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Abstract

The case-control association study is a powerful method for identifying genetic variants that influence dis-

ease risk. However, the collection of cases can be time-consuming and expensive; in some situations it is

more practical to identify family members of cases. We show that replacing cases with their first-degree

relatives enables genome-wide association studies by proxy (GWAX). In randomly-ascertained cohorts, this

approach enables previously infeasible studies of diseases that are rare in the cohort, and can increase power

to detect association by up to 30% for diseases that are more common in the cohort. As an illustration,

we performed GWAX of 12 common diseases in 116,196 individuals from the UK Biobank. By combining

these results with published GWAS summary statistics in a meta-analysis, we replicated established risk loci

and identified 17 newly associated risk loci: four in Alzheimer’s disease, eight in coronary artery disease,

and five in type 2 diabetes. In addition to informing disease biology, our results demonstrate the utility of

association mapping using family history of disease as a phenotype to be mapped. We anticipate that this

approach will prove useful in future genetic studies of complex traits in large population cohorts.
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Introduction

In a typical case-control genetic association study, a researcher genotypes a set of individuals that have a

disease (the “cases”) and a set of individuals that do not have the disease (the “controls”). For each genetic

variant, the difference in allele frequency between cases and controls can be used to estimate the causal

effect of the genetic variant on the disease (assuming all potential confounders have been accounted for).

While powerful, this study design requires an a priori decision about which disease is of interest, as well as

substantial effort to identify matched cases and controls. An alternative approach is a cohort study, in which

individuals are sampled from the general population and many phenotypes are collected on each individual.

An advantage of a cohort study is that the cohort can be subdivided to create case-control studies of many

different diseases.

However, cohort studies are limited by the fact that diseases that are rare in the sampled population will

be under-represented in the cohort. A disease may be rare in a sampled population for many reasons. First,

the population may not include the demographic group where the disease is most prevalent. For example,

the UK Biobank (a current gold standard cohort study) sampled individuals in the age range of 45-69 (at the

time of recruitment) [Sudlow et al., 2015]. By definition, this cohort does not include individuals with lethal

childhood diseases, and at present there are only a handful of individuals with Alzheimer’s disease or other

late-onset diseases. Other sampling approaches, like cohorts made from customers of consumer genomics

companies (e.g. Eriksson et al. [2010], DNA.Land), have analogous limitations. Similarly, a disease may

be rare in a sampled population because of aspects of the disease rather than the cohort: diseases that occur

rarely (or kill quickly once they occur) will be rare in a randomly ascertained cohort. Further, diseases

that are highly sex-biased (e.g. prostate cancer) will have considerably lower frequencies in a randomly-

ascertained cohort than in a targeted one.

In this paper, we propose performing case-control studies where cases are replaced with their family

members. This study design is popular in studies of longevity (where “cases” are long-lived individuals,

see e.g. Barzilai et al. [2003]; Pilling et al. [2016]; Tan et al. [2010]), but has not been widely used in other

situations. As a motivating example, consider Alzheimer’s disease. As of March 25, 2016, there are 55 cases

of Alzheimer’s disease listed among the approximately 500,000 individuals in the UK Biobank. However,

over 60,000 individuals note that one or both of their parents was/is affected with the disease. An individual

with a single affected parent can be thought to have one chromosome sampled from a population of “cases”

and one from “controls”. If the allele frequency (in the standard case-control setting) of some variant that

increases risk of a disease is fA in cases and fU in controls, then the allele frequency in individuals with a

single affected parent is fU+ fA
2 . This motivates a “proxy-case”-control association study where “proxy-cases”

are the (unaffected) relatives of affected individuals and “controls” are (unaffected) relatives of unaffected

individuals. We refer to this approach as a Genome-Wide Association study by proXy (GWAX).
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Results

We first explored the power of this approach with simulations and analytical calculations. Specifically,

we focused on the situation where we have information about the diseases of the parents of an individual

(Methods). We initially considered the case where we have no phenotype information about genotyped

individuals themselves, though we consider this case later on.

The GWAX approach using proxy-cases who have one affected first-degree relative reduces the log odds

ratios by a factor of around two when compared with a traditional case/control design (assuming an additive

model for the impact of a genetic variant on a disease). This reduction in effect size reduces power to detect

association. However, using proxy-cases may increase the effective sample size (in a cohort study) or be

more logistically feasible than collecting standard cases, thus offsetting the loss in power due to effect size.

We calculated the number of proxy-cases and controls required such that the power to detect association is

equivalent to using true cases and controls (Supplementary Note). Across the allele frequency and effect

size spectrum, the proxy-case/control approach is more powerful when there are ∼ 4 times (or more) as

many proxy-cases and controls as there are true cases and controls, assuming the ratios of controls to cases

and controls to proxy-cases are the same (Figure 1A). For late onset diseases such as Alzheimer’s disease

(1.6% in the population vs. 42% in those over the age of 84 [Hebert et al., 2003]) and Parkinson’s disease

(0.3% in the population vs. 4% in those over 80 [de Lau and Breteler, 2006]), the proxy-case/control design

gains substantial power if cohorts are sampled randomly from the population.

When both true and proxy-cases are available in a population cohort study, there may be up to a 30%

gain in power to detect association (compared with a case/control study) when proxy-cases are accounted for,

either by lumping them together with true-cases or considering them separately (Figure 1B, Supplementary

Note). For instance, for a disease with 5% prevalence and 50% heritability on the liability scale, we expect

to observe 5,000 cases and 8,597 proxy-cases in a randomly sampled cohort of 100,000. Here, for a SNP

with allele frequency 0.1 in controls, an odds ratio of 1.2, there is 60.2% power at α = 5× 108 to detect

association using a standard 2× 2 chi-squared test of true cases vs. controls, 87.2% power using a 2× 2

test where cases and proxy-cases are lumped together, and 89.8% power using a 3×2 test where true cases,

proxy-cases and controls are treated separately (Supplementary Note). When disease prevalence is greater

than around 34%, the test where cases and proxy-cases are lumped together is less powerful than a standard

case/control test since there are no further gains in effective sample size. Nevertheless, the 3× 2 test will

always be more powerful than the case/control test across disease prevalences (see Supplementary Note for

details).

We performed GWAX of 12 diseases in the UK Biobank (May 2015 Interim Release). After qual-

ity control and 1000 Genomes Phase 3 imputation (Methods), 10.5 million low-frequency and common

(MAF > 0.005) SNPs from 116,196 individuals of European ancestry were available for analysis. All of

these individuals answered questionnaires regarding the diseases of their family members (though the med-
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Figure 1. Power of proxy-case/control association designs. (A) Total sample size required to detect associa-
tion at α = 5×10−8 for case/control (black line) and proxy-case/control (red line) designs at a SNP with 0.1
frequency in controls. (B) Power to detect association at α = 5× 10−8 using two designs that account for
cases and proxy-cases (in red and blue) and a standard case-only/control design (in black). The total sample
size = 100,000, disease prevalence = 0.1, heritability of liability = 0.5 and allele frequency in controls = 0.1
(See Supplementary Note).

ical records of the individuals themselves are available, we did not use them in this analysis in order to

illustrate the approach without using cases). The number of proxy-cases per phenotype ranged from 4,627

for Parkinson’s disease to 54,714 for high blood pressure (Table S1). For each SNP, we calculated an ad-

justed odds ratio (OR), which is directly comparable (under a standard additive model) with ORs estimated

from traditional case/control study designs (Methods) (Figure S1). The overall association results across the

12 phenotypes are shown in Manhattan plots, which show several clear peaks of association (Figure S2).

In the GWAX of these 12 diseases, 24 loci reached “genome-wide significance” (P < 5× 10−8). For

Alzheimer’s disease, breast cancer, heart disease, high blood pressure, lung cancer, prostate cancer and

type 2 diabetes, all of these represented replications of established associations (Table S3). Among the most

strongly associated loci include APOE (rs429358, P = 9.72×10−195) for Alzheimer’s disease [Corder et al.,

1993], LPA (rs10455872, P = 2.55× 10−25) and CDKN2A/CDNKN2B (rs4007642, P = 7.64× 10−21) for

heart disease/coronary artery disease [Danesh et al., 2000; The Wellcome Trust Case Control Consortium

et al., 2007], FES/FURIN (rs8027450, P = 6.12× 10−13) for high blood pressure/hypertension [The In-

ternational Consortium for Blood Pressure Genome-Wide Association Studies, 2011], FGFR2 (rs2981583,

P = 3.62× 10−12) for breast cancer [Hunter et al., 2007], TCF7L2 (rs34872471, P = 7.76× 10−45) for

type 2 diabetes [Grant et al., 2006], and CHRNA5/CHRNA3 (rs5813926, P = 1.67× 10−9 for lung cancer

[Hung et al., 2008]. We identified two genome-wide significant loci for Parkinson’s disease, one of which

corresponds to the established ASH1L locus (rs35777901, P = 2.25×10−8) [Nalls et al., 2014]. The second
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Figure 2. Comparison of adjusted ORs and previously reported case/control ORs at established risk loci for
three diseases with publicly available summary statistics. Each point represents a previously reported risk
variant and its corresponding effect size. The dashed gray lines are 95% confidence intervals. The dashed
red line (and corresponding slope) is the fitted line from least squares regression. The dashed black line is
is y = x. Reported effect sizes and list of established risk loci were obtained from - Alzheimer’s disease:
Lambert et al. [2013]; coronary artery disease: The CARDIoGRAMplusC4D Consortium [2015]; type 2
diabetes: DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium et al. [2014].

locus at SLIT3 (rs1806840, P = 6.39×10−9) is implicated in Parkinson’s disease risk at genome-wide sig-

nificance for the first time, although this SNP is reported as “non-significant” (P > 0.05, see URLs) in Nalls

et al. [2014] so we do not discuss it further.

In principle, the adjusted odds ratios obtained from a proxy-case/control design might differ from those

obtained from a standard case/control design for a number of reasons. For example, dominance effects will

distort these ORs in different ways in the two study designs. Likewise, errors made by children in recalling

the diseases of their parents would bias our estimates, as would direct causal effects of a child’s genotype

on a parental phenotype (if, for example, a partially-heritable childhood behavior influences the diseases

of their parents). Indeed, across 11 of the 12 phenotypes, females were significantly more likely to report

a first-degree relative with the disease than males (Table S2), indicating at least some recall bias. To test

the extent of these biases, we obtained summary association statistics from previously published GWAS for

four phenotypes: Alzheimer’s disease [Lambert et al., 2013], coronary artery disease [The CARDIoGRAM-

plusC4D Consortium, 2015], major depressive disorder [Ripke et al., 2013] and type 2 diabetes [DIAbetes

Genetics Replication And Meta-analysis (DIAGRAM) Consortium et al., 2014]. Across established loci for

three of these diseases (no genome-wide significant loci were reported for major depressive disorder), the

direction and relative size of effects were consistent between our adjusted ORs and those reported previously

(0.92 < Pearson’s r < 0.97), though the adjusted ORs were slightly underestimated (0.66 < β < 0.92) (Fig-

ure 2). We observed significant (P< 0.01) genetic correlations between our GWAX results and the published

GWAS summary statistics for coronary artery disease (rg = 0.93), major depressive disorder (rg = 0.67),

type 2 diabetes (rg = 0.91) and Alzheimer’s disease (rg = 0.44).

Motivated by these consistent odds ratios, and in an effort to identify additional risk loci, we per-
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Figure 3. Manhattans plot of fixed-effects meta-analysis results for four phenotypes. Chromosome and
positions are plotted on the x-axis. Strength of association is plotted on the y-axis. Novel risk loci are
indicated in red. The dashed horizontal line indicates the genome-wide significant threshold of P< 5×10−8.
− log10 P-values are truncated at 40 for illustrative purposes.
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formed fixed-effects meta-analysis combining our proxy-case/control association summary statistics with

those from the previously published GWAS. This approach implicated 17 novel risk loci at genome-wide

significance associated with Alzheimer’s disease, coronary artery disease and type 2 diabetes (Table 1, Fig-

ure 3, Figure S3).

Among the novel loci for Alzheimer’s disease include genes invovled in immune surveillance (SPPL2A,

signal peptide peptidase like 2A) and major histocompatability complex class II signal transduction (SCIMP,

SLP adaptor and SCK interacting membrane protein) [Friedmann et al., 2004], further highlighting the role

of the innate immune system in Alzheimer’s disease etiology [Chan et al., 2015; Gjoneska et al., 2015]. For

coronary artery disease, one novel locus resides in an intron of FGD5 (FYVE, RohGEF and PH domain con-

taining 5), a member of the FGD family of guanine nucleotide exchange factors. FGD5 has been shown to

regulate VEGF (vascular endothelial growth factor) [Kurogane et al., 2012], a key cytokine in the formation

of new vessels and potential therapeutic target for heart disease [Taimeh et al., 2013]. For type 2 diabetes,

we identified a novel locus in PITPNC1 (phosphatidylinositol transfer protein, cytoplasmic 1), a member of

the phosphatidylinositol transfer protein family and has been show to be involved in lipid transport between

membrane compartments [Garner et al., 2012].

Discussion

This study demonstrates proof of principle that complex disease risk loci can be identified using the geno-

types of unaffected individuals and the phenotypes of their affected relatives. We applied the GWAX ap-

proach to 12 common diseases in 116,196 individuals from the UK Biobank and combined our results with

publicly available GWAS summary statistics for four of these diseases. We replicated known risk loci and

identified 17 novel risk loci at genome-wide significance associated with Alzheimer’s disease, coronary

artery disease and type 2 diabetes.

Large population cohorts such as the UK Biobank and NIH Precision Medicine Initiative along with

participant-driven projects [Dolgin, 2010; Eriksson et al., 2010] are emerging as valuable resources in

biomedical research. By performing association mapping using the family members of affected individ-

uals, we partly overcome the ascertainment limitations inherent in these studies. The potential for complex

trait association mapping in population cohorts may be much greater than previously thought.

Future expansions of these approaches may take into account more distant relatives in a formal way,

allowing for the phenotypes of all known relatives to be accounted for and analyzed in conjunction with di-

rectly genotyped individuals. Genetic studies of complex disorders may progress beyond simple “case” and

“control” phenotypes, and instead leverage multiple layers of information into a direct estimate of disease

liability. Large crowd-sourced family trees [Ledford, 2013] along with reported phenotypes, demographics,

lifestyle surveys, medical records and epidemiological information can be combined to provide robust esti-

mates of both the genetic and environmental components of disease liability [Campbell et al., 2010]. Using
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liability as a phenotype can also account for ascertainment biases of case/control studies [Hayeck et al.,

2015; Weissbrod et al., 2015], and allow for much greater power to identify disease susceptibility variants.

Methods

Power calculations

We performed power calculations comparing a study design using true cases and controls to one with proxy-

cases and controls, and estimated the sample sizes of each such that power to detect association is equivalent.

We also considered the situation where both cases and proxy-cases are available in the context of a popula-

tion cohort study, where the expected number of cases and proxy-cases depends on disease prevalence and

heritability on the liability scale. Details of the power calculations are described in the Supplementary Note.

UK Biobank data collection

The UK (United Kingdom) Biobank is a large population-based study of over 500,000 subjects aged 45-69

years recruited from 2006-2010 [Sudlow et al., 2015]. Participants entered information about their family

history of disease by answering three questions: 1) “Has/did your father ever suffer from?”, 2) “Has/did

your mother ever suffer from?”, and 3) “Have any of your brothers or sisters suffered from any of the fol-

lowing diseases?”. Participants were asked to choose among 12 conditions (heart disease, stroke, high blood

pressure, chronic bronchitis/emphysema, Alzheimer’s disease/dementia, diabetes, Parkinson’s disease, se-

vere depression, lung cancer, bowel cancer, prostate cancer and breast cancer) and were allowed to select

more than one condition. Participants were also given the choice of entering “Do not know”, “Prefer not to

answer” or “None of the above”. Throughout this manuscript, we denote heart disease, severe depression

and diabetes to refer specifically to coronary artery disease, major depressive disorder and type 2 diabetes,

respectively. The UK Biobank received ethics approval from the National Health Service National Research

Ethics Service (Ref 11/NW/0382).

Genotyping, imputation and quality control

The UK Biobank May 2015 Interim Data Release included directly genotyped and imputed data for 152,529

individuals. Around 90% of individuals were genotyped on the Affymetrix UK Biobank Axiom array, while

the remainder were genotyped on the Affymetrix UK BiLEVE array. The two platforms are similar with

> 95% common marker content (847,441 markers in total). Markers were selected on the basis of known

associations with phenotypes, coding variants across a range of minor allele frequencies, and content to

provide good genome-wide imputation coverage in European populations for variants with minor allele

frequencies > 1%. Genotyped individuals were phased using SHAPEIT2 and then imputed with the IM-

PUTE2 algorithm using a reference panel consisting of 12,570 haplotypes from a combined UK10K and
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1000 Genomes Phase 3 dataset. In total, 73,355,667 polymorphic variants were successfully imputed. Ad-

ditional information on the genotyping array, sample preparation and quality control can be found in the

documents the URLs section. After QC, We took forward 116,196 unrelated individuals of European de-

scent for analysis.

Genome-wide association by proxy

For each of the 12 common diseases, subjects were considered proxy-cases if they have at least one affected

mother, father or sibling. Subjects who answered “Do not know”, or “Prefer not to answer” were removed

from the analysis. All other subjects were considered controls. The total number of proxy-cases and controls

for each phenotype are listed in Table S1.

Association between genotype and phenotype was performed on best-guess imputed genotypes (allelic

likelihood > 0.9, missingness < 10%, minor allele frequency > 0.005) using logistic regression. For all

analyses, we included the subjects’ reported sex, age at recruitment and the first four principal components

(estimated directly from the post-QC set of UK Biobank individuals) as covariates. We observed modest

genomic inflation across the 12 diseases (1.05 < λ < 1.07; Figure S4).

To enable direct comparison of our effect sizes to those from traditional case/control designs (as well as

enabling fixed-effect meta-analysis), we calculate odds ratios using the following approximation. For each

SNP, let fA and fU be the allele frequencies in true-cases and controls respectively, and

OR =
fA(1− fU)
fU(1− fA)

(1)

be the true case/control odds ratio. If fP is the allele frequency in proxy-cases (the vast majority of whom

have only one first-degree relative affected with disease), then

fP =
fU + fA

2
. (2)

In order to estimate the adjusted odds ratio as a function of the observed allele frequencies in pseudo-cases

and controls, we substitute fA into (1):

ÔR =
(2 fP− fU)(1− fU)

fU(1−2 fP + fU)
. (3)

For the range of ORs (< 1.4) typically reported in a GWAS, the log of the adjusted odds ratio derived here

is approximately double that of the log odds ratio directly estimated from logistic regression using proxy-

cases and controls (Figure S1). As the odds ratios and standard errors from logistic regression take into

account covariates, we report adjusted log odds ratios using this doubling approximation rather than directly

estimating them from allele frequencies using equation (3). The corresponding adjusted standard error is also

double the standard error of the log odds ratio from logistic regression, since se2 =Var(2β ) = 22Var(β ).
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Genetic correlation and meta analysis

Publicly available GWAS summary association statistics were obtained for Alzheimer’s disease (17,008

cases and 37,154 controls for stage 1 SNPs; plus 8,572 cases and 11,312 controls for 11,632 stage 2 SNPs)

[Lambert et al., 2013], coronary artery disease (60,801 cases and 123,504 controls) [The CARDIoGRAM-

plusC4D Consortium, 2015], major depressive disorder (9,249 cases and 9,519 controls) [Ripke et al., 2013]

and type 2 diabetes (26,488 cases and 83,964 controls) [DIAbetes Genetics Replication And Meta-analysis

(DIAGRAM) Consortium et al., 2014].

For each of the four phenotypes, we estimated the genetic correlation between our GWAX summary

statistics and the published GWAS summary statistics using LD score regression with a set of ∼ 1.2 million

common SNPs from HapMap3 [Bulik-Sullivan et al., 2015].

Fixed-effects meta-analysis was performed using inverse variance-weighted method for all SNPs that

overlap between the publicly available summary statistics and our adjusted odds ratio GWAX results. That

is, for each SNP with estimated log odds ratios and standard errors, β̂i and ŝei respectively, where i = 1 or 2

correponding to the GWAX (adjusted log odds ratio) or GWAS results, the combined effect size is:

β̂meta =
∑i β̂iwi

∑i wi
(4)

with corresponding standard error and P-value:

ŝemeta =
√

1/∑
i

wi (5)

Pmeta = 2Φ(|β̂meta|/ŝemeta) (6)

where wi = 1/ŝe2
i and Φ is the cumulative standard normal distribution.

Identification of independent risk loci

A locus was considered genome-wide significant if association P < 5×10−8. For both the primary proxy-

case/control analysis in UK Biobank individuals and meta analyses, independent risk loci were identified

using the approximate conditional and joint association method implemented in GCTA with settings r2 > 0.9

and P < 5× 10−8, and a reference panel consisting of 2,500 randomly selected individuals from the UK

Biobank cohort [Yang et al., 2012].

URLs

UK Biobank - http://www.ukbiobank.ac.uk
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Genotyping and quality control of UK Biobank, a large-scale, extensively phenotyped prospective re-

source - http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_

QC_documentation-web.pdf

Genotype imputation and genetic association studies of UK Biobank - http://www.ukbiobank.ac.uk/

wp-content/uploads/2014/04/imputation_documentation_May2015.pdf

GeneticsDesign - https://bioconductor.org/packages/release/bioc/html/GeneticsDesign.html

Parkinson’s disease GWAS summary statistics from Nalls et al. [2014] - http://pdgene.org/view?

study=1
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