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Abstract  
 
Background 
Collective animal behavior such as the flocking of birds or the shoaling of fish has 
inspired a class of algorithms designed to optimize distance-based clusters in various 5!
applications including document analysis and DNA microarrays. In the flocking model, 
individual agents respond only to their immediate environment and move according to a 
few simple rules. After several iterations the agents self-organize and clusters emerge 
without the need for partitional seeds. In addition to their unsupervised nature, flocking 
offers several computational advantages including the potential to decrease the number 10!
of required comparisons.  
 
Findings 
In Clusterflock, we implement a flocking algorithm designed to find groups (flocks) of 
orthologous gene families (OGFs) that share a common evolutionary history. Pairwise 15!
distances that measure the phylogenetic incongruence between OGFs guide flock 
formation. We test this approach on several simulated datasets varying the number of 
underlying topologies, the proportion of missing data, and evolutionary rates, and show 
that in datasets containing high levels of missing data and rate heterogeneity, 
clusterflock outperforms other well-established clustering techniques. We also 20!
demonstrate its utility on a known, large-scale recombination event in Staphylococcus 
aureus. By isolating sets of OGFs with divergent phylogenetic signal, we can pinpoint 
the recombined region without forcing a pre-determined number of groupings or defining 
a pre-determined incongruence threshold.   
 25!
Conclusions 
Clusterflock is an open source tool that can be used to discover horizontally transferred 
genes, recombining areas of chromosomes, and the phylogenetic “core” of a genome. 
Though we use it in an evolutionary context, it is generalizable to any clustering problem. 
Users can write extensions to calculate any distance metric on the unit interval and use 30!
these distances to flock any type of data.  
 

Findings  

Background 

Swarm intelligence describes the cooperative behavior that results from a group of 35!
agents executing simple behavioral programs. The agents themselves are 
unsophisticated, but patterns emerge from the accumulation of pairwise interactions 
resulting in completion of complex tasks necessary for the group’s survival [1]. Swarms 
are by definition leaderless and the agents are given no internal or external direction. Ant 
colonies, swarms of bees, shoals of fish, and flocks of birds all demonstrate this kind of 40!
behavior [2-5]. 
 
Because there is no central control, algorithms modeled on swarm intelligence excel at 
data mining tasks where the goal is discovery of unknown patterns in data. Early models 
of this type of behavior invoked the N-body problem as studied in the physics of celestial 45!
objects [6]. Later work integrated biological observations, particularly the importance of 
local information in determining global patterns of behavior [7-10]. The Reynolds flocking 
model [11] is one such example designed specifically to simulate the coherent behaviors 
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characteristic of a flock of birds. Reynolds original goal was to bestow life-like animation 
to particles – which he termed boids – in motion pictures. In Reynolds’ flocking, each 50!
boid in a simulation is a clone of every other, and boids heed only their immediate 
surroundings as delimited by a radius of perception. Boids react to flockmates within this 
radius using a small library of simple behaviors that ultimately result in the synchrony of 
the entire group. If boids are assigned bits of information and if distances between these 
bits of information are easily computed, then the flocking algorithm becomes suitable for 55!
unsupervised clustering.  
 
Here we present Clusterflock, a method that aims to isolate groups (flocks) of genes with 
congruent historical signals. In our technique, boids represent orthologous gene families 
(OGFs), and the distance between them is measured as a simple test of phylogenetic 60!
congruence [12].  
 
Phylogenetic incongruence is rampant in the evolutionary history of genes across most 
organisms in the tree of life [13-16], but the problem is particularly severe among 
bacterial genomes where evolution proceeds through multiple mechanisms that destroy 65!
phylogenetic signal including recombination, de novo gene acquisition, loss and 
duplication [17]. A central question in microbial evolutionary biology is how to distinguish 
these non-vertical mechanisms and separate vertical signal from the horizontal signal 
produced by recombination and gene transfer.  Whole genomes have thousands of 
genes with potentially different histories magnifying the analytical and computational 70!
complexity of this problem [18, 19]. The number of recombination events and the rates of 
gene transfer are often not known, and inclusion of genes with different histories in the 
same analysis can lead to bias and errors in phylogenetic trees. This kind of error is 
especially problematic in cases of large-scale recombination or sustained/concerted 
gene transfer between organisms that occupy the same habitat [20], situations that can 75!
lead to strong support for the incorrect hypothesis. 
 
A handful of algorithms have been put forward to address this phylogenetic problem in 
large whole-genome datasets. In general, such approaches rely on a two-step 
procedure: pairwise tests of phylogenetic incongruence between OGFs followed by 80!
clustering to segregate OGFs into congruent groups. A range of initial incongruence 
tests have been used including character-based incongruence measures such as the 
incongruence length difference [e.g.,mILD [19]] or the likelihood ratio test [e.g., 
CONCATERPILLAR [21]], and topological measures [e.g., Conclustador [18]]. For the 
clustering step, CONCATERPILLAR and mILD use agglomerative, hierarchical 85!
clustering techniques, whereas Conclustador uses k-means and spectral clustering 
algorithms. Hierarchical clustering techniques generally require a threshold value that 
defines the boundaries of groups, an assumption that could introduce bias or error. 
Spectral, as implemented in conclustador, and k-means algorithms require prior 
estimation or specification of the number of clusters, which could also lead to erroneous 90!
lumping or splitting. In contrast, Clusterflock does not require prior specification of 
distance thresholds or the number of groups.  
 
We have used the incongruence length difference (ILD) in our analysis of the 
Clusterflock algorithm, but the algorithm could also be applied to the likelihood ratio test 95!
or the topological incongruence measure presented in Conclustador [18]. Indeed the 
flocking algorithm can cluster anything given precalculated pairwise distances between 
all entities. Here we test the flocking model against other clustering algorithms such as 
multidimensional scaling (MDS), hierarchical clustering, and partitioning around medoids 
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(PAM). To demonstrate its utility in the real world, we also use Clusterflock to analyze a 100!
well-studied example of massive genome recombination in Staphylococcus aureus 
clonal group ST239 involving nearly 20% of the chromosome [22]. Like many 
phylogenomic datasets, the staphylococcal genomes we analyzed have large amounts 
of missing data, a circumstance that often limits the effectiveness of clustering 
algorithms [18]. While other techniques failed to segregate the recombined region of the 105!
ST239 genome, Clusterflock successfully distinguishes recombined genes from those in 
the recipient genome. We have explored this resilience to missing data and to rate 
heterogeneity through simulation. 
 
Implementation 110!
 
A depiction of Reynolds’ original algorithm and our modifications is shown in Figure 1. At 
the outset, agents (boids in the simulation) are assigned a random position and velocity 
in a 2-dimensional field normally set at one particle per square unit. Agents are then 
allowed to interact with one another. In the classic approach, individual entities are 115!
influenced only by their local environment as given by a user-defined radius. For each 
agent, flockmates within this radius will influence the calculation of three steering vectors 
that combine to alter the particle’s velocity: Alignment, Cohesion and Separation. Agents 
will tend to head in the average direction of their flockmates (alignment), move towards 
their average position (cohesion), and avoid crowding one another (separation). To 120!
accelerate the formation of flocks, we added Repulsion as a fourth vector and designed 
it to operate between each agent’s field of vision (radius) and its radius of separation. In 
a clustering context, repulsion quickly separates agents with high relative distances, 
seeding flocks at an early point in the simulation. The calculation of the four vectors is 
iterated over all agents in the system for a user-defined number of frames. 125!
 
In our adaptation, each particle is a set of OGFs in sequence alignment (i.e., a 
phylogenetic matrix), and each interaction triggers a measurement (or a hash table 
lookup) of phylogenetic congruence between alignments in the pair. We model our 
congruence metric after the incongruence length difference (ILD) [23]: 130!
 

LD =
LA+B − (LA + LB )

LA+B
 

 
where LA+B is the length of the Maximum Parsimony (MP) tree calculated when the two 
gene alignments are combined (i.e. concatenated), and LA and LB are the lengths of the 135!
trees calculated for each gene individually. An LD of zero indicates complete 
congruence (i.e. the gene trees are identical), whereas a positive LD indicates that the 
two OGFs have divergent phylogenetic topologies. To function as a distance metric on 
the unit interval, LD is normalized and therefore scaled between 0 and 1. We calculated 
single gene parsimony trees and concatenated trees in PAUP* [24] using 100 heuristic 140!
searches with random sequence addition and tree bisection and reconnection. 
 
Unlike other implementations [25, 26] we use the LD metric directly in our formulation of 
the steering vectors. This allows the distance between any two OGFs to have a 
continuous effect on the simulation. More specifically, alignment and cohesion are 145!
calculated as the average velocity and position, respectively, of all flockmates within any 
given agent’s field of view (Figure 1). This average is then modulated by two factors: the 
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average LD of all flockmates, and a user-defined diminishment factor. The equation for 
alignment is shown here. 

v = 1
n

vx
x

n

∑ •
1− 1

n
LDx

x

n

∑
D

 150!

 
where v  is the velocity driven by alignment, n is the number of flockmates, vx  is the 
velocity of flockmate x, LDx  is the LD for flockmate x, and D is the diminishment factor. 
In this scenario, as the average LD increases, the alignment or cohesion effect 
decreases. Similarly, as the diminishment factor increases, the alignment or cohesion 155!
effect decreases. The diminishment factor is intended as a layer of control, giving the 
user the opportunity to up weight or down weight the alignment and/or cohesion vectors. 
 
Separation and repulsion are treated somewhat differently and are instead calculated 
through iterative displacement. Each agent within the separation distance updates the 160!
separation vector in turn, attempting to double the distance between itself and its 
counterpart: 
 
   v = v− (Px −P) ∀x{1,..,n}  
 165!
where v  is the velocity driven by separation, and Px and P are the positions of the agent 
in question and its flockmate x, respectively. Repulsion is enhanced separation that 
operates between the separation distance and the perception radius. It is directly 
proportional to the LD of flockmate X and a user-defined enhancement factor: 
 170!
   v = v− ((Px −P)× (LDxE)) ∀x{1,..,n}  
 
where LDx  is the LD for flockmate x, and E is the enhancement factor. In this 
formulation, if the LD between any two OGFs is zero, the repulsion effect vanishes. For 
positive LDs, repulsion is positive and proportional to the magnitude of the incongruence 175!
calculated. Increasing the enhancement factor can magnify any existing repulsion 
considerably. 
 
Summing the velocities derived from the cohesion, alignment and separation/repulsion 
rules encodes the evolutionary distance information between an active agent and all its 180!
flockmates. Done across all agents over all iterations, OGFs converge on multiple 
evolutionary solutions, and the final frame of the simulation often isolates all congruent 
clusters. Figure 2 captures snapshots of this process. Seed clusters form very early and 
later move to intercept one another. Congruent flocks will absorb one another while 
incongruent flocks repel.  185!
 
Clusterflock is a parameter-rich approach, allowing the user fine-grain control over the 
steering of OGFs within the virtual space. Besides the cohesion, alignment and repulsion 
factors outlined here, other key parameters include the length of the virtual square that 
serves as the flight space, the radius of awareness around each agent, the initial 190!
velocity, the velocity limit, and the number of iterations. We have found that a gene per 
square unit and a radial awareness of 10% of the flight space length are sufficient to 
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encourage efficient flock formation in most cases. Since velocity can increase quickly if 
left uncapped, limiting it to 2% of the virtual square’s length is usually adequate for 
circulation.  195!
 
In its original form, the algorithmic complexity of flocking is O(n2). Each agent must 
spatially assess all other agents to determine who is in its field of view (radius). We have 
reduced this complexity by borrowing two heuristics, one from the world of video games, 
and one from nature itself. In video games that require real-time calculation of the 200!
interactions of many particles, a spatial hashing structure [27, 28] reduces the number of 
required comparisons by binning particles into a discrete number of cells. Agents are 
sorted by their location and only those in cells immediately surrounding the query are 
processed. In practice, spatial hashing’s most significant savings are accrued early in a 
simulation when agents are evenly dispersed. As flocks begin to form, some cells are 205!
completely bereft, while others can contain thousands of congruent OGFs. 
 
A more even and lasting heuristic is awareness. In nature, an individual in a flock will not 
necessarily respond to all its immediate flockmates [10, 29]. Often, it responds to a mere 
subset, an approximation that rarely leads to unwanted perturbations or collisions 210!
because of the cumulative, emergent nature of the group’s motion as a whole. Capped 
by a user-input maximum awareness, a random sampling of flockmates for each gene is 
often sufficient to guide groups of flocks into distinct evolutionary classes. This heuristic 
can be extremely significant towards the end of a simulation when many of the final 
flocks have formed. Groups of thousands of congruent individuals are not uncommon. 215!
By dimming each agent’s effective perception, only a fraction of these congruent 
individuals require analysis. 
 
Despite these shortcuts, flocking is a computational expensive procedure. Without 
image/movie creation and analysis of cluster formation progress (k-means or OPTICS, 220!
see below), the flocking procedure alone will require on average 30 CPU seconds for a 
dataset containing 100 loci of 100 residues each across 10 taxa. Because we encourage 
100 or more replicates, total required CPU per experiment for this hypothetical dataset 
would be just short of 1 CPU hour. In contrast, a single run of other clustering 
procedures like MDS, hierarchical clustering, and PAM require less than a CPU second 225!
to analyze this type of data. For clusterflock, what is lost in terms of speed is gained in  
performance as we show in the next section. 
 
In test: simulations and comparisons to dominant clustering techniques 
 230!
We simulated 100 locus datasets containing 100 residues per locus across 10 taxa in 
Seq-Gen [30] using JTT. Underlying these simulated proteins were anywhere from 1 to 
25 generated topologies: in the case of 1 underlying topology all 100 loci were modeled 
as congruent; in the case of 25 topologies loci were randomly assigned to each tree 
without requiring that each tree be equally represented. Because missing data is a 235!
common problem in phylogenomics we also chose to model data sparsity’s effect on 
clustering performance. Taxa were randomly assigned as missing on a per locus basis 
at rates varying from 0% to 50% in 10% increments. Because rate heterogeneity is also 
a common problem, in a separate set of experiments with no missing data, we randomly 
assigned about half the proteins in each matrix to be 3X (1.5/0.5), 7X (1.75/0.25) or 19X 240!
(1.9/0.1) faster than their counterparts in terms of relative evolutionary rates [30]. For 
statistical power we repeated dataset creation 10 times per topological condition across 
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our missing data thresholds and rate heterogeneity multipliers resulting in a grand total 
of 2250 matrices. 
 245!
In addition to using clusterflock (100 replicates of 500 frames each), we analyzed the 
100 proteins in each matrix using multidimensional scaling (MDS), hierarchical clustering 
and PAM, using the R packages [31] cmdscale, hclust, and pam, respectively. In the 
case of PAM, a k-medoids operation, and hierarchical clustering users must provide an 
estimate of expected cluster number at the outset. In practice, providing this number is 250!
often difficult given the increasing complexity of modern phylogenomic datasets. We 
instead favor Clusterflock and MDS, techniques that spatially encode the distance 
information between loci allowing for the emergence of distinct data categories.  
 
Figure 3 summarizes the results of these simulations. Shown is the average Jaccard 255!
Index of all replicates against the number of simulated topologies across all data sparsity 
thresholds. Because we know which tree is associated with each gene, we can employ 
the Jaccard Index as an external measurement of clustering efficiency. The Jaccard is 
defined as follows: 
 260!

! = !"
!" + !" + !" 

 
where TP is true positive, FP is false positive and FN is false negative as judged by 
correct assignation to a congruent tree topology group.  
 
As expected, the performance of all four methods degrades with increasing topological 265!
complexity and increasing data sparsity. No method performs well when 50% of the data 
is missing. And increasing the topological heterogeneity makes it more difficult for any 
method to discern between groups. However, Clusterflock is robust to the effects of 
missing data in a way that no other method tested here has shown. It also mirrors the 
performance of MDS as the evolution of the underlying genes becomes more 270!
complicated.  
 
With the advantage of seeding, hierarchical clustering and PAM,are superior in the 
special case where the number of topologies are absolutely known and that data is used 
to guide cluster formation. As long as there is little missing data, these two methods are 275!
clearly superior among the techniques we compare here. Surprisingly, hierarchical 
clustering and PAM perform very poorly as data is removed. For MDS and Clusterflock, 
methods that spare the user an initial estimation of the number of clusters, increasing 
topological complexity lowers the Jaccard at approximately the same rate as long as 
there is no missing data. The difference between MDS and Clusterflock techniques 280!
materializes once the data thins. 
 
Figure 4 shows the effect of rate heterogeneity. MDS degrades rapidly with increasing 
rates of relative heterogeneity, while the strong performance of Clusterflock persists 
across evolutionary rates. Therefore, up to a point, clusterflock is resilient to both 285!
missing data and differing evolutionary rates. Zero, ten and twenty percent missing data 
perform equally well whereas MDS shows quick collapse as information is removed. And 
diverging evolutionary rates among genes do not seem to affect clusterflock’s ability to 
sort them into their respective topological groups. 
 290!
In action: a recombination event in Staphylococcus aureus  
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To test our ability to detect and separate distinct populations of incongruent OGFs in 
biological systems, we used a well-known example of large-scale genomic 
recombination between two S. aureus clonal complexes (CC) [22]. The genomes of 295!
ST239 S. aureus appear to have formed from a recombination event in which 20% of a 
CC8 genome was replaced with the homologous portion of the genome from a CC30 
strain.  We chose 11 S. aureus strains (GCA_000146385.1, GCA_000012045.1, 
GCA_000011505.1, GCA_000011265.1, GCA_000013425.1, GCA_000204665.1, 
GCA_000159535.2, GCA_000027045.1, GCA_000017085.1, GCA_000236925.1 and 300!
SA21300) including examples from CC30, CC8 and ST239 and generated groups of 
orthologous genes across all their proteomes using orthologID [32]. The resulting 
sequence data matrix contained 2550 orthologous OGFs totaling 758,270 amino acid 
characters. Missing data was tolerated, but representation from at least 4 taxa for each 
gene was required. 305!
 
Figure 2 shows three frames from the beginning of a 1000 frame simulation and three 
snapshots from even intervals thereafter. We have color-coded OGFs here for clarity: 
green maps to the hybridized portion of the genome, and red maps to the remainder. A 
complete video of this simulation can be found at https://youtu.be/v_4bDprmkpU. 310!
 
Sorting of OGFs by phylogeny is evident as early as the 10th frame and proceeds further 
as these initial seeds encounter one another in the virtual space. But hundreds to 
thousands of frames are required to amass flocks containing all congruent OGFs. The 
number of frames required is dependent on the general phylogenetic cohesion of the 315!
OGFs, and their random starting positions and velocities in the virtual space. By the end 
of the simulation, the OGFs have self-organized in the leaderless way characteristic of 
swarm behavior. Without having to estimate the number of expected evolutionary 
trajectories, we find that there are two dominant flocks: one corresponding to the 
recombined region and the other to the rest of the genome. We observe two 320!
unexpected, smaller flocks (Figure 5) whose provenance does not trace to any known 
evolutionary event or functional class.  
 
Because of the stochasticity inherent in this type of behavioral method there is no 
guarantee that flocks of the recombined region or the rest of the genome will be 325!
complete. Either or both may enter the final frame in pieces. In other words, we need 
more statistical heft than one simulation can provide. To test the reproducibility of the 
flocks and identify robust flock membership, we repeat the simulation in parallel, 
randomly varying each OGF’s initial placement and velocity. For the purposes of this 
example, we deployed 100 replicates.  330!
 
Visual inspection of 100 final frames, or the thousands that may be desirable for other 
clustering problems, is prohibitive. We automate the analysis of each final frame using 
ELKI’s [33] implementation of the OPTICS algorithm [34], a method designed to identify 
unseeded clusters in spatial data regardless of their density. Note that in contrast to our 335!
simulations where we know the number of clusters and can therefore leverage k-means, 
here we assume that this number is unknown, and in the case of very complex datasets, 
unknowable. Supplemental Figure 1 shows the average number of auto-detected flocks 
across all 100 simulations as a function of their frame. After an initial spike, or seeding 
stage, micro-clusters combine with neighboring micro-clusters that share a congruent 340!
phylogenetic history. A near exponential decay in the number of auto-detected flocks is 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint 

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/


! 9!

followed by a steady state. In the case of S. aureus, by the 200th frame, Clusterflock has 
isolated most of the evolutionary paths. 
 
We systematize the flocking information by assigning a flock label to each OGF for each 345!
replicate. For example, replicate 1 may have resulted in five flocks; each of its 2550 
gene families is therefore assigned to A, B, C, D, or E. Similar assignments are made 
across all replicates and the labels are treated as character information in a matrix. The 
Flock Matrix therefore has as many rows as there are OGFs and as many columns as 
there are replicates. Organized in this way, we can derive our final sets of congruent 350!
OGFs using tree reconstruction as shown in Figure 6A. This topology highlights groups 
of OGFs that flock together regularly across all replicates. Here we employ Neighbor 
Joining and assess node robustness by bootstrapping 100 times. Since we have no 
external truth against which to measure success, we propose that the application of non-
parametric bootstrapping to the Flock Matrix can serve as the basis for assessing validity 355!
[35-38]. We observe high levels of support for the flock that is composed of recombined 
genes, and flocks that represent the two novel phylogenetic histories highlighted in 
Figure 5. 
 
Our main premise was that we could use Clusterflock to detect the genes involved in the 360!
ST239 recombination event a priori with just pairwise interactions guided by 
incongruence metrics as OGFs encountered one another in a virtual space. There was 
no expectation that we would find only two unique flocks, an assumption required by 
other clustering methods keyed on partitional seeds. Indeed, two additional flocks 
emerge, with OGFs that tightly share a unique historical signal distinct from our two main 365!
evolutionary classes. When we cluster these data with MDS (Supplemental Figure 2) 
there is no discernable pattern, a predicament most likely due to some combination of 
missing data and rate heterogeneity. 
 
If, as we suspect, the conflicting histories of our two main flocks originate from the 370!
recombination event, we should see the gene families sort based on the known 
boundaries of the structural change. By creating profile HMMs [39, 40] of each of our 
2550 OGFs and mapping them to the S. aureus USA300/TCH1516 genome using 
hmmsearch in the HMMER package, we show that the flock of OGFs corresponding to 
the recombined region (Figure 6B), map there almost exclusively. The flock 375!
corresponding to the rest of the genome is enriched in genes outside of the recombined  
region, but this enrichment is imperfect. Many genes from within the recombined region 
contaminate the flock representing the rest of the genome. The length differences of 
these genes with respect to genes in the largest flock is zero, indicating that they are 
100% congruent with the non-recombined phylogeny. These select regions of the 380!
recombination event could have reverted through a series of subsequent recombination 
events, or may show the original recombination event did not replace one continuous 
section of the chromosome.  A discontinuous pattern of recombination is known to occur 
in other bacteria [41, 42].   Other possibilities include convergent changes, or high levels 
of conservation prior to the recombination event. 385!
 
Conclusions 
 
Clusterflock is an enhanced version of Reynolds’ original flocking algorithm customized 
to function as a clustering technology. Here we show that it is well suited to isolating 390!
congruent gene families into discrete flocks even if they have significant levels of 
missing data or rate heterogeneity. It can be used to identify a phylogenetic core of 
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genes that share a vertical evolutionary signal while highlighting genes that conflict in 
subtle ways. However the technique is general, and not restricted to evolutionary 
analysis [25]. Any distance metric scaled between 0 and 1 can be used to cluster any set 395!
of entities. In an era when supervised machine learning often captures many 
bioinformatic headlines, Clusterflock is in the tradition of data mining: a bio-inspired 
clustering algorithm used to discover categories of entities without any training, any 
sense of the number of categories to expect, or any bias in how distant two entities must 
be to be considered different.  400!
 
Figure Legends 
 
Figure 1. Flocking Algorithm and Rules. Individual agents (boids) are shown as triangles, 
interactions as dashed lines, and the radius of perception as differently colored circles 405!
depending on the vector considered. Alignment and cohesion reinforce flocking behavior 
while repulsion disrupts it. In cohesion, a given boid moves towards the center of mass 
of all congruent flockmates within its field of vision. Boids will also align their velocities 
with congruent flockmates. However, all boids regardless of whether they are congruent 
or incongruent will separate from flockmates in their immediate vicinity. Cohesion, 410!
alignment, and separation are the core forces in Reynold’s original flocking algorithm. 
We have added repulsion as a force capable of isolating congruent and incongruent 
agents. It operates between an agent’s field of vision and the smaller, concentric circle 
describing this agent’s radius of separation. The magnitudes of alignment, cohesion, and 
repulsion are a function of the phylogenetic distance between the agents as described in 415!
the implementation. 
 
Figure 2 Snapshots from a Staphylococcus aureus Simulation. Here we show three early 
snapshots, and three snapshots taken from intervals along a 1000 frame flocking 
simulation. Agents colored green represent genes from the recombined region, while 420!
those colored red are from the core genome. Specific parameters chosen here include: 
DIMMENSIONS = 2500; BOUNDARY = 1; INIT_VELOCITY = 50; COHESION_FACTOR 
= 5; SEPARATION_DISTANCE = 5; REPEL_FACTOR = 10; ALIGNMENT_FACTOR = 
5; ITERATIONS = 1000; RADIUS = 500; VELOCITY_LIMIT = 50; MINPTS=20; XI=0.15. 
 425!
Figure 3. Simulating Topological Complexity and Missing Data. Four plots measuring the 
Jaccard Index (see In test) against increasing topological complexity and across 
increasing levels of missing data percentage (colored as indicated in the insert) are 
shown. We compare four methods here: (A) Clusterflock, (B) multidimensional scaling, 
(C) hierarchical clustering, and (D) Partitioning around medoids (PAM).  In order to 430!
compare the four techniques using similar methods, and because the number of 
underlying topologies in each simulation is known, for Clusterflock and MDS we used k-
means to cluster the final spatial arrangement of loci and assign OGFs to topological 
groups.  
 435!
 
Figure 4. Simulating Topological Complexity and Evolutionary Rate Heterogeneity. Here 
we show two plots measuring the Jaccard Index against topological complexity and 
across four levels of relative evolutionary rate: 1X (1/1); 3X (1.5/0.5); 7X (1.75/0.25) and 
19X (1.9/0.1) (colored as indicated in the insert). We compare two methods here: (A) 440!
Clusterflock, and (B) multidimensional scaling. 
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Figure 5. The Final Frame. Four parsimony trees corresponding to the four dominant 
flocks are shown superimposed on the final frame of the example simulation. Taxa are 
colored according to their phylogenetic group (MLST classification). Genes from the 445!
recombined region place ST239, the hybrid strains, sister to ST30, whereas genes from 
the rest of the genome yield a monophyletic arrangement of ST239 and ST8. The 
unknown phylogenies highlight genes that are members of two novel evolutionary 
histories. 
 450!
Figure 6. Consensus tree of Staphylococcus aureus Flocks Mapped to the 
USA300TCH1516 Genome. (A) The neighbor joining bootstrap consensus tree for 100 
simulations is shown. The majority of the genome occupies the largest branch 
comprising a virtual polytomy (red). Four other branches of note are highlighted, the 
largest of which describes the flock consisting of genes from the recombined region 455!
(green). (B) We constructed HMMs from the orthologous groups (genes) in each of the 
four dominant flocks and queried them against a USA300TCH1516 reference. Their 
genomic locations are shown in the four tracks displayed here. The outermost track is 
composed of genes from the largest flock. The second track localizes genes from the 
second largest flock to the known recombined region. 460!
 
 
Supplemental Figure Legends 
 
Supplemental Figure 1. Auto-detected Flocks per Frame. Here we show the average 465!
number of flocks detected at any given point along a 1000 frame simulation for the S. 
aureus simulation. The OPTICS spatial clustering algorithm was used to auto-detect 
flocks in the 100 replicate frames at each point along simulation. 
 
Supplemental Figure 2. Multidimensional scaling of the Staphylococcus aureus dataset. 470!
We show a failed attempt to cluster the Staphylococcus aureus dataset with MDS. Most 
loci gather in a single area and we see no separation between the recombined region 
and the rest of the genome. 
 
Availability and Requirements 475!
Project Name: Clusterflock 
Project Page: https://github.com/narechan/clusterflock 
Operating System: Linux 
Programming Language: PERL 
Other Requirements: See manual in the distribution 480!
License: GPLv3 
 
Availability of Supporting Data  
The data sets supporting the results of this article are available in the GitHub repository. 
See https://github.com/narechan/clusterflock/tree/master/releases/0.1/example_data for 485!
the S. aureus data. See 
https://github.com/narechan/clusterflock/tree/master/releases/0.1/test_data for test data. 
 
References 
!490!
1.! Krause!J,!Ruxton!GD:!Living&in&groups.!Oxford!;!New!York:!Oxford!University!

Press;!2002.!

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint 

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/


! 12!

2.! Heppner!FH:!Three/dimensional&structure&and&dynamics&of&birds&flocks.!
In:!Animal'Groups'in'Three'Dimensions.!Edited!by!Parrish!JK,!Hamner!WM.!
Cambridge:!Cambridge!University!Press;!1997.!495!

3.! Pitcher!TJ,!Parrish!JK:!The&functions&of&shoaling&behavior.!In:!The'Behavior'
of'Teleost'Fishes.!Edited!by!Pitcher!TJ.!London:!Chapman!&!Hall;!1993:!363[
439.!

4.! Partridge!BL,!Pitcher!TJ:!The&sensory&basis&of&fish&schools:&relative&role&of&
lateral&line&and&vision.!Journal'of'Comparative'Physiology'1980,!135:315[500!
325.!

5.! Couzin!ID:!Collective&cognition&in&animal&groups.!Trends'Cogn'Sci'2009,!
13(1):36[43.!

6.! Okubo!A:!Dynamical&aspects&of&animal&grouping:&swarms,&schools,&flocks,&
and&herds.!Adv'Biophys'1986,!22:1[94.!505!

7.! Huth!A,!Wissel!C:!The&simulation&of&the&movement&of&fish&schools.!Journal'
of'Theoretical'Biology'1992,!156:365[385.!

8.! Czirok!A,!Vicsec!M,!Vicsec!T:!Collective&motion&of&organisms&in&three&
dimensions.!Physica'A'1999,!264:299[304.!

9.! Czirok!A,!Stanley!HE,!Vicsec!T:!Spontaneously&ordered&motion&of&self/510!
propelled&particles.!Journal'of'Physics'A'1997,!30:1375–1385.!

10.! Couzin!ID,!Krause!J,!James!R,!Ruxton!GD,!Franks!NR:!Collective&memory&and&
spatial&sorting&in&animal&groups.!J'Theor'Biol'2002,!218(1):1[11.!

11.! Reynolds!C:!Flocks,&herds,&and&schools:&a&distributed&behavioral&model.!
Computer'Graphics'1987,!21(4):25[34.!515!

12.! Planet!PJ:!Tree&disagreement:&measuring&and&testing&incongruence&in&
phylogenies.!J'Biomed'Inform'2006,!39(1):86[102.!

13.! Boto!L:!Horizontal&gene&transfer&in&the&acquisition&of&novel&traits&by&
metazoans.!Proc'Biol'Sci'2014,!281(1777):20132450.!

14.! Keeling!PJ,!Palmer!JD:!Horizontal&gene&transfer&in&eukaryotic&evolution.!520!
Nat'Rev'Genet'2008,!9(8):605[618.!

15.! Polz!MF,!Alm!EJ,!Hanage!WP:!Horizontal&gene&transfer&and&the&evolution&
of&bacterial&and&archaeal&population&structure.!Trends'Genet'2013,!
29(3):170[175.!

16.! Syvanen!M:!Evolutionary&implications&of&horizontal&gene&transfer.!Annu'525!
Rev'Genet'2012,!46:341[358.!

17.! Planet!PJ:!Reexamining&microbial&evolution&through&the&lens&of&
horizontal&transfer.!EXS'2002,!92:247[303.!

18.! Leigh!JW,!Schliep!K,!Lopez!P,!Bapteste!E:!Let&them&fall&where&they&may:&
congruence&analysis&in&massive&phylogenetically&messy&data&sets.!Mol'530!
Biol'Evol'2011,!28(10):2773[2785.!

19.! Planet!PJ,!Sarkar!IN:!mILD:&a&tool&for&constructing&and&analyzing&matrices&
of&pairwise&phylogenetic&character&incongruence&tests.!Bioinformatics'
2005,!21(24):4423[4424.!

20.! Andam!CP,!Gogarten!JP:!Biased&gene&transfer&in&microbial&evolution.!Nat'535!
Rev'Microbiol'2011,!9(7):543[555.!

21.! Leigh!JW,!Susko!E,!Baumgartner!M,!Roger!AJ:!Testing&congruence&in&
phylogenomic&analysis.!Syst'Biol'2008,!57(1):104[115.!

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint 

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/


! 13!

22.! Robinson!DA,!Enright!MC:!Evolution&of&Staphylococcus&aureus&by&large&
chromosomal&replacements.!J'Bacteriol'2004,!186(4):1060[1064.!540!

23.! Farris!JS,!M!K,!AG!K,!C!B:!Constructing&a&significance&test&for&
incongruence.!Systematic'Biology'1995,!44:570[572.!

24.! Swofford!DL:!PAUP*.&Phylogenetic&Analysis&Using&Parsimony&(*and&Other&
Methods).!In.,!4!edn:!Sinauer!Associates,!Sunderland,!Massachusetts.;!2003.!

25.! Cui!X,!Gao!J,!Potok!TE:!A&flocking&based&algorithm&for&document&545!
clustering&analysis.!Journal'of'Systems'Architecture'2006,!52(8[9):505[515.!

26.! Bellaachia!A,!Bari!A:!A&Flocking&Based&Data&Mining&Algorithm&for&
Detecting&Outliers&in&Cancer&Gene&Expression&&Microarray&Data.!In:!IEEE'
International'Conference'on'Information'Retrieval'and'Knowledge'

Management:'2012;'Malaysia;!2012.!550!
27.! Gross!M,!Heidelberger!B,!Muller!M,!Pomernats!D,!Teschner!M:!Optimized&

Spatial&Hashing&for&Collision&Detection&of&Deformable&Models.!Vision,'
Modeling,'and'Visualization'2003.!

28.! Hastings!EJ,!Mesit!J,!Guha!RK:!Optimization&of&large/scale,&real/time&
simulations&by&spatial&hashing.!In:!Proc'2005'Summer'Computer'Simulation'555!
Conference:'2005;!2005:!9[17.!

29.! Gueron!S,!Levin!SA,!Rubenstein!DI:!The&Dynamics&of&Herds:&From&
Individuals&to&Aggregations.!Journal'of'Theoretical'Biology'1996,!
182(1):85[98.!

30.! Rambaut!A,!Grassly!NC:!Seq/Gen:&an&application&for&the&Monte&Carlo&560!
simulation&of&DNA&sequence&evolution&along&phylogenetic&trees.!Comput'
Appl'Biosci'1997,!13(3):235[238.!

31.! Team!RC:!R:&A&Language&and&Environment&for&Statistical&Computing.!In.:!
R!Foundation!for!Statistical!Computing;!2015.!

32.! Chiu!JC,!Lee!EK,!Egan!MG,!Sarkar!IN,!Coruzzi!GM,!DeSalle!R:!OrthologID:&565!
automation&of&genome/scale&ortholog&identification&within&a&parsimony&
framework.!Bioinformatics'2006,!22(6):699[707.!

33.! Achtert!E,!Kriegel!H,!Zimek!A:!ELKI:&A&Software&System&for&Evaluation&of&
Subspace&Clustering&Algorithms.!In:!20th'International'Conference'on'
Scientific'and'Statistical'Database'Management:'2008;'Hong'Kong,'China;!570!
2008.!

34.! Ankerst!M,!Breunig!MM,!Kriegel!H,!Sander!J:!OPTICS:&ordering&points&to&
identify&the&clustering&structure.!In:!ACM'SIGMOD'international'conference'
on'Management'of'data:'1999:!ACM!Press;!1999:!49[60.!

35.! Ben[Hur!A,!Elisseeff!A,!Guyon!I:!A&stability&based&method&for&discovering&575!
structure&in&clustered&data.!Pac'Symp'Biocomput'2002:6[17.!

36.! Levine!E,!Domany!E:!Resampling&method&for&unsupervised&estimation&of&
cluster&validity.!Neural'Comput'2001,!13(11):2573[2593.!

37.! Liu!Y,!Li!Z,!Xiong!H,!Gao!X,!Wu!J,!Wu!S:!Understanding&and&enhancement&of&
internal&clustering&validation&measures.!IEEE'Trans'Cybern'2013,!580!
43(3):982[994.!

38.! Volkovich!Z,!Toledano[Kitai!D,!Weber!G[W:!Self/learning&K&/means&
clustering:&a&global&optimization&approach.!Journal'of'Global'Optimization'
2013,!56(52):219[232.!

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint 

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/


! 14!

39.! Eddy!SR:!Profile&hidden&Markov&models.!Bioinformatics'1998,!14(9):755[585!
763.!

40.! Krogh!A,!Brown!M,!Mian!IS,!Sjolander!K,!Haussler!D:!Hidden&Markov&
models&in&computational&biology.&Applications&to&protein&modeling.!J'
Mol'Biol'1994,!235(5):1501[1531.!

41.! Lin!EA,!Zhang!XS,!Levine!SM,!Gill!SR,!Falush!D,!Blaser!MJ:!Natural&590!
transformation&of&helicobacter&pylori&involves&the&integration&of&short&
DNA&fragments&interrupted&by&gaps&of&variable&size.!PLoS'Pathog'2009,!
5(3):e1000337.!

42.! Mell!JC,!Shumilina!S,!Hall!IM,!Redfield!RJ:!Transformation&of&natural&
genetic&variation&into&Haemophilus&influenzae&genomes.!PLoS'Pathog'595!
2011,!7(7):e1002151.!

!
!
!
!600!
!
 !

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint 

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/


Alignment 

Cohesion 

Repulsion 

Separation 

Figure 1



1" 5" 10"

250" 500" 1000"

Figure 2



5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0 zero

ten
twenty
thirty
forty
fifty

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0

Topologies)

Ja
cc
ar
d)
In
de

x)
A) B)

C) D)

Clusterflock) MDS)

Hierarchical))Clustering) PAM)

Figure 3

Figure 3



Topologies)

Ja
cc
ar
d)
In
de

x)
A) B)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0 none

3X
7X
19XClusterflock) MDS)

Figure 4

Figure 4



Hybrid Region 

Core 

Unknown 1 

Unknown 2 

ST8 

ST239 

ST30 



Recombined

Figure 5

Recombined

Figure 5



A" B"

Figure 6

Figure 6



0 200 400 600 800 1000

2
4

6
8

10
12

Frame

Av
er

ag
e 

N
um

be
r o

f F
lo

ck
s

Figure 2

Figure 2

Figure S1

Figure 2

Figure 2

Figure S1



●●●●●

●

●●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●●●●
●
●

●
●●●● ●●●●●

●

●
●

●

● ●
●

●●
●

●● ●●

●

●●

●

●

●
●

●

●
●

●

●

●

●●●

●

● ●
●●●
●●● ●●

●

●●●
●●●●●● ●●●
●

●

●

●

● ●
●

●
●

●●●

●

●

●●
●
●

●

●●●●●●● ●●●
●

●●●

●●

●
●

●

●

●
●● ●

●

●

●

●●●
●

●

●●

●

●
●
●

●

●

●●●
●

●

●

●●●

●

●

●

●●

●●

●●

●
●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●●

●

● ●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●

●

●

●
●

●
●

●

●

●

●●●●

●

●●

●

●

●

●
●●●

●
●●●●●●●●

●

●●
●

●

●
●
●●●●●

● ●

●●●
●

●●●

●

●
●●●●●

●●
●●

●

●
●●●●●●●●

●
●●●

●

●
●●●●●●

●

●●

●
●

●●● ●●
● ●

●●

●

●●●

●

●●●●

●

●
●

●● ●●●
●

●●●●●●

●

●
●
●●

●●
● ●

●

●
●

●

●
●●●●●●●
●●

●

●●●
●

●●●●●●●●●●●

●

●
●●

●
●

●●●●●●●●●●●

●
●●●

●

●●●●●●●● ●

●

●

●●●●●

●

●●●●
●

●●●●

●

●●●●●●●

●

●
●

●

●
●●●●●

●

●●●●● ●●●●●●●●

●
●

●●●●●●

●
●

●●

●

● ●●●

●

●● ●
●
●●●●●●●

●

●●●●●●●
●
●●●●●●●● ●

●

●●●

●

●

●

●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●
●

●●●●●●●
●
●●●●●

●

●●●●

●

●

●

●●●●●●●
●

●●

●

●

●

●

●●

●

●

●●●●●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●● ●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

● ●●
●●

●

●●

●

●●●●● ●●

●
●

●
●●●●●●●●●●●

●
●

●

●

●

●●●●

●
●

●●●●●●●● ●
●●

●

●●●●●●●●●●●●●●●●●●
●

●●●
●
●

●

●

●

●

●

●●●
●

●

●

●●●●

●

●●●●●
●

●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●● ●●

●

●●●●●●●●●
●●●●● ●
●●●

●

●
●●●●●
●

●

●
●●●●●● ●

●

●●●
●

●●
●

●

●
●●●●●●●
●

●● ●
●

●

●●●●
●

●●

●

●

●

●
●●● ●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●
●●
●
●●●●

●

●

●
●

●●●●
●

●●

●

●

●

●●●

●

●●●
●
●

●

●●●●●● ● ●●● ●

●
●

●
●●●

●

●●
●
●

●

●
● ●●●

●
●●●●● ●●

●

●●●

●

●●●●●

●

●
● ●

●

●●●●

●

●●● ●●●● ●●●●

●●

●●●●●●

●

●● ● ●●●
●

●●●

●

●
● ●

●

●● ●●●●

●

●● ●
●

●

● ●●●

●

●●
●
●●●●

●

●

●

●
●●

●
●●

●●●

●

●●●

●

●●●●●
●●

●
●●

●

●

●●

●

●●●
●

●●
●
●●●●

●

●●
●●

●
●

●●●●●●●●●

●

●

●

●●●● ●●●●

●

●●

●

●
●

●●●●●●●●

●
●

● ●●●

●

●
●

●●●

●

●
●●

●

●
●●●●●●●●

●

●

●● ●●
●●●●●

●

●●●

●

●
●●●●●●●●●●●●
●●●
●
●●●

●
●

●
●●●● ●

●

●●
●

●●●

●

●●●

●

●
●

●●●●

●

●
●

●

●
●●●●●
●

●

●

●
●

●
●

●●

●

● ●

●

●
●●●●●

●●

●

●
●

●●●●●

●

●●● ●● ●●●
●

●
●

●

●

●●●●●●●●

●

●
●

●●●●● ●
● ●
●● ●● ●● ●●
●●●●

●

●●

●

●●

●

●●●●

●

●●●●●●●●

●

●

●
● ●

●●●●
●
●●●●

●

●●●
●●

●
●

●●●●●
●●

●

●●
●

●
●●

●

●●●

●
●●●

●

●
●●●

●
●●

●●●●●●●● ●●
●

●●●
●●●●●

●

●●●●●

●

●●● ●●●● ●●●

●
●

●

●●
●
●●●

●

●●
●

●

●

●
●●●●●●●

●
●●●
●

●

●●
●

●

●●
●

●●

●

●

●●
●

●●
●●●

●●●●●

●

●
●

● ●
●●
●●●●●●

●
●

●
●●●● ●

●

●

●● ●●

●

●●●● ●●
●

●

●

●

●●

●

●●
●●
●

●

●
●

●

●●●●●

●

●●●●
●

● ●
●

● ●

●

●
● ●●●●●●●●

●

●●●

●

●●

●

●●
●●●

●

●●
●

●

●●

●

●●●
●

●

●●●●
●

●

●

●

●
●

●●● ●● ●
●●●● ●●

●

●●●●●●●●●

●

●●●
●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●
●
●●

●

●
●●●●
●●

●●●●●●
●

●●●

●

● ●
● ●●●
●●●●
●

●

●●●● ●●●

●

●
●●
●
●●
●●
●

●

●

●
●●

●

●●●●●
●

●●●●

●

●

●
● ●●

●●●
●●●
●

●●
●

●● ●
●

●●●●●
●

●●●●● ●●
●

●

●●
●●●●

●
●

●

●

●
●

●

●● ●●
●

●
●●

●
●●●●●●●●
●●

●

●
●

●●●●●
●

●●●

●

●

●
●●●●●

●
●●● ●

●

●
●

●●●

●

●●

●

●

●

●

●

●●●●●
●
●
●●●

●●

●

●●●
●
● ●

●
●

●●●
●

●

●
● ●

●●

●

●

●
●

●

●●
●
●●●

●●
●●

●●
●

●

●
●●●●

●

●

●●

●

●

●●●●
●

●

●

●

●●●
●

●

●●

●
●●● ●

●●

●

● ●●●
●●

●

●●●

●

●●
●

●

●●
●

●●●
●

●●
●

●●●● ●●
●

●● ●●●
●●● ●●●●●●●●●●●●●●●

●
●●

●

●●
●

●

● ●●●●●●●
●

●●

●

●
●

●

●● ●
●

●

●
●

●●

●

●
●

●
●● ●●●

●
●●●
●

●

●

●

●

●

●

●●● ●●●●● ●
●● ●

●

● ●●●
●●●

●

●

●
●●

●

●●●
●

●●
●

●●●●●●
●

●

●●●
●

●●●●

●

●● ●
●●

●
●●●
●

●

●●●●●●

●

●●
●
●●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●●
●

●●● ●●●

●

●●

●

●

●

●●● ●●●●●●●
●

●

●●●●

●
●

●●
●●●●●●●

●

●

●●●
●

●

●
●

●

●

●

●●●●
●

●●●●●●●

●

●

●

●

●●
●

●●
●

●

●●●
●●

●

●●●●
●●●●
●●●

●

●

●

●●●●●●

●

●●●
●

●●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●●
●

●●
●

●●

●

●●●●●

●
●

●
●

●● ●
●●
●●●
●

●●●●●●●●●●
●●●

●

●●●●●●
●

●●●

●

●●
●

●
●

●●

●

●
●

●
●●●

●

●

●

●

●

●●

●
●
●●
●

●
●
●

●

●

●

●●●●
●

●●

●

●
●

●●● ●●●●●●●●

●

●●●●●
●
●●●
●

●
●

●●

●

● ●●●

●
●●●

●●●

●

●
●●●

●
●

●

●●●●●

●

●

●

●●●●●
●

●●●●● ●●
●

●●● ●●●
●

●

●

●●●
●

●
●

●●

●

●●●●

●

●●

●

●
●●

●
●

●●●
●
●

●●
●

●●●●
●

●●●●●●
●
●●● ●
●●●●
●

●

●
●

●

●●

●

●●●●●●●●●
●

●●●●●
●●
●

●
●●●

●

●
●●●●
●●●●

●

●● ●

●

●

●●

●

●

●

●

●

●●●

●

●●●●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●

●
●
●

●

●
● ●●●

●
●●●●●

●

●

●●●●●●
●

●

●

●
●●

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05

−0
.2

−0
.1

0.
0

0.
1

mdsprod[,1]

m
ds
pr
od
[,2
]

Figure 2

Figure S2

Figure 2

Figure S2


