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Abstract

Motivation: With the development of single cell RNA-seq (scRNA-
seq) technology, scRNA-seq experiments with ordered conditions (e.g.
time-course) are becoming common. Methods developed for analyz-
ing ordered bulk RNA-seq experiments are not applicable to scRNA-
seq, since their distributional assumptions are often violated by addi-
tional heterogeneities prevalent in scRNA-seq. Here we present SC-
Pattern - an empirical Bayes model to characterize genes with expres-
sion changes in ordered scRNA-seq experiments. SCPattern utilizes
the non-parametrical Kolmogorov-Smirnov statistic, thus it has the
flexibility to identify genes with a wide variety of types of changes.
Additionally, the Bayes framework allows SCPattern to classify genes
into expression patterns with probability estimates.

Results: Simulation results show that SCPattern is well powered
for identifying genes with expression changes while the false discovery
rate is well controlled. SCPattern is also able to accurately classify
these dynamic genes into directional expression patterns. Applied to
a scRNA-seq time course dataset studying human embryonic cell dif-
ferentiation, SCPattern detected a group of important genes that are
involved in mesendoderm and definitive endoderm cell fate decisions,
positional patterning, and cell cycle.

Availability and Implementation: The SCPattern is imple-
mented as an R package along with a user-friendly graphical interface,
which are available at: https://github.com/lengning/SCPattern

Contact: rstewart@morgridge.org
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1 Introduction

RNA sequencing (RNA-seq) technology has been replacing microarray based
gene expression methods because of its improved accuracy and reduced cost
per sample. RNA-seq of a population of cells in bulk (bulk RNA-seq) has
been used in a number of experiments to characterize expression differ-
ences between biological conditions. Among these experiments, ordered bulk
RNA-seq experiments are becoming quite popular. Ordered bulk RNA-seq
experiments measure changes over multiple ordered conditions (e.g. over
time or space). Instead of classifying genes as differentially expressed (DE)
or equally expressed (EE) as in an experiment comparing two conditions,
the ordered experiments provide precise views of graded changes.

Recent advances in single cell technologies allow investigators to use
RNA-seq technology to characterize transcriptome-wide expression measures
of individual cells. Compare to ordered bulk RNA-seq experiments which
measure averaged expression over thousands of cells for a given time point or
position, ordered scRNA-seq experiments provide unprecedented power to
understand how a cell population’s expression distribution changes during a
biological process. Recent ordered scRNA-seq studies include experiments
studying differentiation of human T cells (Buettner et al., 2015), human
myoblasts (Trapnell et al., 2014), and human preimplantation development
(Yan et al., 2013; Blakeley et al., 2015; Töhönen et al., 2015), to name a
few.

In experiments with ordered conditions, investigators are mainly inter-
ested in identifying genes with expression changes along the multiple con-
ditions (DE genes) and classifying them by their expression patterns (e.g.
Up-Up-Up-Up, Up-Up-Down-Down, etc.). A number of methods have been
developed for DE gene identification and pattern specification for ordered
bulk RNA-seq experiments (Nueda et al., 2014; Leng et al., 2015). However,
these methods are not directly applicable to scRNA-seq data, because they
typically assume that the gene expression follows a unimodal distribution
within each condition. This assumption is not true in scRNA-seq data due
to cell heterogeneity and to technical dropouts (cells having zero counts due
to technical reasons).

In a two-condition scRNA-seq experiment, investigators typically treat
zero counts as technical dropout events. This is because without additional
information, it is impossible to determine if the zero counts are biologi-
cal or technical in basis. For example, a Bayesian model has been devel-
oped to detect DE genes in a two-condition scRNA-seq experiment (SCDE
(Kharchenko et al., 2014)). The SCDE model uses a mixing parameter to
account for the dropout events, and a location parameter to estimate the
mean expression level of expressed cells. In the SCDE implementation, a
statistical test is provided to detect mean differences of expressed cells, but
no guideline is provided to characterize differences due to percentage of zero

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2016. ; https://doi.org/10.1101/046110doi: bioRxiv preprint 

https://doi.org/10.1101/046110
http://creativecommons.org/licenses/by-nc-nd/4.0/


(c)

(a)

(b)
0

2
4

DPYSL2 

E
x
p

re
s
s
io

n

0
h
 (

9
2
) 

1
2
h
 (

1
0
2
) 

2
4
h
 (

6
6
) 

3
6
h
 (

1
7
2
) 

7
2
h
 (

1
3
8
) 

9
6
h
 (

1
8
8
) 

0
1

2
3

POU5F1 

E
x
p

re
s
s
io

n

0
h
 (

9
2
) 

1
2
h
 (

1
0
2
) 

2
4
h
 (

6
6
) 

3
6
h
 (

1
7
2
) 

7
2
h
 (

1
3
8
) 

9
6
h
 (

1
8
8
) 

0
1

2
3

4

MOB3B 
E

x
p

re
s
s
io

n

0
h
 (

9
2
) 

1
2
h
 (

1
0
2
) 

2
4
h
 (

6
6
) 

3
6
h
 (

1
7
2
) 

7
2
h
 (

1
3
8
) 

9
6
h
 (

1
8
8
) 

0
1

2
3

4

B3GNT5 

E
x
p

re
s
s
io

n

0
h
 (

9
2
) 

1
2
h
 (

1
0
2
) 

2
4
h
 (

6
6
) 

3
6
h
 (

1
7
2
) 

7
2
h
 (

1
3
8
) 

9
6
h
 (

1
8
8
) 

0
1

2
3

4

CD9 

E
x
p

re
s
s
io

n

0
h
 (

9
2
) 

1
2
h
 (

1
0
2
) 

2
4
h
 (

6
6
) 

3
6
h
 (

1
7
2
) 

7
2
h
 (

1
3
8
) 

9
6
h
 (

1
8
8
) 

0
2

4
SERPINE2 

E
x
p

re
s
s
io

n

0
h
 (

9
2
) 

1
2
h
 (

1
0
2
) 

2
4
h
 (

6
6
) 

3
6
h
 (

1
7
2
) 

7
2
h
 (

1
3
8
) 

9
6
h
 (

1
8
8
) 

Figure 1: Example genes in the scRNA-seq time course data study-
ing definitive endoderm cell differentiation. Panels (a), (b) and (c)
show example genes with expression mean changes in non-zero cells, percent-
age of zero changes and both, respectively. The x-axis shows time points
and the y-axis shows log10 (normalized expression + 1). One was added to
avoid showing negative infinity values.

changes, and extra heterogeneity among expressed cells that gives rise to
distributions that are not unimodal is not accommodated.

Unlike two-condition experiments, in an ordered scRNA-seq experiment,
investigators may infer whether the zero counts are mainly due to biological
or technical sources by incorporating information from other time points
(positions). For example, gradual changes in the percentage of zeros over
ordered conditions is more consistent with a biological signal, compared
with the case that percentages of zeros remain relatively constant. There-
fore, it is important to detect both mean expression changes and percentage
of zero changes in an ordered scRNA-seq experiment. Figure 1(a-c) shows
examples from three classes of DE genes in an scRNA-seq time course ex-
periment - genes whose mean expression of non-zero cells changes over time;
genes whose percentage of zero cells changes over time; and genes with both
changes. Only considering mean expression changes in non-zero cells will
ignore genes in the same class as those in Figure 1(b), resulting in reduced
power for identifying meaningful changes across conditions. In addition,
currently there is no scRNA-seq method that allows for directional tests,

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2016. ; https://doi.org/10.1101/046110doi: bioRxiv preprint 

https://doi.org/10.1101/046110
http://creativecommons.org/licenses/by-nc-nd/4.0/


and consequently it is not clear how to classify genes into patterns in an
ordered scRNA-seq experiment. To address these challenges, we developed
an empirical Bayes approach SCPattern which identifies genes with expres-
sion changes by considering cells with zero and non-zero cells collectively,
and classifies them into directional expression patterns with probability es-
timates. A graphical user interface (GUI) implementation is also available.

Simulation studies suggest that considering non-zero counts only in anal-
ysis of ordered scRNA-seq experiments results in reduced power for detecting
DE genes. On the other hand, SCPattern provides improved power while
its false discovery rate (FDR) is well controlled. In addition to DE gene
detection, results also show that SCPattern has high accuracy in classifying
genes into expression patterns. We also compared the algorithms with a
naive method based on fold change (FC), which was used as a screening
criteria in many scRNA-seq studies (Yan et al., 2013; Blakeley et al., 2015;
Finak et al., 2015). Results show that the FC method’s operating charac-
teristics are sensitive to the choice of cutoff, and its FDR is always inflated.
Similar results are demonstrated in a case study of a time course experiment
of differentiating human embryonic stem cells (ES cells) towards definitive
endoderm cells (Chu* et al., 2015).

2 Methods

The SCPattern algorithm

To simplify the presentation, we refer to ordered levels as time points, noting
that SCPattern accommodates other ordered data structures such as ordered
in space, by gradient, etc. Denote the time points by t = 1, 2, . . . , T . Let

Xtn
g be expression of gene g, cell n from time t. Then Xt

g = (Xt1
g , ..., X

tNt
g )

denotes gene g’s expression at time point t, in which Nt is the number of
cells in time point t.

Comparing gene expressions between time t and t + 1, SCPattern tests
whether a gene’s distribution changes across these two conditions. To char-
acterize the distributional differences, SCPattern utilizes the directional
Kolmogorov-Smirnov (K-S) statistic. Given a value ω, denote the cumu-
lative distribution functions (CDFs) of log2(Xt

g + 1) and log2(Xt+1
g + 1) by

F t
g(ω) and F t+1

g (ω), respectively (one was added to each value to avoid gen-
erating negative infinity values and to reduce dynamic range of low expressed
genes). Then the K-S statistics for up- and down- regulation are:

Y t,t+1
g,up = supω(F

t+1
g (ω)− F t

g(ω))

and
Y t,t+1
g,down = supω(F

t
g(ω)− F t+1

g (ω))

We use the K-S statistic to characterize expression differences because it
accommodates both expression level changes and percentage zero changes.
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[0, 0.1, 0.9][0.06, 0.07, 0.87]

[0, 0.75, 0.25] [0, 0.72, 0.28]

[0.78, 0, 0.22] [0.7, 0.02, 0.28]

t        t+1 t        t+1

t        t+1 t        t+1

t        t+1 t        t+1

Figure 2: Example genes and their summary statistics in a compar-
ison between two time points. Denote the two time points as t and t+1.
Panels (a), (b) and (c) show genes that are up-regulated, down-regulated
and EE, respectively. The y axis indicates gene expression. The vector
[Y t,t+1

g,up , Y t,t+1
g,down, Y

t,t+1
g,rest] is shown in the brackets for each gene. The largest

value of each gene is marked as red.

Examples are shown in Figure 2. Specifically, Y t,t+1
g,up is large when gene g’s

non-zero cells have higher expression at time t+1, when more cells become
non-zero at time t + 1, or both (Figure 2(a)). Similarly, Y t,t+1

g,down is large
when gene g’s non-zero cells’ expression level decreases, when more zero
cells present at time t + 1, or both (Figure 2(b)). Both Y t,t+1

g,up and Y t,t+1
g,down

are small when there is no expression change between the two time points
(Figure 2(c)).

For each pair of time points, by taking genes with large Y t,t+1
g,up , genes with

large Y t,t+1
g,down, and genes with large Y t,t+1

g,rest, we can classify genes into cate-

gories Up, Down and EE, respectively. Here Y t,t+1
g,rest is defined as 1−Y t,t+1

g,up −

Y t,t+1
g,down. Note that since a CDF is a monotonic function, Y t,t+1

g,rest is always

greater or equal to zero. Denote Y t,t+1
g as a vector [Y t,t+1

g,up , Y t,t+1
g,down, Y

t,t+1
g,rest].

Since Y t,t+1
g,up , Y t,t+1

g,down and Y t,t+1
g,rest all lie between 0 and 1, Y t,t+1

g is well de-
scribed by a Dirichlet distribution. To classify genes into these three cate-
gories, we assume Y t,t+1

g follows a mixture of Dirichlet distributions:

P (Y t,t+1
g ) =

∑

z

πt,t+1
z P (Y t,t+1

g |Zt,t+1
g = z),
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in which z is a latent variable indicating Up, Down or EE. The conditional
probability P (Y t,t+1

g |Zt,t+1
g = z) is defined as

Y t,t+1
g |Zt,t+1

g = z ∼







Dir(α, β, β); if z = Up
Dir(β, α, β); if z = Down
Dir(β, β, α); if z = EE

with constraint α > β. Note that for a Dirichlet distribution Dir(γ1, γ2, γ3),
the probability density function is defined as

P ([δ1, δ2, δ3]|[γ1, γ2, γ3]) =
Γ(η)

∏

i=1,2,3 Γ(γi)

∏

i=1,2,3

δγii

where η = γ1+γ2+γ3; and its expected values are defined as (γ1/η, γ2/η, γ3/η).

In our parameterization, Γ(η)∏
i Γ(γi)

remains the same for all three Dirichlet

components. Therefore, for any z0, z1 in Up, Down and EE, our model en-
sures that when Y t,t+1

g,z0 > Y t,t+1
g,z1 , P (Y t,t+1

g |Zt,t+1
g = z0) > P (Y t,t+1

g |Zt,t+1
g =

z1). For example, in a case when Y t,t+1
g,up > Y t,t+1

g,down = Y t,t+1
g,EE , to compare the

conditional probabilities across three components we have:

P (Y t,t+1
g |Zt,t+1

g = Up)

P (Y
t,t+1
g |Z

t,t+1
g = Down)

=
P (Y t,t+1

g |Zt,t+1
g = Up)

P (Y
t,t+1
g |Z

t,t+1
g = EE)

= (
Y t,t+1
g,up

Y
t,t+1
g,down

)
(α−β)

which is always greater than 1.
Thus, in a time course experiment with T time points, the marginal

distribution along all time points can then be written as:

P (Yg) =
∏

t=1,...,T−1

P (Y t,t+1
g )

By Bayes rule, the posterior probability (PP) of being pattern k1 is then
calculated as

PP (Pattern k1|Yg) =
πt,t+1
k1 P (Yg|k1)

∑

k π
t,t+1
k P (Yg|k)

For example, suppose km represents pattern Up-Up-Up in a time course
with 4 time points, then

PP (Pattern km|Yg) =

∏

t=1,2,3 π
t,t+1
up P (Y t,t+1

g |zt,t+1
g = Up)

P (Yg)

To estimate parameters α and β, SCPattern generates B permuted genes by
randomly shuffling the cells across the conditions. The resulting permuted
genes are expected to be EE. Therefore, SCPattern estimates α and β by
assuming Y b

permute ∼ Dir(β, β, α) for all B permuted genes. B defaults to
100000 and can be specified by the user. Once α and β are estimated, the
mixing parameter πs are estimated via Expectation-Maximization algorithm
and the PPs can then be obtained. A gene’s mostly likely pattern (MLP)
is then defined as the pattern that has the highest PP among all possible
patterns. A gene’s MLP is also its maximum a posteriori estimate.
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User-friendly graphical interface

SCPattern is available as an R package (R/SCPattern) along with a user-
friendly GUI. It takes as input estimates of gene expression and a vector
that specifies the condition to which each cell belongs. The output of the
SCPattern GUI contains a list of DE genes and their PPs, the most likely
pattern of each DE gene, and violin plots. Figure 3 shows the SCPattern-
GUI interface.

Comparison to other methods on simulated data

We followed a typical simulation setup (Robinson and Smyth, 2007; Leng et al.,
2013, 2015) by generating counts from a Negative Binomial distribution.
The gene-specific mean and variance of time point t are defined as µgt and
µgt(1 + µgtφgt), respectively. The (µgt, φgt) values were sampled as pairs
from the case study data in the definitive endoderm cell differentiation ex-
periment (See Supplementary Note section 2 for more details). FC for DE
genes were sampled from empirical FCs calculated using empirical data.
Each simulated dataset contains 10000 genes. We generated 100 datasets
for each simulation scenario.

Figure 3: Screenshot of the SCPattern-GUI. The SCPattern-GUI is
implemented using R/shiny package.
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Sim I was conducted to benchmark SCPattern in comparison between
two adjacent time points t and t + 1. Sixty cells were simulated for each
of the two time points. We simulated 3000 of the 10000 genes to be Up or
Down from t to t+ 1. In addition, 1000 of these 3000 genes were simulated
to have changes in the percentage of cells having zero expression. The other
2000 genes were simulated to be non-zero and have mean change across
the two time points. Among all 10000 genes, we simulated 2000 to have a
bi-model expression distribution for the non-zero cells in at least one time
point. Technical dropouts (stochastic zero counts due to technical reasons)
were also simulated. For any gene, we randomly selected 10% of the cells
and simulated them as technical dropouts by setting their expression value
to 0.

Sim II was conducted to evaluate SCPattern and other methods in a
time course experiment. In each simulation we simulated 5 time points,
each with 60 cells. We simulated 3000 genes to be changing over time - 1000
have changes in the percentage of cells having zero expression and the other
2000 are non-zero and have mean changes. We simulated 2000 genes to have
a bi-modal expression distribution in at least one of the time points. The
technical dropouts were simulated as in Sim I.

To identify a list of DE genes using SCPattern, we take those genes
whose MLP is not the constant pattern. The constant pattern is defined
as “EE” in Sim I and “EE-EE-EE-EE” in Sim II. Recall that SCPattern
provides a gene-specific PP associated with each expression pattern. The
MLP of gene g is then defined as argmaxk(PP (Patternk)). In Sim II, after
calling a gene as DE, SCPattern classifies the gene into its MLP.

We included SCDE in Sim I evaluations. A gene is called DE by SCDE
if its p-value is less than 0.05. The p-values were calculated from z-scores
provided by the SCDE package. Since SCDE was not designed to classify
genes into directional expression patterns in time course data (and no infor-
mation is provided in their user manual on how to do so), it is not included
in the evaluations of Sim II. To mimic SCDE and illustrate how treat-
ing all zero counts as technical dropouts affects analysis results, we also
implemented SCPattern in a way that only considers the non-zero values
(SCPattern-nonzero). SCPattern-nonzero is implemented in a similar way
to SCPattern. In SCPattern-nonzero, for each gene, prior to further anal-
ysis, we removed cells whose expression value is zero. Therefore, the K-S
statistics are calculated using only the non-zero values in a gene. Similarly,
the permutations are also conducted using the non-zero values exclusively.
SCPattern-nonzero was included in all simulation studies.

We also evaluated an implementation of naive FC methods. For the
naive FC method, denote medtg as the median expression of gene g at time

point t. A gene g is called Up (Down) between t and t+1 if
medt+1

g

medtg
is greater

than (less than) m; otherwise, it is called EE. We considered three values of
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m: 1.2, 1.5, and 2. In Sim II, a gene is defined as DE if it is Up or Down
in any pair-wise comparison.

When evaluating different methods’ performance to detect DE genes, the
power and false discovery rates were calculated as:

Power =
Num(True Positive)

Num(Simulated as DE)

FDR =
Num(False Positive)

Num(Detected as DE)

When evaluating the performance in classifying genes into patterns, we
consider:

Classification accuracyPattern k =
Num(Simulated as k & Detected as k)

Num(Detected as k)

3 Results

3.1 Simulation studies

As described above, two simulation studies were conducted to investigate
the operating characteristics of SCPattern, SCDE, SCPattern-nonzero and
naive FC methods. Table 1 shows the power and FDR for identifying DE
genes in Sim I. In addition to showing the overall power, we also evaluated
the statistical power within gene subgroups with non-zero mean change and
percentage zero change (FDR is not shown for these subgroups because false
discoveries cannot be classified into non-zero mean change or percentage zero
change groups). As shown in Table 1, SCPattern has higher overall power
and better controlled FDR than SCDE and SCPattern-nonzero. This is

Table 1: Operating characteristics for identifying DE genes in Sim I

Power FDR Power (mean
change)

Power (per-
centage 0)

SCPattern 93.2% 0% 89.8% 99.9%

SCDE 64.3% 0.2% 88% 16.8%

SCPattern-nonzero 65.1% 17.5% 92.4% 10.6%

FC (1.2) 94.2% 16.3% 91.3% 100%

FC (1.5) 63.8% 18.6% 45.7% 100%

FC (2) 35.8% 27.9% 3.7% 100%
The first two columns show the average power and FDR for detecting DE
genes in Sim I. Power within the mean change group (2000 genes) and

percentage zero group (1000 genes) are further evaluated in columns 3 and
4. Averages are calculated over 100 simulations.
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Table 2: Operating characteristics for identifying DE genes in Sim II

Power FDR Power (mean
change)

Power (per-
centage 0)

SCPattern 98.7% 2.1% 98% 100%

SCPattern-nonzero 72.4% 5.9% 98.8% 19.7%

FC (1.2) 100% 40.1% 100% 100%

FC (1.5) 80.7% 40% 71.1% 100%

FC (2) 43.0% 48% 14.5% 100%
The first two columns show the average power and FDR for detecting DE
genes in Sim II. Power within the mean change group (2000 genes) and

percentage zero group (1000 genes) are further evaluated in columns 3 and
4. Averages are calculated over 100 simulations.

largely because SCDE and SCPattern-nonzero lack power in identifying DE
genes with percentage zero changes. On the other hand, all three methods
have reasonable power in identifying genes with non-zero mean changes. As
expected, the power and FDR of the naive FC method is very sensitive to
the choice of the cutoff m. When m = 1.2, the naive FC method has highest
overall power among all methods, but an inflated FDR (16.3%). The power
of the naive FC method drops dramatically as m increases. In addition, in
empirical data analyses where underlying truth is unknown, it is not clear
how to pick an appropriate threshold.

Table 2 shows power and FDR for identifying DE genes in Sim II.
Similar to Sim I, SCPattern outperforms SCPattern-nonzero because of its
improved power in identifying genes with percentage zero changes. Com-
pare to other methods, the naive FC method has high FDR in all cases.
We also evaluated SCPattern in classifying DE genes into expression pat-
terns. Figure 4 shows the classification accuracy for the top 10 patterns
simulated in Sim II. As detailed above, the classification accuracy of a pat-
tern k is defined as the percentage of correct classification among genes that
were classified into pattern k. Results in Figure 4 indicate that SCPattern
successfully classified most of the genes into the correct pattern.

SCPattern identifies definitive endoderm differentiation mark-

ers in the human ES cell scRNA-seq dataset

Of interest in our case study, detailed below, is scRNA-seq data from a
differentiation time course experiment from human ES cells to definitive
endoderm cells over a 4 days period (Chu* et al., 2015). Six time points
were considered in this time-course experiment. A total of 758 cells were
sequenced, in which 92, 102, 66, 172, 138 and 188 cells were considered for
analysis at 0h, 12h, 24h, 36h, 72h and 96h, respectively.

We applied SCPattern, SCPattern-nonzero, and naive FC methods on
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Figure 4: The classification accuracy of the top 10 expression pat-
terns in Sim II. Rows represent the simulated patterns and columns rep-
resent classified patterns determined by SCPattern. The color in pixel (i, j)
shows the fraction of genes that were simulated as pattern i and classified
as pattern j. The results shown are averages from 100 simulations.

the scRNA-seq time course data set. A total of 3247, 4581, 9327, 10074
and 10301 genes were identified by SCPattern, SCPattern-nonzero, and FC
method with target FC 2, 1.5 and 1.2, respectively (Supplementary Table
1). Among those genes identified by SCPattern, 883 were not detected by
SCPattern-nonzero (which is designed to mimic existing two condition DE
methods such as SCDE if they could be applied to ordered data). As in
the simulation study, the majority of them are DE genes with percentage
zero changes. Figure 5(a) shows expression violin plots for 5 of these genes.
In Figure 5(a), the left(right) column shows plots that contain(exclude) the
zero counts. All these genes have constant expression levels for the non-zero
cells but the percentage of zero cells changes gradually. Excluding zero cells
in the analysis results in missing these changing genes.

Among the 883 genes exclusively identified by SCPattern, a group of of
them are known to be important to definitive endoderm differentiation. Fig-
ure 6(a) shows eight example genes that were identified by SCPattern but not
SCPattern-nonzero. Among these eight genes, MIXL1, DKK1, EOMES and
PITX2 show an up-regulated trend at the beginning of the differentiation.
Each of these 4 genes is known to be involved in mesendoderm or defini-
tive endoderm cell fate decisions (Faucourt et al., 2001; Costello et al., 2011;
Lim et al., 2009; Lewis et al., 2007). In addition to these four genes, Figure
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Figure 5: Example genes that were exclusively identified by SCPat-
tern or SCPattern-nonzero. Panel (a) shows example genes identified
by SCPattern but not SCPattern-nonzero in the scRNA-seq data studying
definitive endoderm cell differentiation. The left column shows violin plots
of log10 (normalized expression +1). Cells from different time points are
shown in different colors. The right column is similar to the left column,
but only show cells with non-zero expression within a gene. Panel (b) shows
example genes identified by SCPattern-nonzero but not SCPattern in the
case study data.

6(a) shows two HOX genes that follows the EE-EE-EE-Up-EE pattern. The
HOX gene families are known for the establishment of anterior-posterior
patterning along the body axis (Guazzi et al., 1998; Zakany and Duboule,
2007). Furthermore, we found a group of cell cycle genes with a down-
regulated trend at 72h. In particular, cell cycle regulators MYCN and
PLK1 were detected as EE-EE-EE-Down-EE (Figure 6(a)). This indicates
a change of cell-cycle regulation during definitive endoderm cell differenti-
ation (Tan et al., 2013). Additional classification results may be found in
Supplementary Note section 3.

Also of interest are 2217 genes that were identified by SCPattern-nonzero
but not SCPattern. We found that most of these genes have very few ex-
pressed cells. Five example genes among these 2217 are shown in Figure
5(b). Although the expression level of non-zero cells changes over time, the
vast majority of the cells are not expressed. And though these changes in
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Figure 6: Case study results comparing SCPattern and SCPattern-
nonzero. Panel (a) shows eight example genes that were identified by
SCPattern but not SCPattern-nonzero. Each row represents one gene and
the associated MLP is also included in the row name. The gene expression
values were rescaled to gene-specific z-scores. The columns show cells follow-
ing time course order. Within each time point the cells were sorted by their
sample ID. Cells from different time points are marked in different colors.
Panel (b) shows the CDF of percentage expressed cells in genes exclusively
identified by SCPattern and SCPattern-nonzero, respectively.

the minority of expressed cells might represent biological signals, it would
be challenging to perform downstream biological validation on genes with
few expressed cells.

To further investigate the characteristics of the 883 genes exclusively
identified by SCPattern vs. the 2217 genes exclusively identified by SCPattern-
nonzero, we evaluated the percentage of expressed cells for these genes. Fig-
ure 6(b) shows the empirical CDFs of the percentage of expressed cells for
these two groups of genes. The CDFs indicate that nearly half of the 2217
genes exclusively identified by SCPattern-nonzero are expressed in less than
10% of the cells. Among the 883 genes exclusively identified by SCPattern,
all of them are expressed in more than 10% of the cells, and over 80% are
expressed in more than half of the cells. Taken together, these results sug-
gest that SCPattern-nonzero is likely to identify genes who contain a large
proportion of zero cells.

4 Discussion

We have developed SCPattern - a statistical method for characterizing genes
having expression changes in an ordered scRNA-seq experiment. SCPat-
tern is an empirical Bayes model that utilizes the K-S statistic, which
does not rely on any parametrical assumptions. Therefore, it is not lim-
ited with respect to the types of expression changes that may be detected.
Once DE genes are identified, SCPattern further classifies them into direc-
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tional expression patterns. Additional down-stream analyses of DE genes
may then be conducted to characterize sub-populations within a condition
(Feigelman et al., 2014), or to recover the progression trajectory (Trapnell et al.,
2014; Shin et al., 2015).

The SCPattern method is implemented as an R package (R/SCPattern).
We also provide an implementation of a user friendly GUI, which allows
users with little computational knowledge to perform analyses. Simula-
tion and case study results show that SCPattern provides improved power
over SCPattern-nonzero which ignores zero counts in the analyses of or-
dered scRNA-seq experiments. This is mainly because SCPattern has higher
power in identifying genes with percentage zero changes along the ordered
conditions. For studies that exclusively focus on changes in expressed cells,
the SCPattern-nonzero implementation is also available in the R/SCPattern
package and its GUI. Additional investigation of the SCPattern case study
results is detailed in a companion study (Chu* et al., 2015). On the other
side, results also show that the FC method’s performance is very sensitive
to the choice of cutoff, while it is challenging to determine the optimal FC
cutoff in empirical data analysis. Thus, extra cautions might be needed
when detecting DE genes by purely FC thresholding or by combining sta-
tistical tests with FC thresholding (Blakeley et al., 2015; Yan et al., 2013;
Finak et al., 2015).

In this manuscript, we present SCPattern results to classify each tran-
sition into categories Up, Down and EE. However, the SCPattern empirical
Bayes model could be generalized to accommodate other categories of inter-
est. The R/SCPattern package provides several additional options to define
the categories. For example, it is also possible to incorporate a fourth cat-
egory that gene expression distribution changes in both directions (some
cells have increased expression from t to t+1 while the others decrease, see
Supplementary Figure 1 for an example). Although we have rarely seen this
type of change in our case study data, they might be of interest in other
studies. More details may be found in Supplementary Note section 1.
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