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Abstract 
 DNA methylation can be faithfully inherited across generations in flowering plant 
genomes. Failure to properly maintain DNA methylation can lead to epigenetic variation 
and transposon reactivation. Plant genomes are dynamic, spanning large ranges in size 
and there is interplay between the genome and epigenome in shaping one another. To 
understand the variation in genomic patterning of DNA methylation between species, we 
compared methylomes of 34 diverse angiosperm species. By examining these 
variations in a phylogenetic context it becomes clear that there is extensive variation in 
mechanisms that govern gene body DNA methylation, euchromatic silencing of 
transposons and repeats, as well as silencing of heterochromatic transposons. 
Extensive variation is observed at all cytosine sequence contexts (CG, CHG and CHH, 
where H = A, C, T), with the Brassicaceae showing reduced CHG methylation levels 
and also reduced or loss of CG gene body methylation. The Poaceae are characterized 
by a lack or reduction of heterochromatic CHH methylation and enrichment of CHH 
methylation in genic regions. Reduced CHH methylation levels are found in clonally 
propagated species, suggesting that these methods of propagation may alter the 
epigenomic landscape over time, in the absence of sexual reproduction. These results 
show that DNA methylation targeting pathways have diverged functionally and that 
extant DNA methylation patterns are likely a reflection of the evolutionary and life 
histories of plant species. 
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Introduction  
 Biological diversity is established at multiple levels. Historically this has focused 
on studying the contribution of genetic variation. However, epigenetic variations 
manifested in the form of DNA methylation [1-3], histones and histone modifications [4], 
which together make up the epigenome, may also contribute to biological diversity. 
These components are integral to proper regulation of many aspects of the genome; 
including chromatin structure, transposon silencing, regulation of gene expression, and 
recombination [5-7]. Significant amounts of epigenomic diversity are explained by 
genetic variation [2, 3, 8-12], however, a large portion remains unexplained and in some 
cases these variants arise independently of genetic variation and are thus defined as 
“epigenetic” [2, 9-11, 13, 14]. Moreover, epigenetic variants are heritable and also lead 
to phenotypic variation [15-18]. To date, most studies of epigenomic variation in plants 
are based on a handful of model systems. Current knowledge is in particular based 
upon studies in Arabidopsis thaliana, which is tolerant to significant reductions in DNA 
methylation, a feature that enabled the discovery of many of the underlying 
mechanisms. However, A. thaliana, has a particularly compact genome that is not fully 
reflective of angiosperm diversity [19, 20]. The extent of natural variation of mechanisms 
that lead to epigenomic variation in plants, such as cytosine DNA methylation, is 
unknown and understanding this diversity is important to understanding the potential of 
epigenetic variation to contribute to phenotypic variation [21].  

In plants, cytosine methylation occurs in three sequence contexts; CG, CHG, and 
CHH (H = A, T, or C), are under control by distinct mechanisms [22]. Methylation at CG 
(mCG) and CHG (mCHG) sites is typically symmetrical across the Watson and Crick 
strands [23]. mCG is maintained by the methyltransferase MET1, which is recruited to 
hemi-methylated CG sites and methylates the opposing strand [24, 25], whereas mCHG 
is maintained by the plant specific CHROMOMETHYLTRANSFERASE 3 (CMT3) [26], 
and is strongly associated with dimethylation of lysine 9 on histone 3 (H3K9me2) [27]. 
The BAH and CHROMO domains of CMT3 bind to H3K9me2, leading to methylation of 
CHG sites [27]. In turn, the histone methyltransferases KRYPTONITE (KYP), and 
Su(var)3-9 homologue 5 (SUVH5) and SUVH6 recognize methylated DNA and 
methylate H3K9 [28], leading to a self-reinforcing loop [29]. Asymmetrical methylation of 
CHH sites (mCHH) is established and maintained by another member of the CMT 
family, CMT2 [30, 31]. CMT2, like CMT3, also contains BAH and CHROMO domains 
and methylates CHH in H3K9me2 regions [30, 31]. Additionally, all three sequence 
contexts are methylated de novo via RNA-directed DNA methylation (RdDM) [32]. Short-
interfering 24 nucleotide (nt) RNAs (siRNAs) guide the de novo methyltransferase 
DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to target sites [33, 34]. 
The targets of CMT2 and RdDM are often complementary, as CMT2 in A. thaliana 
primarily methylate regions of deep heterochromatin, such as transposons bodies [30]. 
RdDM regions, on the other hand, often have the highest levels of mCHH methylation 
and primarily target the edges of transposons and the more recently identified mCHH 
islands [30, 31, 35]. The mCHH islands in Zea mays are associated with upstream and 
downstream of more highly expressed genes where they may function to prevent 
transcription of neighboring transposons [35, 36]. The establishment, maintenance, and 
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consequences of DNA methylation are therefore highly dependent upon the species and 
upon the particular context in which it is found. 
 Sequencing and array-based methods allow for studying methylation across 
entire genomes and within species [1, 3, 12, 14, 37]. Whole genome bisulfite 
sequencing (WGBS) is particularly powerful, as it reveals genome-wide single 
nucleotide resolution of DNA methylation [38-40]. WGBS has been used to sequence an 
increasing number of plant methylomes, ranging from model plants like A. thaliana [38, 
39] to economically important crops like Z. mays [2, 10, 35, 41]. This has enabled a new 
field of comparative epigenomics, which places methylation within an evolutionary 
context [42-45]. The use of WGBS together with de novo transcript assemblies has 
provided an opportunity to monitor the changes in methylation of gene bodies among 
species [46] but does not provide a full view of changes in the patterns of context-
specific methylation at different types of genomic regions [47].  
 Here, we report a comparative epigenomics study of 34 angiosperms (flowering 
plants). Differences in mCG and mCHG are in part driven by repetitive DNA and 
genome size, whereas in the Brassicaceae there are reduced mCHG levels and 
reduction/losses of CG gene body methylation (gbM). The Poaceae are distinct from 
other lineages, having low mCHH levels and a lineage-specific distribution of mCHH in 
the genome. Additionally, species that have been clonally propagated often have low 
levels of mCHH. Although some features, such as mCHH islands, are found in all 
species, their association with effects on gene expression is not universal. The 
extensive variation found reveals distinct mechanisms between species for how DNA 
methylation is established and maintained in flowering plant genomes. 
 
Results 
 
Genome-wide DNA methylation variation across angiosperms 
 We compared single-base resolution methylomes of 34 angiosperm species that 
have genome assemblies (Table S1). MethylC-seq [39, 48] was used to sequence 26 
species and an additional eight species with previously published methylomes were 
downloaded and reanalyzed [11, 14, 35, 47, 49-51]. Different metrics were used to 
make comparisons at a whole-genome level. The genome-wide weighted methylation 
level [52] gives a single value for each context and each species (Figure 1A-C). The 
proportion that each methylation context makes up of all methylation indicates the 
predominance of specific methylation pathways (Figure 1D). The per-site methylation 
level is a distribution of methylation levels at each individual methylated site (Figure 1E-
G), whereas symmetry is a comparison of per-site methylation levels at cytosines on the 
Watson versus the Crick strand for the symmetrical CG and CHG contexts (Figure S1, 
and S2). These two measures often provide insight into how well methylation is 
maintained [53] and how ubiquitously the sites are methylated across cell types (Figure 
S3). 
 These data revealed that DNA methylation is a major base modification in 
flowering plant genomes. However, there are numerous distinctions in how cytosine 
methylation is used by each species, which reflects the activities of distinct methylation 
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targeting pathways. Within each species, mCG had the highest levels of methylation 
genome-wide (Figure 1A, Table S2). Between species, levels ranged from a low of 
~30.5% in A. thaliana to a high of ~92.5% in Beta vulgaris. NonCG methylation (mCHG 
and mCHH) was far more variable. Levels of mCHG varied as much as ~8 fold between 
species, from only ~9.3% in Eutrema salsugineum to ~81.2% in B. vulgaris (Figure 1B, 
Table S2). mCHH levels were universally the lowest, but also the most variable with as 
much as an ~16 fold difference. The highest being ~18.8% is in B. vulgaris. This was 
unusually high, as 85% of species had less than 10% mCHH and half had less than 5% 
mCHH (Figure 1C, Table S2). The lowest mCHH level was found in Vitis vinifera with 
only ~1.1% mCHH. mCG is the most predominant type of methylation making up the 
largest proportion of the total methylation in all examined species (Figure 1D). B. 
vulgaris was a notable outlier, having the highest levels of methylation in all contexts, 
and having particularly high mCHH levels. Multiple factors may be contributing to the 
differences between species observed, ranging from genome size and architecture, to 
differences in the activity of DNA methylation targeting pathways.  
 We examined these methylomes in a phylogenetic framework, which led to 
several novel findings regarding the evolution of DNA methylation pathways across 
flowering plants. The Brassicaceae, which includes A. thaliana, have lower levels of 
mCHG by all three measures: total methylation (~9.3-22% mCHG), proportion of 
methylation, and per-site methylation (Figure 1B, 1D, 1F). Symmetrical mCHG sites 
have a wider range of methylation levels and increased asymmetry, whereas, non-
Brassicaceae species have very highly methylated symmetrical sites (Figure S2, S3), 
indicating that the CMT3 pathway is more effective in these genomes. E. salsugineum, 
with the lowest mCHG levels, is a natural cmt3 mutant and CMT3 is under relaxed 
selection in other Brassicaceae [54](Bewick, et al in preparation). Methylation of CG 
sites is less well maintained in the Brassicaceae, with Capsella rubella showing the 
lowest levels of per-site mCG methylation. 

Within the Fabaceae, Glycine max and Phaseolus vulgaris, which are in the 
same lineage, show considerably lower per-site mCHH levels as compared to Medicago 
truncatula and Lotus japonicus, even though they have equivalent levels of genome-
wide mCHH (Figure 1C, 1G). The Poaceae, in general, have much lower levels of 
mCHH (~1.4-5.8%), both in terms of total methylation level and as a proportion of total 
methylated sites across the genome. Per-site mCHH level distributions varied, with 
species like Brachypodium distachyon having amongst the lowest of all species, 
whereas others like O. sativa and Z. mays have levels comparable to A. thaliana. In Z. 
mays, CMT2 has been lost [30], and it may be that in other Poaceae, mCHH pathways 
are less efficient even though CMT2 is present. Collectively, these results indicate that 
different DNA methylation pathways may predominate in different lineages, with ensuing 
genome-wide consequences. 
 Several dicot species showed very low levels of mCHH (< 2%): V. vinifera, 
Theobroma cacao, Manihot esculenta (cassava), Eucalyptus grandis. No causal factor 
based on examined genomic features or examined methylation pathways was identified, 
however, these plants are commonly propagated via clonal methods [55]. Amongst non-
Poaceae species, the six lowest mCHH levels were found in species with histories of 
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clonal propagation (Figure S4). Effects of micropropagation on methylation in M. 
esculenta using methylation-sensitive amplified polymorphisms have been observed 
before [56], so has altered expression of methyltransferases due to micropropagation in 
Fragaria x ananassa (strawberry) [57]. To test if clonal propagation was responsible for 
low mCHH, we examined a DNA methylome of a parental M. esculenta plant that 
previously undergone clonal propagation and a DNA methylome of its offspring that was 
germinated from seed. Additionally, the original F. vesca plant used for this study had 
been micropropagated for four generations. We germinated seeds from these plants, as 
they would have undergone sexual reproduction and examined these as well. 
Differences were slight, showing little substantial evidence of genome-wide changes in 
a single generation (Figure S5). Both of these results are based on one generation of 
sexual reproduction. This may be insufficient to fully observe any changes and will 
require further studies of samples collected over multiple generations. 
 
Genome architecture of DNA methylation 
 DNA methylation is often associated with heterochromatin. Two factors can drive 
increases in genome size, whole genome duplication (WGD) events and increases in 
the copy number for repetitive elements.  The majority of changes in genome size 
among the species we examined is due to changes in repeat content as the total gene 
number in these species only varies two-fold, whereas the genome size exhibits ~8.5 
fold change.  As genomes increase in size due to increased repeat content it is 
expected that DNA methylation levels will increase as well.  This was tested using 
phylogenetic generalized least squares [58] (Table S3). Phylogenetic relationships were 
inferred from a species tree constructed using 50 single copy loci (Figure S6) [59]. 
Indeed, positive correlations were found between mCG (p-value < 1.3 x 10-4) and the 
strongest correlation for mCHG and genome size (p-value < 1 x 10-7) (Figure 2A). No 
correlation was observed between mCHH and genome size after multiple testing 
correction (p-value > 0.04) (Figure 2A). A relationship between genic methylation level 
and genome size has been previously reported [46]. We found that within coding 
sequences (CDS) methylation levels were correlated with genome size for both mCHG 
(p-value < 2.3 x 10-7) and mCHH (p-value < 6.6 x 10-7), but not for mCG (p-value > 0.18) 
(Figure 2B). 
 The highest levels of DNA methylation are typically found in centromeres and 
pericentromeric regions [38, 39, 47]. The distributions of methylation at chromosomal 
levels were examined in 100kb sliding windows (Figure 2C, Figure S7). The number of 
genes per window was used as a proxy to differentiate euchromatin and 
heterochromatin. Both mCG and mCHG have negative correlations between 
methylation level and gene number, indicating that these two methylation types are 
mostly found in gene-poor heterochromatic regions (Figure 2D). Most species also 
show a negative correlation between mCHH and gene number, even in species with 
very low mCHH levels like V. vinifera. However, several Poaceae species show no 
correlation or even positive correlations between gene number and mCHH levels. Only 
two grass species showed negative correlations, Setaria viridis and Panicum hallii, 
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which fall in the same lineage (Figure 2D). This suggests that heterochromatic mCHH 
is significantly reduced in many lineages of the Poaceae.  

The methylome will be a composite of methylated and unmethylated regions.  We 
implemented an approach (see Supplementary Methods) to identify methylated regions 
within a single sample to discern the average size of methylated regions and their level 
of DNA methylation for each species in each sequence context (Figure S8). For most 
species, regions of higher methylation are often smaller in size, with regions of low or 
intermediate methylation being larger (Figure S9). More small RNAs, in particular 24 
nucleotide (nt) siRNAs map to regions of higher mCHH methylation (Figure S10). This 
may be because RdDM is primarily found on the edges of transposons whereas other 
mechanisms predominate in regions of deep heterochromatin [30]. Using these results, 
we can make inferences into the architecture of the methylome. 

mCHG and mCHH regions are more variable in both size and methylation levels 
than mCG regions, as little variability in mCG regions was found between species 
(Figure S8). For mCHG regions, the Brassicaceae differed the most having lower 
methylation levels and E. salsugineum the lowest. This fits with E. salsugineum being a 
cmt3 mutant and RdDM being responsible for residual mCHG [54]. However, the sizes 
of these regions are similar to other species, indicating that this has not resulted in 
fragmentation of these regions (Figure S8). The most variability was found in mCHH 
regions. Within the Fabaceae, the bulk of mCHH regions in G. max and P. vulgaris are 
of lower methylation in contrast to M. truncatula and L. japonicus (Figure S8). As these 
lower methylated mCHH regions are larger in size (Figure S9) and less targeted by 24 
nt siRNAs (Figure S10), it would appear that deep heterochromatin mechanisms, like 
those mediated by CMT2, are more predominant than RdDM in these species as 
compared to M. truncatula and L. japonicus. Indeed the genomes of G. max and P. 
vulgaris are also larger than M. truncatula and L. japonicus (Table S2). In the Poaceae, 
we also find that mCHH regions are more highly methylated, even though genome-wide, 
mCHH levels are lower (Figure S8). This indicates that much of the mCHH in these 
genomes comes from smaller regions targeted by RdDM (Figure S9, S10), which is 
supported by RdDM mutants in Z. mays [41]. In contrast, previously discussed species 
like M. esculenta, T. cacao, and V. vinifera had mCHH regions of both low methylation 
and small size which could indicate that effect of all mCHH pathways have been limited 
in these species (Figure S9, S10). 

  
Methylation of repeats 
 Genome-wide mCG and mCHG levels are related to the proliferation of repetitive 
elements. Although the quality of repeat annotations does vary between the species 
studied, correlations were found between repeat number and mCG (p-value = 5 x 10-5) 
and mCHG levels (p-value = 7.5 x 10-3) (Figure 3A, Table S3). This likely also explains 
the correlation of methylation with genome size, as large genomes often have more 
repetitive elements [60, 61]. No such correlation between mCHH levels and repeat 
numbers was found after multiple testing correction (p-value > 0.05) (Figure 3A). This 
was unexpected given that mCHH is generally associated with repetitive sequences. 
Although coding sequence (CDS) mCHG and mCHH correlates with genome size, only 
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CDS mCHG (p-value = 3.8 x 10-2) correlated with the total number of repeats (Figure 
S11A). All methylation contexts, however, were found to be correlated to the percentage 
of genes containing repeats within the gene (exons, introns, and untranslated regions - 
mCG p-value = 2.2 x 10-3, mCHG p-value = 3.6 x 10-4, mCHH p-value = 2 x 10-4) 
(Figure S11B, Table S3), including introns or untranslated regions. In fact, plotting the 
percentage of genes containing repeats against the total number of repeats showed a 
cluster of species possessing fewer genic repeats given the total number of repeats in 
their genomes (Figure S11C). This implies that the transposon load of a genome alone 
does not affect methylation levels in genes, rather, it is more likely a result of the 
distribution of transposons within a genome. 
 Considerable variation exists in methylation patterns within repeats. Across all 
species, repeats were heavily methylated at CG sequences, but were more variable in 
CHG and CHH methylation (Figure 3B). mCHG was typically high at repeats in most 
species, with the exception of the Brassicaceae, in particular E. salsugineum. Similarly, 
low levels of mCHH were found in most Poaceae. Across the body of the repeat, most 
species show elevated levels in all three methylation contexts as compared to outside 
the repeat (Figure 3C, S12). Again, several Poaceae species stood out, as B. 
distachyon and Z. mays showed little change in mCHH within repeats, fitting with the 
observation that mCHH is depleted in deep heterochromatic regions of the Poaceae. 
 
CG gene body methylation 
 Methylation within genes in all three contexts is associated with suppressed gene 
expression [32], whereas genes that are only mCG methylated within the gene body are 
often constitutively expressed genes [62-64]. We classified genes using a modified 
version of the binomial test described by Takuno and Gaut [44] into one of four 
categories: CG gene body methylated (hereafter gbM), mCHG, mCHH, and 
unmethylated (UM) (Table S4). gbM genes are methylated at CG sites, but not at CHG 
or CHH. NonCG contexts are often coincident with mCG, for example RdDM regions are 
methylated in all three contexts. We further classified nonCG methylated genes as 
mCHG genes (mCHG and mCG, no mCHH) or mCHH genes (mCHH, mCHG, and 
mCG). Genes with insignificant amounts of methylation were classified as 
unmethylated.  
 Between species, the methylation status of gbM can be conserved across 
orthologs [45]. The methylation state of orthologous genes across all species was 
compared using A. thaliana as an anchor (Figure 4A). A. lyrata and C. rubella are the 
most closely related to A. thaliana and also have the greatest conservation of 
methylation status, with many A. thaliana gbM gene orthologs also being gbM genes in 
these species (~86.3% and ~79.8% of A. thaliana gbM genes, respectively). However, 
they also had many gbM genes that had unmethylated A. thaliana orthologs (~ 18.6% 
and ~13.9% of A. thaliana genes, respectively). Although gbM is generally “conserved” 
between species, this conservation breaks down over evolutionary distance with gains 
and losses of gbM in different lineages. In terms of total number of gbM genes, M. 
truncatula and Mimulus guttatus had the greatest number (Table S2). However, when 
the percentage of gbM genes in the genome is taken into account (Figure 4A), M. 
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truncatula appeared similar to other species, whereas M. guttatus remained an outlier 
with ~60.7% of all genes classified as gbM genes. The reason why M. guttatus has 
unusually large numbers of gbM loci is unknown and will require further investigation. In 
contrast, there has been considerable loss of gbM genes in Brassica rapa, and Brassica 
oleracea and a complete loss in E. salsugineum. This suggests that over longer 
evolutionary distance, the methylation status of gbM varies considerably and is 
dispensable as it is lost entirely in E. salsugineum. 
 gbM is characterized by a sharp decrease of methylation around the 
transcriptional start site (TSS), increasing mCG throughout the gene body, and a sharp 
decrease at the transcriptional termination site (TTS) [63, 64]. gbM genes identified in 
most species show this same trend and even have comparable levels of methylation 
(Figure 4B, S13). Here, too, the decay and loss of gbM in the Brassicaceae is observed 
as B. rapa and B. oleracea have the second and third lowest methylation levels, 
respectfully in gbM genes and E. salsugineum shows no canonical gbM having only a 
few genes that passed statistical tests for having mCG in gene bodies. As has 
previously been found [63, 64], gbM genes are more highly expressed as compared to 
UM and nonCG (mCHG and mCHH) genes (Figure 4C, S14). The exception to this is 
E. salsugineum where gbM genes have almost no expression. A subset of unexpressed 
genes with mCG methylation was found, and in some cases, had higher mCG 
methylation around the TSS (mCG-TSS). Using previously identified mCG regions we 
identified genes with mCG overlapping the TSS, but lacking either mCHG or mCHH 
regions within or near genes. These genes had suppressed expression (Figure 4C, 
S14) showing that although mCG is not repressive in gene-bodies, it can be when found 
around the TSS.  
 gbM genes are known to have many distinct features in comparison to UM 
genes. They are typically longer, have more exons, the observed number of CG 
dinucleotides in a gene are lower than expected given the GC content of the gene 
([O/E]), and they evolve more slowly [44, 45]. We compared gbM genes to UM genes 
for each of these characteristics, using A. thaliana as the base for pairwise comparison 
for all species except the Poaceae where O. sativa was used (Table S5). With the 
exception of E. salsugineum, which lacks canonical gbM, these genes were longer and 
had more exons than UM genes (Table S5). Most gbM genes also had a lower CG 
[O/E] than UM genes, except for six species, four of which had a greater CG [O/E]. 
These included both M. guttatus and M. truncatula, which had the greatest number of 
gbM genes of any species. Recent conversion of previously UM genes to a gbM status 
could in part explain this effect. Previous studies have shown that gbM orthologs 
between A. thaliana and A. lyrata [44] and between B. distachyon and O. sativa [45] are 
more slowly evolving than UM orthologs. Although this result holds up over short 
evolutionary distances, it breaks down over greater distances with gbM genes typically 
evolving at equivalent rates as UM and, in some cases, faster rates (Table S5). 
 
NonCG methylated genes 
 NonCG methylation exists within genes and is known to suppress gene 
expression [15, 17, 65-67]. Although differences in annotation quality could lead to 
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some transposons being misannotated as genes and thus as targets of nonCG 
methylation, within-species epialleles demonstrates that significant numbers of genes 
are indeed targets [3, 11]. In many species there were genes with significant amounts of 
mCHG and little to no mCHH. High levels of mCHG within Z. mays genes is known to 
occur, especially in intronic sequences due in part to the presence of transposons [68]. 
Based on this difference in methylation, mCHG and mCHH genes were maintained as 
separate categories (Table S4). The methylation profiles of mCHG and mCHH genes 
often resembled that of repeats (Figure 5A, S13). Both mCHG and mCHH genes are 
associated with reduced expression levels (Figure 5B, S13). As mCHG methylation is 
present in mCHH genes, this may indicate that mCHG alone is sufficient for reduced 
gene expression. It was also observed that Cucumis sativus has an unusual pattern of 
mCHH in many highly expressed genes, although the result did not replicate after 
sequencing a second independent C. sativus sample (Figure S15). The number of 
genes possessing nonCG types of methylation ranged from as low as ~3% of genes (M. 
esculenta) to as high as ~32% of genes (F. vesca) (Figure 5C). In all the Poaceae, 
mCHG genes made up at least ~5% of genes and typically more. In contrast, mCHG 
genes were relatively rare in the Brassicaceae where mCHH genes were the 
predominant type of nonCG genes. In most of the clonally propagated species with low 
mCHH, there were typically few mCHH genes and more mCHG genes with the 
exception of F. vesca.  
 Unlike gbM genes, there was no conservation of methylation status across 
orthologs of mCHG and mCHH genes (Figure S16). For many nonCG methylated 
genes, orthologs were not identified based on our approach of reciprocal best BLAST 
hit. For example, orthologs were found for only 488 of 999 of A. thaliana mCHH genes 
across all species. Previous comparisons of A. thaliana, A. lyrata, and C. rubella have 
shown no conservation of nonCG methylation between orthologs within the 
Brassicaceae [47]. However, we did observe some conservation based on gene 
ontology (GO). The same GO terms were often enriched in multiple species (Figure 
S17, Table S6). The most commonly enriched terms were involved in processes such 
as proteolysis, cell death, and defense responses; processes that could have profound 
effects on normal growth and development and may be developmentally or 
environmentally regulated. There was also enrichment in many species for genes 
related to electron-transport chain processes, photosynthetic activity, and other 
metabolic processes. Further investigation of these genes revealed that many are 
orthologs to chloroplast or mitochondrial genes, suggesting that they may be recent 
transfers from the organellar genome. The transfer of organellar genes to the nucleus is 
a frequent and ongoing process [69, 70]. Although DNA methylation is not found in 
chloroplast genomes, transfer to the nucleus places them in a context where they can 
be methylated, contributing to the mutational decay of these genes via deamination of 
methylated cytosines [71]. 
 
mCHH islands 
 In Z. mays, high mCHH is enriched in the upstream and downstream regions of 
highly expressed genes and are termed mCHH islands [35, 36]. We identified mCHH 
islands 2kb upstream and downstream of annotated genes for each species, finding that 
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the percentage of genes with such regions varied considerably across species (Figure 
6A) the fewest being in V. vinifera, B. oleracea, and T. cacao, each having mCHH 
islands associated with less than 2% of genes. As both V. vinifera and T. cacao have 
low genome-wide mCHH levels, this may explain the difference, however, this is not the 
case for B. oleracea.  mCHH islands are thought to mark euchromatin-heterochromatin 
boundaries and are often associated with transposons, however, we found no 
correlation between the total number of repeats in the genome and the number of genes 
with mCHH islands (Figure S18A, Table S3). As in the case of CDS methylation levels, 
this lack of correlation was largely due to differences in the distribution of repeats 
(Figure S18B, Table S3). When correlated to the percentage of genes with repeats 2kb 
upstream or downstream, both upstream and downstream mCHH islands are correlated 
(upstream p-value = 7.9 x 10-6, downstream p-value < 8.1 x 10-6) (Figure 6B). B. 
oleracea in particular stood out as having few repeats in 2kb upstream or downstream 
of genes, explaining in part why it possess so few mCHH islands, despite its large 
genome and overall number of repeats.  
 In Z. mays, mCHH islands are more common in genes in the most highly 
expressed quartiles [35, 36]. This is true of several species, such as P. persica and all 
the Poaceae (Figure 6C and S19). However, many species showed no significant 
association between mCHH islands and gene expression (Figure 6C and S19). This 
was true for all the Brassicaceae. Other species such as M. guttatus, despite having 
high levels of mCHH islands associated with genes like the Poaceae (~46% upstream, 
~40% downstream), also showed no association with gene expression (Figure 6C). As 
has been observed previously in Z. mays, mCG and mCHG levels are generally higher 
on the distal side of the mCHH island to the gene (Figure 6D and S20), marking a 
boundary of euchromatin and heterochromatin [36]. However, this difference in 
methylation level is much less pronounced in most other species as compared to Z. 
mays and much less evident for downstream mCHH islands than for upstream ones 
(Figure S20). These may indicate different preferences in transposon insertion sites or 
a need to maintain a boundary of heterochromatin near the start of transcription.  
 
Discussion 
 We present the methylomes of 34 different angiosperm species in a phylogenetic 
framework using comparative epigenomics, which enables the study of DNA 
methylation in an evolutionary context. Extensive variation was found between species, 
both in levels of methylation and distribution of methylation, with the greatest variation 
being observed in nonCG contexts. The Brassicaceae show overall reduced mCHG 
levels and reduced numbers of gbM genes, leading to a complete loss in E. 
salsugineum, that is associated with loss of CMT3 [54]. Whereas in the Poaceae, 
mCHH levels are typically lower than that in other species. The Poaceae have a distinct 
epigenomic architecture compared to eudicots, with mCHH often depleted in deep 
heterochromatin and enriched in genic regions. We also observed that many species 
with a history of clonal propagation have lower mCHH levels. Epigenetic variation 
induced by propagation techniques can be of agricultural and economic importance [72], 
and understanding the effects of clonal propagation will likely future studies over 
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multiple generations. Evaluation of per-site methylation levels, methylated regions, their 
structure, and association with small RNAs indicates that there are differences in the 
predominance of various molecular pathways. 
 Variation exists within features of the genome. Repeats and transposons show 
variation in their methylation level and distribution with impacts on methylation within 
genes and regulatory regions. Although gbM genes do show many conserved features, 
this breaks down with increasing evolutionary distance and as gbM is gained or lost in 
some species. gbM is known to be absent in the basal plant species Marchantia 
polymorpha [46] and Selaginella moellendorffii [43]. That it has also been lost in the 
angiosperm E. salsugineum, indicates that it is dispensable over evolutionary time. That 
nonCG methylation shows no conservation at the level of individual genes, indicates 
that it is gained and lost in a lineage specific manner. It is an open question as to the 
evolutionary origins of nonCG methylation within genes. That these are correlated to 
repetitive elements in genes suggests transposons as one possible factor. That many 
nonCG genes lack orthologous genes could indicate a preferential targeting of de novo 
genes, as in the case of the QQS gene in A. thaliana [18]. At a higher order level, there 
appears to be a commonality in what categories of genes are targeted, as many of the 
similar functions are enriched across species. Other features, such as mCHH islands, 
also are not conserved and show extensive variation that is associated with the 
distribution of repeats upstream and downstream of genes. 
 This study demonstrates that widespread variation in methylation exists between 
flowering plant species. For many species, this is the first reported methylome and 
methylome browsers for each species have been made available to serve as a resource 
(http://schmitzlab.genetics.uga.edu/plantmethylomes). Historically, our understanding 
has come primarily from A. thaliana, which has served as a great model for studying the 
mechanistic nature of DNA methylation. However, the extent of variation observed 
previously [46, 47] and now shows that there is still much to be learned about underlying 
causes of variation in this molecular trait. Due to its role in gene expression and its 
potential to vary independently of genetic variation, understanding these causes will be 
necessary to a more complete understanding of the role of DNA methylation underlying 
biological diversity.  
 
Methods 
 
MethylC-seq and analysis 
 DNA was isolated from leaf tissue and MethylC-seq libraries for each species 
were prepared as previously described [48]. Previously published datasets were 
obtained from public databases and reanalyzed [11, 14, 35, 47, 49-51, 54]. Genome 
sequences and annotations for most species were downloaded from Phytozome 10.1 
(http://phytozome.jgi.doe.gov/pz/portal.html) [73]. The L. japonicus genome was 
downloaded from the Lotus japonicus Sequencing Project 
(http://www.kazusa.or.jp/lotus/)[74], the B. vulgaris genome was downloaded from Beta 
vulgaris Resource (bvseq.molgen.mpg.de/)[75], and the C. sativa genome from C. 
sativa (Cannabis) Genome Browser Gateway (http://genome.ccbr.utoronto.ca/cgi-
bin/hgGateway) [76]. As annotations for S. viridis were not available, gene models from 
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the closely related S. italica were mapped onto the S. viridis genome using Exonerate 
[77]. 

Sequencing data for each species was aligned to their respective genome (Table 
S1) and methylated sites called using previously described methods [78]. In brief, reads 
were trimmed for adapters and quality using Cutadapt [79] and then mapped to both a 
converted forward strand (all cytosines to thymines) and converted reverse strand (all 
guanines to adenines) using bowtie [80]. Reads that mapped to multiple locations and 
clonal reads were removed. The non-conversion rate (rate at which unmethylated 
cytosines failed to be converted to uracil) was calculated by using reads mapping to the 
lambda genome or the chloroplast genome if available (Table S1). Cytosines were 
called as methylated using a binomial test using the non-conversion rate as the 
expected probability followed by multiple testing correction using Benjamini-Hochberg 
False Discovery Rate (FDR). A minimum of three reads mapping to a site was required 
to call a site as methylated. Data are available at the Plant Methylome DB 
http://schmitzlab.genetics.uga.edu/plantmethylomes.  
 
Phylogenetic Tree 
 A species tree was constructed using BEAST2 [81] on a set of 50 previously 
identified single copy loci [59]. Protein sequences were aligned using PASTA [82] and 
converted into codon alignments using custom Perl scripts. Gblocks [83] was used to 
identify conserved stretches of amino acids and then passed to JModelTest2 [84, 85] to 
assign the most likely nucleotide substitution model. 
 
Genome-wide analyses 
 Genome-wide weighted methylation was calculated from all aligned data by 
dividing the total number of aligned methylated reads to the genome by the total number 
of methylated plus unmethylated reads [52]. Correlations between methylation levels, 
genome sizes, and gene numbers were done in R and corrected for phylogenetic signal 
using the APE [ 86], phytools [87], and NLME packages. In total, 22 comparisons were 
conducted (Table S3) and a p-value < 0.05 after Bonferroni Correction. Distribution of 
methylation levels and genes across chromosomes was conducted by dividing the 
genome into 100 kb windows, sliding every 50 kb using BedTools and custom scripts. 
Pearson’s correlation between gene number and methylation level in each window was 
conducted in R. Weighted methylation levels for each repeat were calculated using 
custom python and R scripts.  
 
Methylated-regions 
 Methylated regions were defined independent of genomic feature by methylation 
context (CG, CHG, or CHH) using BEDTools [88] and custom scripts. For each context, 
only methylated sites in that respective context were considered used to define the 
region. The genome was divided into 25bp windows and all windows that contained at 
least one methylated cytosine in the context of interest were retained. 25bp windows 
were then merged if they were within 100 bp of each other, otherwise they were kept 
separate. The merged windows were then refined so that the first methylated cytosine 
became the new start position and the last methylated cytosine new end position. 
Number of methylated sites and methylation levels for that region was then recalculated 
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for the refined regions. A region was retained if it contained at least five methylated 
cytosines and then split into one of four groups based on the methylation levels of that 
region: group 1, < 0.05%, group 2, 5-15%, group 3, 15-25%, group 4, > 25%. Size of 
methylated regions were determined using BedTools.  
  
Small RNA (sRNA) cleaning and filtering 
 Libraries for B. distachyon, C. sativus, E. grandis, E. salsugineum, M. truncatula, 
P. hallii, and R. communis were constructed using the TruSeq Small RNA Library 
Preparation Kit (Illumina Inc). Small RNA-seq datasets for additional species were 
downloaded from GEO and the SRA and reanalyzed [14, 49, 50, 89-91]. The small RNA 
toolkit from the UEA computational Biology lab was used to trim and clean the reads 
[92]. For trimming, 8 bp of the 3’ adapter was trimmed. Trimmed and cleaned reads 
were aligned using PatMan allowing for zero mismatches [93]. BedTools [88] and 
custom scripts were used to calculate overlap with mCHH regions. 
 
Gene-level analyses 
 Genes were classified as mCG, mCHG, or mCHH by applying a binomial test to 
the number of methylated sites in a gene [44]. The total number of cytosines and the 
methylated cytosines were counted for each context for the coding sequences (CDS) of 
the primary transcript for each gene. A single expected methylation rate was estimated 
for all species by calculating the percentage of methylated sites for each context from all 
sites in all coding regions from all species. We restricted the expected methylation rate 
to only coding sequences as the species study differ greatly in genome size, repeat 
content, and other factors that impact genome-wide methylation. Furthermore, it is 
known that some species have an abundance of transposons in UTRs and intronic 
sequences, which could lead to misclassification of a gene. A single value was 
calculated for all species to facilitate comparisons between species and to prevent 
setting the expected methylation level to low, as in the case of E. salsugineum or to 
high, as in the case of B. vulgaris, which would further lead to misclassifications.  
 A binomial test was then applied to each gene for each sequence context and q-
values calculated by adjusting p-values by Benjamini-Hochberg FDR. Genes were 
classified as mCG if they had reads mapping to at least 20 CG sites and has q-value < 
0.05 for mCG and a q-value > 0.05 for mCHG and mCHH. Genes were classified as 
mCHG if they had reads mapping to at least 20 CHGs, a mCHG q-value < 0.05, and a 
mCHH q-value > 0.05. As mCG is commonly associated with mCHG, the q-value for 
mCG was allowed to be significant or insignificant in mCHG genes. Genes were 
classified as mCHH if they had reads mapping to at least 20 mCHH sites and a mCHH 
q-value < 0.05. Q-values for mCG and mCHG were allowed to be anything as both 
types of methylation are associated with mCHH. mCG-TSS genes were identified by 
overlap of mCG regions with the TSS of each gene and the absence of any mCHG or 
mCHH regions within the gene or 1000 bp upstream or downstream. 
 GO terms for each gene were downloaded from phytozome 10. 1 
(http://phytozome.jgi.doe.gov/pz/portal.html) [73]. GO term enrichment was performed 
using the parentCHILD algorithm [94] with the F-statistic as implemented in the topGO 
module in R. GO terms were considered significant with a q-value < 0.05.  
  
Exon number, gene length and [O/E].  
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 For each species the general feature format 3 (gff3) file from phytozome 10.1 
(http://phytozome.jgi.doe.gov/pz/portal.html) [73] was used to determine exon number 
and coding sequence length (base pairs, bp) for each annotated gene (hereafter 
referred to as CDS). Additionally, for each full length CDS (starting with the start codon 
ATG, and ending with one of the three stop codons TAA/TGA/TAG), from the 
phytozome 10.1 primary CDS fasta file, the CG [O/E] ratio was calculated, which is the 
observed number of CG dinucleotides relative to that expected given the overall G+C 
content of a gene. Differences for these genic features between CG gbM and UM genes 
were assessed using permutation tests (100,000 replicates) in R, with the null 
hypothesis being no difference between the gbM and UM methylated genes. 
 
Identifying orthologs and estimating evolutionary rates.  
 Substitution rates were calculated between CDS pairs of monocots to Oryza 
sativa, and dicots to A. thaliana. Reciprocal best BLAST with an e-value cutoff of ≤1E-
08 was used to identify orthologs between dicot-A. thaliana, and monocot-O. sativa 
pairs. Individual CDS pairs were aligned using MUSCLE, insertion-deletion (indel) sites 
were removed from both sequences, and the remaining sequence fragments were 
shifted into frame and concatenated into a contiguous sequence. A ≥30 bp and ≥300 bp 
cutoff for retained fragment length after indel removal, and concatenated sequence 
length was implemented, respectively. Coding sequence pairs were separated into each 
combination of methylation (i.e., CG gbM-CG gbM, and UM-UM). The yn00 (Yang-
Neilson) [95] model in the program PAML (Phylogenetic Analysis by Maximum 
Likelihood) for pairwise sequence comparison was used to estimate synonymous and 
non-synonymous substitution rates, and adaptive evolution (dS, dN, and ω, 
respectively) [96]. Differences in rates of evolution between methylated and 
unmethylated pairs were assessed using permutation tests (100,000 replicates) in R, 
with the null hypothesis being no difference between the CG gbM and UM methylated 
genes. 
 
RNA-seq mapping and analysis 
 RNA-seq datasets [11, 14, 47, 49, 54, 89, 91, 97-102] were downloaded from the 
Gene Expression Omnibus (GEO) and the NCBI Short Read Archive (SRA) for 
reanalysis. B. distachyon and C. sativus RNA-seq libraries were constructed using 
Illumina TruSeq Stranded mRNA Library Preparation Kit (Illumina Inc.) and sequenced 
on a NextSeq500 at the Georgia Genomics Facility. Reads were aligned using Tophat 
v2.0.13 [103] supplied with a reference genome feature file (GFF) with the following 
arguments -I 50000 --b2-very-sensitive --b2-D 50. Transcripts were then quantified 
using Cufflinks v2.2.1 [104] supplied with a reference GFF.  
 
mCHH islands 
 mCHH islands were identified for both upstream and downstream regions as 
previously described [36]. Briefly, methylation levels were determined for 100bp 
windows across the genome. Windows of 25% or greater mCHH either 2 kb upstream 
or downstream of genes were identified and intersecting windows of that region were 
retained. Methylation levels were then plotted centered on the window of highest 
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mCHH. Genes associated with mCHH islands were categorized as non-expressed (NE) 
or divided into one of four quartiles based on their expression level. 
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Figure legends 
 
Figure 1: Genome-wide methylation levels for (A) mCG, (B) mCHG, (C) and mCHH. (D) 
Using the genome-wide methylation levels, the proportion that each context contributes 
towards the total methylation (mC) was calculated. (E) The distribution of per-site 
methylation levels for mCG, (F) mCHG, (G) and mCHH. Species are organized 
according to their phylogenetic relationship. 
 
Figure 2: (A) Genome-wide methylation levels are correlated to genome size for mCG 
(blue) and mCHG (green), but not for mCHH (maroon) Significant relationships 
indicated. (B) Coding region (CDS) methylation levels is not correlated to genome size 
for mCG (blue), but is for mCHG (green), and mCHH (maroon). Significant relationships 
indicated. (C) Chromosome plots show the distribution of mCG (blue), mCHG (green), 
and mCHH (maroon) across the chromosome (100kb windows) in relationship to genes. 
(D) For each species, the correlation (Pearson’s correlation) in 100kb windows between 
gene number and mCG (blue), mCHG (green), and mCHH (maroon). 
 
Figure 3: (A) Genome-wide methylation levels were correlated with repeat number for 
mCG (blue) and mCHG (green), but not for mCHH (maroon). Significant relationships 
indicated. (B) Distribution of methylation levels for repeats in each species. (C) Patterns 
of methylation upstream, across, and downstream of repeats for mCG (blue), mCHG 
(green), and mCHH (maroon). 
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Figure 4: (A) Heatmap showing methylation state of orthologous genes (horizontal axis) 
to A. thaliana for each species (vertical axis). Species are organized according to 
phylogenetic relationship. (B) Percentage of genes in each species that are gbM. The 
Brassicacea are highlighted in gold. (C)  The levels of mCG in upstream, across, and 
downstream of gbM genes for all species. Species in gold belong to the Brassicaceae 
and illustrate the decreased levels and loss of mCG. (D) gbM genes are more highly 
expressed, while mCG over the TSS (mCG-TSS) has reduced gene expression. 
 
Figure 5: (A) Methylation levels for mCG (blue), mCHG (green), and mCHH (maroon) 
were plotted upstream, across, and downstream of mCHG and mCHH genes. (B) Gene 
expression of mCHG and mCHH genes versus all genes. (C) The percentage of mCHG 
and mCHH genes per species. Species are arranged by phylogenetic relationship. 
 
Figure 6: (A) Percentage of genes with mCHH islands 2kb upstream or downstream. 
(B) Upstream and downstream mCHH islands are correlated with upstream and 
downstream repeats (respectively). Significant relationships indicated. (C) Association 
of upstream mCHH islands with gene expression. Genes are divided into non-
expressed (NE) and quartiles of increasing expression. (D) Patterns of upstream mCHH 
islands. Blue, green, and red lines represent mCG, mCHG and mCHH levels, 
respectively.  
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