SnPM
as for MVPC.

4 Results

Three brain regions were found to show significant multivariate connectivity
with the FFA seed (Figure 3) even after removing the mean timecourse of re-
sponses. First, multivariate connectivity of the FFA with itself across different
runs was significant (peak Pseudo-t = 8.89, FWE-corrected p = 0.002, MNI
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Figure 3: Brain regions individuated by multivariate pattern connectivity
(MVPC) at a voxelwise FWE-corrected threshold p < 0.05. In addition to the
fusiform face area, MVPC individuates the right posterior superior temporal
sulcus (STS) and the intraparietal sulcus (IPS). The mean timecourses of re-
sponses were removed prior to performing MVPC, which therefore individuates
connectivity that goes beyond standard univariate connectivity.

coordinates [39,−49,−22]). This is trivially the case because of the absence of
time lag: the parameters for self-prediction are necessarily close to 1 across all
runs. Second, the posterior superior temporal sulcus (STS) showed significant
multivariate connectivity with the FFA (peak Pseudo-t = 6.79, FWE-corrected
p = 0.0215, MNI coordinates [48,−52,−4]). Univariate functional connectivity
between the FFA and this region was just subthreshold, with Pseudo-t = 6.03
(the threshold for FWE-corrected p < 0.05 in the functional connectivity data
is Pseudo−t > 6.87).

Finally, significant multivariate connectivity was found between the FFA
seed and the right intraparietal sulcus (IPS; peak Pseudo-t = 6.84, FWE-
corrected p = 0.0176, MNI coordinates [39,−46, 60]). Univariate connectiv-
ity in the absence of connectivity between the finer grained spatial patterns
of responses was found between FFA and the right anterior insula (4)(peak
Pseudo-t = 7.41, FWE-corrected p = 0.0254, MNI coordinates [33, 29,−2]).
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Figure 4: Brain regions individuated by standard univariate functional connec-
tivity with a seed in the fusiform face area (FFA). For visualization purposes,
data are thresholded at Pseudo-t > 5.
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5 Discussion

This article introduces multivariate pattern connectivity (MVPC), a new method
to investigate the interactions between brain regions in terms of their multivari-
ate patterns of response. MVPC is characterized by several key properties.
First, the BOLD signal in each brain region is modeled as a set of responses
along multiple dimensions, with each dimension corresponding to a function of
the voxels in that region. Second, MVPC investigates the interaction between
two regions as the extent to which the responses in the dimensions character-
izing one region can predict the responses in the dimensions characterizing the
other region over time. Third, with an analogy to MVPA methods, MVPC uses
a cross-validation procedure in which independent data are used for training and
testing of the models. A subset of the runs are used as a training set to gener-
ate connectivity parameters which are then tested by measuring their ability to
predict responses in a left-out independent run. This approach eliminates the
bias that would otherwise be caused by sources of noise affecting simultaneously
the whole brain.
In the examples described in the present article, dimensions are obtained with
PCA as linear combinations of the voxels that tend to be jointly activated or
deactivated over time. From a neuroscientific perspective, we can think of each
region as consisting of multiple neural populations with selectivities for different
properties of the stimuli that have different distributions over the course of the
experiment.Each population has different spatial distributions over voxels. This
leads different weighted combinations of voxels to having different timecourses
of responses, whose dynamics can provide deeper insights into the interactions
between regions than the investigation of average responses. Of course,while dif-
ferent populations withdifferent selectivities and different spatial distributions
can lead to dimensionswithdifferent time courses,it is unlikely thatindividual di-
mensions obtainedwith PCA correspond in a one-to-one relationship to neural
populations witha specific selectivity profile. For example, more than one neural
population might be collapsed in a single principal component, or populations
might not be assigned to dimensions in a one-to-one mapping because of the
orthogonality constraints imposed by PCA.
In the empirical application of MVPC reported in this article, we observed
three possible patterns of results. In some of the regions (FFA and in part
STS) both univariate and multivariate connectivity was observed. This type of
result indicates that in addition to a relationship between the overall amount of
response in these regions, the regions are related in terms of the finer-grained
information they encode over time. In the case of IPS, multivariate connectivity
was found in the absence of univariate connectivity, indicating that MVPC can
be more sensitive than univariate connectivity to detect certain interactions.
This finding is of particular interest because the IPS has been shown to encode
information about faces even though it does not show face selectivity (?).We
conjecture that greater sensitivity of MVPC can be observed especially for re-
gions that are engaged in processes that cut across multiple categories - in the
case of IPS the attentional selection of individual objects (Xu and Chun [2006,

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2016. ; https://doi.org/10.1101/046151doi: bioRxiv preprint 

https://doi.org/10.1101/046151
http://creativecommons.org/licenses/by-nc-nd/4.0/


2009]). Third, the right insula was found to have univariate connectivity with
the FFA seed, but not multivariate connectivity. While the overall amount of
response in FFA and in the anterior insula is correlated the finer-grained rep-
resentational structures in one of the regions cannot predict the finer-grained
representational structure in the other.
MVPC differs in important respects from previous techniques aimed at study-
ing the dynamic interactions between brain regions in terms of the informa-
tion they encode. Unlike previous techniques (Coutanche and Thompson-Schill
[2014], Henriksson et al. [2015]), MVPC does not rely on discrimination be-
tween categories determined by the experimenter, but on dimensions derived in
a data-driven fashion. The data-driven dimensions can be related to proper-
ties of the stimuli or the task with a subsequent model (for instance regressing
dimensions on conditions, or on stimulus properties using a forward model).
Another difference between MVPC and the method introduced by Coutanche
and Thompson-Schill (Coutanche and Thompson-Schill [2014]) is that the latter
characterizes each region with one discrete measure (successful or unsuccessful
classification), while MVPC adopts multiple continuous measures (the values
along the multiple dimensions), which can provide a richer characterization of
a region’s representation at any given time. An important feature of MVPC
that sets it apart from other methods relating representations across multiple
regions is that MVPC uses independent data for the training and testing of the
models. This feature helps to control for sources of noise that can affect the
entire brain. For example, head motion can lead to different amounts of noise
in different trials, which in turn could lead to correlations between regions in
terms of whether categorization is successful or unsuccessful in a given trial,
inflating estimates of the interaction between two regions obtained correlating
classification performance within the same blocks. However, the most impor-
tant asset of MVPC is probably its flexibility. The framework of 1) modelling
representational spaces in individual regions, 2) considering multivariate time-
courses as trajectories in these representational spaces, and 3) fitting models
predicting the trajectory in the representational space of one region as a func-
tion of the trajectory in the representational space in another offers a wealth of
possibilities to build increasingly refined models, both in terms of the characteri-
zation of representational spaces and in terms of the models of their interactions.
For the characterization of representational spaces, in this article we adopted
PCA as a simple example, but other methods such as independent component
analysis (ICA) and nonlinear dimensionality reduction techniques can also be
used. For modelling interactions between regions, we limited the current appli-
cation to simultaneous, non-directed interactions following an approach similar
to functional connectivity, but MVPC makes it possible to model nonlinear maps
between representational spaces, and to use models that investigate the direc-
tionality of interactions using temporal precedence, along the lines of Granger
Causality (Roebroeck et al. [2005]), Dynamic Causal Modelling (Friston et al.
[2003]), and Dynamic Network Modelling ().
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