
! 1!

GigaScience: Technical Note

Clusterflock: A Flocking Algorithm for Isolating Congruent Phylogenomic
Datasets

Apurva Narechania1, Richard Baker1, Rob DeSalle1, Barun Mathema2, Sergios-
Orestis Kolokotronis1,4, Barry Kreiswirth2,5, Paul J. Planet1,3*

Research sites: Columbia University, American Museum of Natural History

1- Sackler Institute for Comparative Genomics, American Museum of Natural History,
New York, NY

2- Public Health Research Institute Center, New Jersey Medical School, Rutgers
Newark, New Jersey

3- Department of Pediatrics, Division of Pediatric Infectious Diseases, Columbia
University, College of Physicians and Surgeons, New York, NY

4- Department of Biological Sciences, Fordham University, Bronx, NY

5- Department of Epidemiology, Mailman School of Public Health, Columbia University,
New York, NY

*Correspondence to:
Paul J. Planet MD, PhD
Pediatric Infectious Disease Division
Columbia College of Physicians and Surgeons
630 West 168th Street
New York, NY 10032
Tel: 212-305-1296
Fax: 212 342-5218
Email: pjp23@columbia.edu

Keywords: swarms; flocking algorithm; unsupervised clustering; data mining; horizontal
gene transfer; recombination; Staphylococcus aureus

Running Title: Phylogenomic Flocking Algorithm

Word Count: Abstract=234

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 2!

Abstract

Background
Collective animal behavior such as the flocking of birds or the shoaling of fish has
inspired a class of algorithms designed to optimize distance-based clusters in various 5!
applications including document analysis and DNA microarrays. In the flocking model,
individual agents respond only to their immediate environment and move according to a
few simple rules. After several iterations the agents self-organize and clusters emerge
without the need for partitional seeds. In addition to their unsupervised nature, flocking
offers several computational advantages including the potential to decrease the number 10!
of required comparisons.

Findings
In Clusterflock, we implement a flocking algorithm designed to find groups (flocks) of
orthologous gene families (OGFs) that share a common evolutionary history. Pairwise 15!
distances that measure the phylogenetic incongruence between OGFs guide flock
formation. We test this approach on several simulated datasets varying the number of
underlying topologies, the proportion of missing data, and evolutionary rates, and show
that in datasets containing high levels of missing data and rate heterogeneity,
clusterflock outperforms other well-established clustering techniques. We also 20!
demonstrate its utility on a known, large-scale recombination event in Staphylococcus
aureus. By isolating sets of OGFs with divergent phylogenetic signal, we can pinpoint
the recombined region without forcing a pre-determined number of groupings or defining
a pre-determined incongruence threshold.
 25!
Conclusions
Clusterflock is an open source tool that can be used to discover horizontally transferred
genes, recombining areas of chromosomes, and the phylogenetic “core” of a genome.
Though we use it in an evolutionary context, it is generalizable to any clustering problem.
Users can write extensions to calculate any distance metric on the unit interval and use 30!
these distances to flock any type of data.

Findings

Background

Swarm intelligence describes the cooperative behavior that results from a group of 35!
agents executing simple behavioral programs. The agents themselves are
unsophisticated, but patterns emerge from the accumulation of pairwise interactions
resulting in completion of complex tasks necessary for the group’s survival [1]. Swarms
are by definition leaderless and the agents are given no internal or external direction. Ant
colonies, swarms of bees, shoals of fish, and flocks of birds all demonstrate this kind of 40!
behavior [2-5].

Because there is no central control, algorithms modeled on swarm intelligence excel at
data mining tasks where the goal is discovery of unknown patterns in data. Early models
of this type of behavior invoked the N-body problem as studied in the physics of celestial 45!
objects [6]. Later work integrated biological observations, particularly the importance of
local information in determining global patterns of behavior [7-10]. The Reynolds flocking
model [11] is one such example designed specifically to simulate the coherent behaviors

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 3!

characteristic of a flock of birds. Reynolds original goal was to bestow life-like animation
to particles – which he termed boids – in motion pictures. In Reynolds’ flocking, each 50!
boid in a simulation is a clone of every other, and boids heed only their immediate
surroundings as delimited by a radius of perception. Boids react to flockmates within this
radius using a small library of simple behaviors that ultimately result in the synchrony of
the entire group. If boids are assigned bits of information and if distances between these
bits of information are easily computed, then the flocking algorithm becomes suitable for 55!
unsupervised clustering.

Here we present Clusterflock, a method that aims to isolate groups (flocks) of genes with
congruent historical signals. In our technique, boids represent orthologous gene families
(OGFs), and the distance between them is measured as a simple test of phylogenetic 60!
congruence [12].

Phylogenetic incongruence is rampant in the evolutionary history of genes across most
organisms in the tree of life [13-16], but the problem is particularly severe among
bacterial genomes where evolution proceeds through multiple mechanisms that destroy 65!
phylogenetic signal including recombination, de novo gene acquisition, loss and
duplication [17]. A central question in microbial evolutionary biology is how to distinguish
these non-vertical mechanisms and separate vertical signal from the horizontal signal
produced by recombination and gene transfer. Whole genomes have thousands of
genes with potentially different histories magnifying the analytical and computational 70!
complexity of this problem [18, 19]. The number of recombination events and the rates of
gene transfer are often not known, and inclusion of genes with different histories in the
same analysis can lead to bias and errors in phylogenetic trees. This kind of error is
especially problematic in cases of large-scale recombination or sustained/concerted
gene transfer between organisms that occupy the same habitat [20], situations that can 75!
lead to strong support for the incorrect hypothesis.

A handful of algorithms have been put forward to address this phylogenetic problem in
large whole-genome datasets. In general, such approaches rely on a two-step
procedure: pairwise tests of phylogenetic incongruence between OGFs followed by 80!
clustering to segregate OGFs into congruent groups. A range of initial incongruence
tests have been used including character-based incongruence measures such as the
incongruence length difference [e.g.,mILD [19]] or the likelihood ratio test [e.g.,
CONCATERPILLAR [21]], and topological measures [e.g., Conclustador [18]]. For the
clustering step, CONCATERPILLAR and mILD use agglomerative, hierarchical 85!
clustering techniques, whereas Conclustador uses k-means and spectral clustering
algorithms. Hierarchical clustering techniques generally require a threshold value that
defines the boundaries of groups, an assumption that could introduce bias or error.
Spectral, as implemented in conclustador, and k-means algorithms require prior
estimation or specification of the number of clusters, which could also lead to erroneous 90!
lumping or splitting. In contrast, Clusterflock does not require prior specification of
distance thresholds or the number of groups.

We have used the incongruence length difference (ILD) in our analysis of the
Clusterflock algorithm, but the algorithm could also be applied to the likelihood ratio test 95!
or the topological incongruence measure presented in Conclustador [18]. Indeed the
flocking algorithm can cluster anything given precalculated pairwise distances between
all entities. Here we test the flocking model against other clustering algorithms such as
multidimensional scaling (MDS), hierarchical clustering, and partitioning around medoids

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 4!

(PAM). To demonstrate its utility in the real world, we also use Clusterflock to analyze a 100!
well-studied example of massive genome recombination in Staphylococcus aureus
clonal group ST239 involving nearly 20% of the chromosome [22]. Like many
phylogenomic datasets, the staphylococcal genomes we analyzed have large amounts
of missing data, a circumstance that often limits the effectiveness of clustering
algorithms [18]. While other techniques failed to segregate the recombined region of the 105!
ST239 genome, Clusterflock successfully distinguishes recombined genes from those in
the recipient genome. We have explored this resilience to missing data and to rate
heterogeneity through simulation.

Implementation 110!

A depiction of Reynolds’ original algorithm and our modifications is shown in Figure 1. At
the outset, agents (boids in the simulation) are assigned a random position and velocity
in a 2-dimensional field normally set at one particle per square unit. Agents are then
allowed to interact with one another. In the classic approach, individual entities are 115!
influenced only by their local environment as given by a user-defined radius. For each
agent, flockmates within this radius will influence the calculation of three steering vectors
that combine to alter the particle’s velocity: Alignment, Cohesion and Separation. Agents
will tend to head in the average direction of their flockmates (alignment), move towards
their average position (cohesion), and avoid crowding one another (separation). To 120!
accelerate the formation of flocks, we added Repulsion as a fourth vector and designed
it to operate between each agent’s field of vision (radius) and its radius of separation. In
a clustering context, repulsion quickly separates agents with high relative distances,
seeding flocks at an early point in the simulation. The calculation of the four vectors is
iterated over all agents in the system for a user-defined number of frames. 125!

In our adaptation, each particle is a set of OGFs in sequence alignment (i.e., a
phylogenetic matrix), and each interaction triggers a measurement (or a hash table
lookup) of phylogenetic congruence between alignments in the pair. We model our
congruence metric after the incongruence length difference (ILD) [23]: 130!

LD =
LA+B − (LA + LB)

LA+B

where LA+B is the length of the Maximum Parsimony (MP) tree calculated when the two
gene alignments are combined (i.e. concatenated), and LA and LB are the lengths of the 135!
trees calculated for each gene individually. An LD of zero indicates complete
congruence (i.e. the gene trees are identical), whereas a positive LD indicates that the
two OGFs have divergent phylogenetic topologies. To function as a distance metric on
the unit interval, LD is normalized and therefore scaled between 0 and 1. We calculated
single gene parsimony trees and concatenated trees in PAUP* [24] using 100 heuristic 140!
searches with random sequence addition and tree bisection and reconnection.

Unlike other implementations [25, 26] we use the LD metric directly in our formulation of
the steering vectors. This allows the distance between any two OGFs to have a
continuous effect on the simulation. More specifically, alignment and cohesion are 145!
calculated as the average velocity and position, respectively, of all flockmates within any
given agent’s field of view (Figure 1). This average is then modulated by two factors: the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 5!

average LD of all flockmates, and a user-defined diminishment factor. The equation for
alignment is shown here.

v = 1
n

vx
x

n

∑ •
1− 1

n
LDx

x

n

∑
D

 150!

where v is the velocity driven by alignment, n is the number of flockmates, vx is the
velocity of flockmate x, LDx is the LD for flockmate x, and D is the diminishment factor.
In this scenario, as the average LD increases, the alignment or cohesion effect
decreases. Similarly, as the diminishment factor increases, the alignment or cohesion 155!
effect decreases. The diminishment factor is intended as a layer of control, giving the
user the opportunity to up weight or down weight the alignment and/or cohesion vectors.

Separation and repulsion are treated somewhat differently and are instead calculated
through iterative displacement. Each agent within the separation distance updates the 160!
separation vector in turn, attempting to double the distance between itself and its
counterpart:

 v = v− (Px −P) ∀x{1,..,n}
 165!
where v is the velocity driven by separation, and Px and P are the positions of the agent
in question and its flockmate x, respectively. Repulsion is enhanced separation that
operates between the separation distance and the perception radius. It is directly
proportional to the LD of flockmate X and a user-defined enhancement factor:
 170!
 v = v− ((Px −P)× (LDxE)) ∀x{1,..,n}

where LDx is the LD for flockmate x, and E is the enhancement factor. In this
formulation, if the LD between any two OGFs is zero, the repulsion effect vanishes. For
positive LDs, repulsion is positive and proportional to the magnitude of the incongruence 175!
calculated. Increasing the enhancement factor can magnify any existing repulsion
considerably.

Summing the velocities derived from the cohesion, alignment and separation/repulsion
rules encodes the evolutionary distance information between an active agent and all its 180!
flockmates. Done across all agents over all iterations, OGFs converge on multiple
evolutionary solutions, and the final frame of the simulation often isolates all congruent
clusters. Figure 2 captures snapshots of this process. Seed clusters form very early and
later move to intercept one another. Congruent flocks will absorb one another while
incongruent flocks repel. 185!

Clusterflock is a parameter-rich approach, allowing the user fine-grain control over the
steering of OGFs within the virtual space. Besides the cohesion, alignment and repulsion
factors outlined here, other key parameters include the length of the virtual square that
serves as the flight space, the radius of awareness around each agent, the initial 190!
velocity, the velocity limit, and the number of iterations. We have found that a gene per
square unit and a radial awareness of 10% of the flight space length are sufficient to

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 6!

encourage efficient flock formation in most cases. Since velocity can increase quickly if
left uncapped, limiting it to 2% of the virtual square’s length is usually adequate for
circulation. 195!

In its original form, the algorithmic complexity of flocking is O(n2). Each agent must
spatially assess all other agents to determine who is in its field of view (radius). We have
reduced this complexity by borrowing two heuristics, one from the world of video games,
and one from nature itself. In video games that require real-time calculation of the 200!
interactions of many particles, a spatial hashing structure [27, 28] reduces the number of
required comparisons by binning particles into a discrete number of cells. Agents are
sorted by their location and only those in cells immediately surrounding the query are
processed. In practice, spatial hashing’s most significant savings are accrued early in a
simulation when agents are evenly dispersed. As flocks begin to form, some cells are 205!
completely bereft, while others can contain thousands of congruent OGFs.

A more even and lasting heuristic is awareness. In nature, an individual in a flock will not
necessarily respond to all its immediate flockmates [10, 29]. Often, it responds to a mere
subset, an approximation that rarely leads to unwanted perturbations or collisions 210!
because of the cumulative, emergent nature of the group’s motion as a whole. Capped
by a user-input maximum awareness, a random sampling of flockmates for each gene is
often sufficient to guide groups of flocks into distinct evolutionary classes. This heuristic
can be extremely significant towards the end of a simulation when many of the final
flocks have formed. Groups of thousands of congruent individuals are not uncommon. 215!
By dimming each agent’s effective perception, only a fraction of these congruent
individuals require analysis.

Despite these shortcuts, flocking is a computational expensive procedure. Without
image/movie creation and analysis of cluster formation progress (k-means or OPTICS, 220!
see below), the flocking procedure alone will require on average 30 CPU seconds for a
dataset containing 100 loci of 100 residues each across 10 taxa. Because we encourage
100 or more replicates, total required CPU per experiment for this hypothetical dataset
would be just short of 1 CPU hour. In contrast, a single run of other clustering
procedures like MDS, hierarchical clustering, and PAM require less than a CPU second 225!
to analyze this type of data. For clusterflock, what is lost in terms of speed is gained in
performance as we show in the next section.

In test: simulations and comparisons to dominant clustering techniques
 230!
We simulated 100 locus datasets containing 100 residues per locus across 10 taxa in
Seq-Gen [30] using JTT. Underlying these simulated proteins were anywhere from 1 to
25 generated topologies: in the case of 1 underlying topology all 100 loci were modeled
as congruent; in the case of 25 topologies loci were randomly assigned to each tree
without requiring that each tree be equally represented. Because missing data is a 235!
common problem in phylogenomics we also chose to model data sparsity’s effect on
clustering performance. Taxa were randomly assigned as missing on a per locus basis
at rates varying from 0% to 50% in 10% increments. Because rate heterogeneity is also
a common problem, in a separate set of experiments with no missing data, we randomly
assigned about half the proteins in each matrix to be 3X (1.5/0.5), 7X (1.75/0.25) or 19X 240!
(1.9/0.1) faster than their counterparts in terms of relative evolutionary rates [30]. For
statistical power we repeated dataset creation 10 times per topological condition across

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 7!

our missing data thresholds and rate heterogeneity multipliers resulting in a grand total
of 2250 matrices.
 245!
In addition to using clusterflock (100 replicates of 500 frames each), we analyzed the
100 proteins in each matrix using multidimensional scaling (MDS), hierarchical clustering
and PAM, using the R packages [31] cmdscale, hclust, and pam, respectively. In the
case of PAM, a k-medoids operation, and hierarchical clustering users must provide an
estimate of expected cluster number at the outset. In practice, providing this number is 250!
often difficult given the increasing complexity of modern phylogenomic datasets. We
instead favor Clusterflock and MDS, techniques that spatially encode the distance
information between loci allowing for the emergence of distinct data categories.

Figure 3 summarizes the results of these simulations. Shown is the average Jaccard 255!
Index of all replicates against the number of simulated topologies across all data sparsity
thresholds. Because we know which tree is associated with each gene, we can employ
the Jaccard Index as an external measurement of clustering efficiency. The Jaccard is
defined as follows:
 260!

! = !"
!" + !" + !"

where TP is true positive, FP is false positive and FN is false negative as judged by
correct assignation to a congruent tree topology group.

As expected, the performance of all four methods degrades with increasing topological 265!
complexity and increasing data sparsity. No method performs well when 50% of the data
is missing. And increasing the topological heterogeneity makes it more difficult for any
method to discern between groups. However, Clusterflock is robust to the effects of
missing data in a way that no other method tested here has shown. It also mirrors the
performance of MDS as the evolution of the underlying genes becomes more 270!
complicated.

With the advantage of seeding, hierarchical clustering and PAM,are superior in the
special case where the number of topologies are absolutely known and that data is used
to guide cluster formation. As long as there is little missing data, these two methods are 275!
clearly superior among the techniques we compare here. Surprisingly, hierarchical
clustering and PAM perform very poorly as data is removed. For MDS and Clusterflock,
methods that spare the user an initial estimation of the number of clusters, increasing
topological complexity lowers the Jaccard at approximately the same rate as long as
there is no missing data. The difference between MDS and Clusterflock techniques 280!
materializes once the data thins.

Figure 4 shows the effect of rate heterogeneity. MDS degrades rapidly with increasing
rates of relative heterogeneity, while the strong performance of Clusterflock persists
across evolutionary rates. Therefore, up to a point, clusterflock is resilient to both 285!
missing data and differing evolutionary rates. Zero, ten and twenty percent missing data
perform equally well whereas MDS shows quick collapse as information is removed. And
diverging evolutionary rates among genes do not seem to affect clusterflock’s ability to
sort them into their respective topological groups.
 290!
In action: a recombination event in Staphylococcus aureus

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 8!

To test our ability to detect and separate distinct populations of incongruent OGFs in
biological systems, we used a well-known example of large-scale genomic
recombination between two S. aureus clonal complexes (CC) [22]. The genomes of 295!
ST239 S. aureus appear to have formed from a recombination event in which 20% of a
CC8 genome was replaced with the homologous portion of the genome from a CC30
strain. We chose 11 S. aureus strains (GCA_000146385.1, GCA_000012045.1,
GCA_000011505.1, GCA_000011265.1, GCA_000013425.1, GCA_000204665.1,
GCA_000159535.2, GCA_000027045.1, GCA_000017085.1, GCA_000236925.1 and 300!
SA21300) including examples from CC30, CC8 and ST239 and generated groups of
orthologous genes across all their proteomes using orthologID [32]. The resulting
sequence data matrix contained 2550 orthologous OGFs totaling 758,270 amino acid
characters. Missing data was tolerated, but representation from at least 4 taxa for each
gene was required. 305!

Figure 2 shows three frames from the beginning of a 1000 frame simulation and three
snapshots from even intervals thereafter. We have color-coded OGFs here for clarity:
green maps to the hybridized portion of the genome, and red maps to the remainder. A
complete video of this simulation can be found at https://youtu.be/v_4bDprmkpU. 310!

Sorting of OGFs by phylogeny is evident as early as the 10th frame and proceeds further
as these initial seeds encounter one another in the virtual space. But hundreds to
thousands of frames are required to amass flocks containing all congruent OGFs. The
number of frames required is dependent on the general phylogenetic cohesion of the 315!
OGFs, and their random starting positions and velocities in the virtual space. By the end
of the simulation, the OGFs have self-organized in the leaderless way characteristic of
swarm behavior. Without having to estimate the number of expected evolutionary
trajectories, we find that there are two dominant flocks: one corresponding to the
recombined region and the other to the rest of the genome. We observe two 320!
unexpected, smaller flocks (Figure 5) whose provenance does not trace to any known
evolutionary event or functional class.

Because of the stochasticity inherent in this type of behavioral method there is no
guarantee that flocks of the recombined region or the rest of the genome will be 325!
complete. Either or both may enter the final frame in pieces. In other words, we need
more statistical heft than one simulation can provide. To test the reproducibility of the
flocks and identify robust flock membership, we repeat the simulation in parallel,
randomly varying each OGF’s initial placement and velocity. For the purposes of this
example, we deployed 100 replicates. 330!

Visual inspection of 100 final frames, or the thousands that may be desirable for other
clustering problems, is prohibitive. We automate the analysis of each final frame using
ELKI’s [33] implementation of the OPTICS algorithm [34], a method designed to identify
unseeded clusters in spatial data regardless of their density. Note that in contrast to our 335!
simulations where we know the number of clusters and can therefore leverage k-means,
here we assume that this number is unknown, and in the case of very complex datasets,
unknowable. Supplemental Figure 1 shows the average number of auto-detected flocks
across all 100 simulations as a function of their frame. After an initial spike, or seeding
stage, micro-clusters combine with neighboring micro-clusters that share a congruent 340!
phylogenetic history. A near exponential decay in the number of auto-detected flocks is

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 9!

followed by a steady state. In the case of S. aureus, by the 200th frame, Clusterflock has
isolated most of the evolutionary paths.

We systematize the flocking information by assigning a flock label to each OGF for each 345!
replicate. For example, replicate 1 may have resulted in five flocks; each of its 2550
gene families is therefore assigned to A, B, C, D, or E. Similar assignments are made
across all replicates and the labels are treated as character information in a matrix. The
Flock Matrix therefore has as many rows as there are OGFs and as many columns as
there are replicates. Organized in this way, we can derive our final sets of congruent 350!
OGFs using tree reconstruction as shown in Figure 6A. This topology highlights groups
of OGFs that flock together regularly across all replicates. Here we employ Neighbor
Joining and assess node robustness by bootstrapping 100 times. Since we have no
external truth against which to measure success, we propose that the application of non-
parametric bootstrapping to the Flock Matrix can serve as the basis for assessing validity 355!
[35-38]. We observe high levels of support for the flock that is composed of recombined
genes, and flocks that represent the two novel phylogenetic histories highlighted in
Figure 5.

Our main premise was that we could use Clusterflock to detect the genes involved in the 360!
ST239 recombination event a priori with just pairwise interactions guided by
incongruence metrics as OGFs encountered one another in a virtual space. There was
no expectation that we would find only two unique flocks, an assumption required by
other clustering methods keyed on partitional seeds. Indeed, two additional flocks
emerge, with OGFs that tightly share a unique historical signal distinct from our two main 365!
evolutionary classes. When we cluster these data with MDS (Supplemental Figure 2)
there is no discernable pattern, a predicament most likely due to some combination of
missing data and rate heterogeneity.

If, as we suspect, the conflicting histories of our two main flocks originate from the 370!
recombination event, we should see the gene families sort based on the known
boundaries of the structural change. By creating profile HMMs [39, 40] of each of our
2550 OGFs and mapping them to the S. aureus USA300/TCH1516 genome using
hmmsearch in the HMMER package, we show that the flock of OGFs corresponding to
the recombined region (Figure 6B), map there almost exclusively. The flock 375!
corresponding to the rest of the genome is enriched in genes outside of the recombined
region, but this enrichment is imperfect. Many genes from within the recombined region
contaminate the flock representing the rest of the genome. The length differences of
these genes with respect to genes in the largest flock is zero, indicating that they are
100% congruent with the non-recombined phylogeny. These select regions of the 380!
recombination event could have reverted through a series of subsequent recombination
events, or may show the original recombination event did not replace one continuous
section of the chromosome. A discontinuous pattern of recombination is known to occur
in other bacteria [41, 42]. Other possibilities include convergent changes, or high levels
of conservation prior to the recombination event. 385!

Conclusions

Clusterflock is an enhanced version of Reynolds’ original flocking algorithm customized
to function as a clustering technology. Here we show that it is well suited to isolating 390!
congruent gene families into discrete flocks even if they have significant levels of
missing data or rate heterogeneity. It can be used to identify a phylogenetic core of

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 10!

genes that share a vertical evolutionary signal while highlighting genes that conflict in
subtle ways. However the technique is general, and not restricted to evolutionary
analysis [25]. Any distance metric scaled between 0 and 1 can be used to cluster any set 395!
of entities. In an era when supervised machine learning often captures many
bioinformatic headlines, Clusterflock is in the tradition of data mining: a bio-inspired
clustering algorithm used to discover categories of entities without any training, any
sense of the number of categories to expect, or any bias in how distant two entities must
be to be considered different. 400!

Figure Legends

Figure 1. Flocking Algorithm and Rules. Individual agents (boids) are shown as triangles,
interactions as dashed lines, and the radius of perception as differently colored circles 405!
depending on the vector considered. Alignment and cohesion reinforce flocking behavior
while repulsion disrupts it. In cohesion, a given boid moves towards the center of mass
of all congruent flockmates within its field of vision. Boids will also align their velocities
with congruent flockmates. However, all boids regardless of whether they are congruent
or incongruent will separate from flockmates in their immediate vicinity. Cohesion, 410!
alignment, and separation are the core forces in Reynold’s original flocking algorithm.
We have added repulsion as a force capable of isolating congruent and incongruent
agents. It operates between an agent’s field of vision and the smaller, concentric circle
describing this agent’s radius of separation. The magnitudes of alignment, cohesion, and
repulsion are a function of the phylogenetic distance between the agents as described in 415!
the implementation.

Figure 2 Snapshots from a Staphylococcus aureus Simulation. Here we show three early
snapshots, and three snapshots taken from intervals along a 1000 frame flocking
simulation. Agents colored green represent genes from the recombined region, while 420!
those colored red are from the core genome. Specific parameters chosen here include:
DIMMENSIONS = 2500; BOUNDARY = 1; INIT_VELOCITY = 50; COHESION_FACTOR
= 5; SEPARATION_DISTANCE = 5; REPEL_FACTOR = 10; ALIGNMENT_FACTOR =
5; ITERATIONS = 1000; RADIUS = 500; VELOCITY_LIMIT = 50; MINPTS=20; XI=0.15.
 425!
Figure 3. Simulating Topological Complexity and Missing Data. Four plots measuring the
Jaccard Index (see In test) against increasing topological complexity and across
increasing levels of missing data percentage (colored as indicated in the insert) are
shown. We compare four methods here: (A) Clusterflock, (B) multidimensional scaling,
(C) hierarchical clustering, and (D) Partitioning around medoids (PAM). In order to 430!
compare the four techniques using similar methods, and because the number of
underlying topologies in each simulation is known, for Clusterflock and MDS we used k-
means to cluster the final spatial arrangement of loci and assign OGFs to topological
groups.
 435!

Figure 4. Simulating Topological Complexity and Evolutionary Rate Heterogeneity. Here
we show two plots measuring the Jaccard Index against topological complexity and
across four levels of relative evolutionary rate: 1X (1/1); 3X (1.5/0.5); 7X (1.75/0.25) and
19X (1.9/0.1) (colored as indicated in the insert). We compare two methods here: (A) 440!
Clusterflock, and (B) multidimensional scaling.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 11!

Figure 5. The Final Frame. Four parsimony trees corresponding to the four dominant
flocks are shown superimposed on the final frame of the example simulation. Taxa are
colored according to their phylogenetic group (MLST classification). Genes from the 445!
recombined region place ST239, the hybrid strains, sister to ST30, whereas genes from
the rest of the genome yield a monophyletic arrangement of ST239 and ST8. The
unknown phylogenies highlight genes that are members of two novel evolutionary
histories.
 450!
Figure 6. Consensus tree of Staphylococcus aureus Flocks Mapped to the
USA300TCH1516 Genome. (A) The neighbor joining bootstrap consensus tree for 100
simulations is shown. The majority of the genome occupies the largest branch
comprising a virtual polytomy (red). Four other branches of note are highlighted, the
largest of which describes the flock consisting of genes from the recombined region 455!
(green). (B) We constructed HMMs from the orthologous groups (genes) in each of the
four dominant flocks and queried them against a USA300TCH1516 reference. Their
genomic locations are shown in the four tracks displayed here. The outermost track is
composed of genes from the largest flock. The second track localizes genes from the
second largest flock to the known recombined region. 460!

Supplemental Figure Legends

Supplemental Figure 1. Auto-detected Flocks per Frame. Here we show the average 465!
number of flocks detected at any given point along a 1000 frame simulation for the S.
aureus simulation. The OPTICS spatial clustering algorithm was used to auto-detect
flocks in the 100 replicate frames at each point along simulation.

Supplemental Figure 2. Multidimensional scaling of the Staphylococcus aureus dataset. 470!
We show a failed attempt to cluster the Staphylococcus aureus dataset with MDS. Most
loci gather in a single area and we see no separation between the recombined region
and the rest of the genome.

Availability and Requirements 475!
Project Name: Clusterflock
Project Page: https://github.com/narechan/clusterflock
Operating System: Linux
Programming Language: PERL
Other Requirements: See manual in the distribution 480!
License: GPLv3

Availability of Supporting Data
The data sets supporting the results of this article are available in the GitHub repository.
See https://github.com/narechan/clusterflock/tree/master/releases/0.1/example_data for 485!
the S. aureus data. See
https://github.com/narechan/clusterflock/tree/master/releases/0.1/test_data for test data.

References
!490!
1.! Krause!J,!Ruxton!GD:!Living&in&groups.!Oxford!;!New!York:!Oxford!University!

Press;!2002.!

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 12!

2.! Heppner!FH:!Three/dimensional&structure&and&dynamics&of&birds&flocks.!
In:!Animal'Groups'in'Three'Dimensions.!Edited!by!Parrish!JK,!Hamner!WM.!
Cambridge:!Cambridge!University!Press;!1997.!495!

3.! Pitcher!TJ,!Parrish!JK:!The&functions&of&shoaling&behavior.!In:!The'Behavior'
of'Teleost'Fishes.!Edited!by!Pitcher!TJ.!London:!Chapman!&!Hall;!1993:!363[
439.!

4.! Partridge!BL,!Pitcher!TJ:!The&sensory&basis&of&fish&schools:&relative&role&of&
lateral&line&and&vision.!Journal'of'Comparative'Physiology'1980,!135:315[500!
325.!

5.! Couzin!ID:!Collective&cognition&in&animal&groups.!Trends'Cogn'Sci'2009,!
13(1):36[43.!

6.! Okubo!A:!Dynamical&aspects&of&animal&grouping:&swarms,&schools,&flocks,&
and&herds.!Adv'Biophys'1986,!22:1[94.!505!

7.! Huth!A,!Wissel!C:!The&simulation&of&the&movement&of&fish&schools.!Journal'
of'Theoretical'Biology'1992,!156:365[385.!

8.! Czirok!A,!Vicsec!M,!Vicsec!T:!Collective&motion&of&organisms&in&three&
dimensions.!Physica'A'1999,!264:299[304.!

9.! Czirok!A,!Stanley!HE,!Vicsec!T:!Spontaneously&ordered&motion&of&self/510!
propelled&particles.!Journal'of'Physics'A'1997,!30:1375–1385.!

10.! Couzin!ID,!Krause!J,!James!R,!Ruxton!GD,!Franks!NR:!Collective&memory&and&
spatial&sorting&in&animal&groups.!J'Theor'Biol'2002,!218(1):1[11.!

11.! Reynolds!C:!Flocks,&herds,&and&schools:&a&distributed&behavioral&model.!
Computer'Graphics'1987,!21(4):25[34.!515!

12.! Planet!PJ:!Tree&disagreement:&measuring&and&testing&incongruence&in&
phylogenies.!J'Biomed'Inform'2006,!39(1):86[102.!

13.! Boto!L:!Horizontal&gene&transfer&in&the&acquisition&of&novel&traits&by&
metazoans.!Proc'Biol'Sci'2014,!281(1777):20132450.!

14.! Keeling!PJ,!Palmer!JD:!Horizontal&gene&transfer&in&eukaryotic&evolution.!520!
Nat'Rev'Genet'2008,!9(8):605[618.!

15.! Polz!MF,!Alm!EJ,!Hanage!WP:!Horizontal&gene&transfer&and&the&evolution&
of&bacterial&and&archaeal&population&structure.!Trends'Genet'2013,!
29(3):170[175.!

16.! Syvanen!M:!Evolutionary&implications&of&horizontal&gene&transfer.!Annu'525!
Rev'Genet'2012,!46:341[358.!

17.! Planet!PJ:!Reexaminingµbial&evolution&through&the&lens&of&
horizontal&transfer.!EXS'2002,!92:247[303.!

18.! Leigh!JW,!Schliep!K,!Lopez!P,!Bapteste!E:!Let&them&fall&where&they&may:&
congruence&analysis&in&massive&phylogenetically&messy&data&sets.!Mol'530!
Biol'Evol'2011,!28(10):2773[2785.!

19.! Planet!PJ,!Sarkar!IN:!mILD:&a&tool&for&constructing&and&analyzing&matrices&
of&pairwise&phylogenetic&character&incongruence&tests.!Bioinformatics'
2005,!21(24):4423[4424.!

20.! Andam!CP,!Gogarten!JP:!Biased&gene&transfer&inµbial&evolution.!Nat'535!
Rev'Microbiol'2011,!9(7):543[555.!

21.! Leigh!JW,!Susko!E,!Baumgartner!M,!Roger!AJ:!Testing&congruence&in&
phylogenomic&analysis.!Syst'Biol'2008,!57(1):104[115.!

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 13!

22.! Robinson!DA,!Enright!MC:!Evolution&of&Staphylococcus&aureus&by&large&
chromosomal&replacements.!J'Bacteriol'2004,!186(4):1060[1064.!540!

23.! Farris!JS,!M!K,!AG!K,!C!B:!Constructing&a&significance&test&for&
incongruence.!Systematic'Biology'1995,!44:570[572.!

24.! Swofford!DL:!PAUP*.&Phylogenetic&Analysis&Using&Parsimony&(*and&Other&
Methods).!In.,!4!edn:!Sinauer!Associates,!Sunderland,!Massachusetts.;!2003.!

25.! Cui!X,!Gao!J,!Potok!TE:!A&flocking&based&algorithm&for&document&545!
clustering&analysis.!Journal'of'Systems'Architecture'2006,!52(8[9):505[515.!

26.! Bellaachia!A,!Bari!A:!A&Flocking&Based&Data&Mining&Algorithm&for&
Detecting&Outliers&in&Cancer&Gene&Expression&&Microarray&Data.!In:!IEEE'
International'Conference'on'Information'Retrieval'and'Knowledge'

Management:'2012;'Malaysia;!2012.!550!
27.! Gross!M,!Heidelberger!B,!Muller!M,!Pomernats!D,!Teschner!M:!Optimized&

Spatial&Hashing&for&Collision&Detection&of&Deformable&Models.!Vision,'
Modeling,'and'Visualization'2003.!

28.! Hastings!EJ,!Mesit!J,!Guha!RK:!Optimization&of&large/scale,&real/time&
simulations&by&spatial&hashing.!In:!Proc'2005'Summer'Computer'Simulation'555!
Conference:'2005;!2005:!9[17.!

29.! Gueron!S,!Levin!SA,!Rubenstein!DI:!The&Dynamics&of&Herds:&From&
Individuals&to&Aggregations.!Journal'of'Theoretical'Biology'1996,!
182(1):85[98.!

30.! Rambaut!A,!Grassly!NC:!Seq/Gen:&an&application&for&the&Monte&Carlo&560!
simulation&of&DNA&sequence&evolution&along&phylogenetic&trees.!Comput'
Appl'Biosci'1997,!13(3):235[238.!

31.! Team!RC:!R:&A&Language&and&Environment&for&Statistical&Computing.!In.:!
R!Foundation!for!Statistical!Computing;!2015.!

32.! Chiu!JC,!Lee!EK,!Egan!MG,!Sarkar!IN,!Coruzzi!GM,!DeSalle!R:!OrthologID:&565!
automation&of&genome/scale&ortholog&identification&within&a&parsimony&
framework.!Bioinformatics'2006,!22(6):699[707.!

33.! Achtert!E,!Kriegel!H,!Zimek!A:!ELKI:&A&Software&System&for&Evaluation&of&
Subspace&Clustering&Algorithms.!In:!20th'International'Conference'on'
Scientific'and'Statistical'Database'Management:'2008;'Hong'Kong,'China;!570!
2008.!

34.! Ankerst!M,!Breunig!MM,!Kriegel!H,!Sander!J:!OPTICS:&ordering&points&to&
identify&the&clustering&structure.!In:!ACM'SIGMOD'international'conference'
on'Management'of'data:'1999:!ACM!Press;!1999:!49[60.!

35.! Ben[Hur!A,!Elisseeff!A,!Guyon!I:!A&stability&based&method&for&discovering&575!
structure&in&clustered&data.!Pac'Symp'Biocomput'2002:6[17.!

36.! Levine!E,!Domany!E:!Resampling&method&for&unsupervised&estimation&of&
cluster&validity.!Neural'Comput'2001,!13(11):2573[2593.!

37.! Liu!Y,!Li!Z,!Xiong!H,!Gao!X,!Wu!J,!Wu!S:!Understanding&and&enhancement&of&
internal&clustering&validation&measures.!IEEE'Trans'Cybern'2013,!580!
43(3):982[994.!

38.! Volkovich!Z,!Toledano[Kitai!D,!Weber!G[W:!Self/learning&K&/means&
clustering:&a&global&optimization&approach.!Journal'of'Global'Optimization'
2013,!56(52):219[232.!

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

! 14!

39.! Eddy!SR:!Profile&hidden&Markov&models.!Bioinformatics'1998,!14(9):755[585!
763.!

40.! Krogh!A,!Brown!M,!Mian!IS,!Sjolander!K,!Haussler!D:!Hidden&Markov&
models&in&computational&biology.&Applications&to&protein&modeling.!J'
Mol'Biol'1994,!235(5):1501[1531.!

41.! Lin!EA,!Zhang!XS,!Levine!SM,!Gill!SR,!Falush!D,!Blaser!MJ:!Natural&590!
transformation&of&helicobacter&pylori&involves&the&integration&of&short&
DNA&fragments&interrupted&by&gaps&of&variable&size.!PLoS'Pathog'2009,!
5(3):e1000337.!

42.! Mell!JC,!Shumilina!S,!Hall!IM,!Redfield!RJ:!Transformation&of&natural&
genetic&variation&into&Haemophilus&influenzae&genomes.!PLoS'Pathog'595!
2011,!7(7):e1002151.!

!
!
!
!600!
!
 !

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 25, 2016. ; https://doi.org/10.1101/045773doi: bioRxiv preprint

https://doi.org/10.1101/045773
http://creativecommons.org/licenses/by/4.0/

Alignment

Cohesion

Repulsion

Separation

Figure 1

1" 5" 10"

250" 500" 1000"

Figure 2

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0 zero

ten
twenty
thirty
forty
fifty

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0

Topologies)

Ja
cc
ar
d)
In
de

x)
A) B)

C) D)

Clusterflock) MDS)

Hierarchical))Clustering) PAM)

Figure 3

Figure 3

Topologies)

Ja
cc
ar
d)
In
de

x)
A) B)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0 none

3X
7X
19XClusterflock) MDS)

Figure 4

Figure 4

Hybrid Region

Core

Unknown 1

Unknown 2

ST8

ST239

ST30

Recombined

Figure 5

Recombined

Figure 5

A" B"

Figure 6

Figure 6

0 200 400 600 800 1000

2
4

6
8

10
12

Frame

Av
er

ag
e

N
um

be
r o

f F
lo

ck
s

Figure 2

Figure 2

Figure S1

Figure 2

Figure 2

Figure S1

●●●●●

●

●●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●●●●
●
●

●
●●●● ●●●●●

●

●
●

●

● ●
●

●●
●

●● ●●

●

●●

●

●

●
●

●

●
●

●

●

●

●●●

●

● ●
●●●
●●● ●●

●

●●●
●●●●●● ●●●
●

●

●

●

● ●
●

●
●

●●●

●

●

●●
●
●

●

●●●●●●● ●●●
●

●●●

●●

●
●

●

●

●
●● ●

●

●

●

●●●
●

●

●●

●

●
●
●

●

●

●●●
●

●

●

●●●

●

●

●

●●

●●

●●

●
●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●●

●

● ●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●

●

●

●
●

●
●

●

●

●

●●●●

●

●●

●

●

●

●
●●●

●
●●●●●●●●

●

●●
●

●

●
●
●●●●●

● ●

●●●
●

●●●

●

●
●●●●●

●●
●●

●

●
●●●●●●●●

●
●●●

●

●
●●●●●●

●

●●

●
●

●●● ●●
● ●

●●

●

●●●

●

●●●●

●

●
●

●● ●●●
●

●●●●●●

●

●
●
●●

●●
● ●

●

●
●

●

●
●●●●●●●
●●

●

●●●
●

●●●●●●●●●●●

●

●
●●

●
●

●●●●●●●●●●●

●
●●●

●

●●●●●●●● ●

●

●

●●●●●

●

●●●●
●

●●●●

●

●●●●●●●

●

●
●

●

●
●●●●●

●

●●●●● ●●●●●●●●

●
●

●●●●●●

●
●

●●

●

● ●●●

●

●● ●
●
●●●●●●●

●

●●●●●●●
●
●●●●●●●● ●

●

●●●

●

●

●

●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●
●

●●●●●●●
●
●●●●●

●

●●●●

●

●

●

●●●●●●●
●

●●

●

●

●

●

●●

●

●

●●●●●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●● ●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

● ●●
●●

●

●●

●

●●●●● ●●

●
●

●
●●●●●●●●●●●

●
●

●

●

●

●●●●

●
●

●●●●●●●● ●
●●

●

●●●●●●●●●●●●●●●●●●
●

●●●
●
●

●

●

●

●

●

●●●
●

●

●

●●●●

●

●●●●●
●

●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●● ●●

●

●●●●●●●●●
●●●●● ●
●●●

●

●
●●●●●
●

●

●
●●●●●● ●

●

●●●
●

●●
●

●

●
●●●●●●●
●

●● ●
●

●

●●●●
●

●●

●

●

●

●
●●● ●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●
●●
●
●●●●

●

●

●
●

●●●●
●

●●

●

●

●

●●●

●

●●●
●
●

●

●●●●●● ● ●●● ●

●
●

●
●●●

●

●●
●
●

●

●
● ●●●

●
●●●●● ●●

●

●●●

●

●●●●●

●

●
● ●

●

●●●●

●

●●● ●●●● ●●●●

●●

●●●●●●

●

●● ● ●●●
●

●●●

●

●
● ●

●

●● ●●●●

●

●● ●
●

●

● ●●●

●

●●
●
●●●●

●

●

●

●
●●

●
●●

●●●

●

●●●

●

●●●●●
●●

●
●●

●

●

●●

●

●●●
●

●●
●
●●●●

●

●●
●●

●
●

●●●●●●●●●

●

●

●

●●●● ●●●●

●

●●

●

●
●

●●●●●●●●

●
●

● ●●●

●

●
●

●●●

●

●
●●

●

●
●●●●●●●●

●

●

●● ●●
●●●●●

●

●●●

●

●
●●●●●●●●●●●●
●●●
●
●●●

●
●

●
●●●● ●

●

●●
●

●●●

●

●●●

●

●
●

●●●●

●

●
●

●

●
●●●●●
●

●

●

●
●

●
●

●●

●

● ●

●

●
●●●●●

●●

●

●
●

●●●●●

●

●●● ●● ●●●
●

●
●

●

●

●●●●●●●●

●

●
●

●●●●● ●
● ●
●● ●● ●● ●●
●●●●

●

●●

●

●●

●

●●●●

●

●●●●●●●●

●

●

●
● ●

●●●●
●
●●●●

●

●●●
●●

●
●

●●●●●
●●

●

●●
●

●
●●

●

●●●

●
●●●

●

●
●●●

●
●●

●●●●●●●● ●●
●

●●●
●●●●●

●

●●●●●

●

●●● ●●●● ●●●

●
●

●

●●
●
●●●

●

●●
●

●

●

●
●●●●●●●

●
●●●
●

●

●●
●

●

●●
●

●●

●

●

●●
●

●●
●●●

●●●●●

●

●
●

● ●
●●
●●●●●●

●
●

●
●●●● ●

●

●

●● ●●

●

●●●● ●●
●

●

●

●

●●

●

●●
●●
●

●

●
●

●

●●●●●

●

●●●●
●

● ●
●

● ●

●

●
● ●●●●●●●●

●

●●●

●

●●

●

●●
●●●

●

●●
●

●

●●

●

●●●
●

●

●●●●
●

●

●

●

●
●

●●● ●● ●
●●●● ●●

●

●●●●●●●●●

●

●●●
●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●
●
●●

●

●
●●●●
●●

●●●●●●
●

●●●

●

● ●
● ●●●
●●●●
●

●

●●●● ●●●

●

●
●●
●
●●
●●
●

●

●

●
●●

●

●●●●●
●

●●●●

●

●

●
● ●●

●●●
●●●
●

●●
●

●● ●
●

●●●●●
●

●●●●● ●●
●

●

●●
●●●●

●
●

●

●

●
●

●

●● ●●
●

●
●●

●
●●●●●●●●
●●

●

●
●

●●●●●
●

●●●

●

●

●
●●●●●

●
●●● ●

●

●
●

●●●

●

●●

●

●

●

●

●

●●●●●
●
●
●●●

●●

●

●●●
●
● ●

●
●

●●●
●

●

●
● ●

●●

●

●

●
●

●

●●
●
●●●

●●
●●

●●
●

●

●
●●●●

●

●

●●

●

●

●●●●
●

●

●

●

●●●
●

●

●●

●
●●● ●

●●

●

● ●●●
●●

●

●●●

●

●●
●

●

●●
●

●●●
●

●●
●

●●●● ●●
●

●● ●●●
●●● ●●●●●●●●●●●●●●●

●
●●

●

●●
●

●

● ●●●●●●●
●

●●

●

●
●

●

●● ●
●

●

●
●

●●

●

●
●

●
●● ●●●

●
●●●
●

●

●

●

●

●

●

●●● ●●●●● ●
●● ●

●

● ●●●
●●●

●

●

●
●●

●

●●●
●

●●
●

●●●●●●
●

●

●●●
●

●●●●

●

●● ●
●●

●
●●●
●

●

●●●●●●

●

●●
●
●●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●●
●

●●● ●●●

●

●●

●

●

●

●●● ●●●●●●●
●

●

●●●●

●
●

●●
●●●●●●●

●

●

●●●
●

●

●
●

●

●

●

●●●●
●

●●●●●●●

●

●

●

●

●●
●

●●
●

●

●●●
●●

●

●●●●
●●●●
●●●

●

●

●

●●●●●●

●

●●●
●

●●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●●
●

●●
●

●●

●

●●●●●

●
●

●
●

●● ●
●●
●●●
●

●●●●●●●●●●
●●●

●

●●●●●●
●

●●●

●

●●
●

●
●

●●

●

●
●

●
●●●

●

●

●

●

●

●●

●
●
●●
●

●
●
●

●

●

●

●●●●
●

●●

●

●
●

●●● ●●●●●●●●

●

●●●●●
●
●●●
●

●
●

●●

●

● ●●●

●
●●●

●●●

●

●
●●●

●
●

●

●●●●●

●

●

●

●●●●●
●

●●●●● ●●
●

●●● ●●●
●

●

●

●●●
●

●
●

●●

●

●●●●

●

●●

●

●
●●

●
●

●●●
●
●

●●
●

●●●●
●

●●●●●●
●
●●● ●
●●●●
●

●

●
●

●

●●

●

●●●●●●●●●
●

●●●●●
●●
●

●
●●●

●

●
●●●●
●●●●

●

●● ●

●

●

●●

●

●

●

●

●

●●●

●

●●●●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●

●
●
●

●

●
● ●●●

●
●●●●●

●

●

●●●●●●
●

●

●

●
●●

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05

−0
.2

−0
.1

0.
0

0.
1

mdsprod[,1]

m
ds
pr
od
[,2
]

Figure 2

Figure S2

Figure 2

Figure S2

