
Lam et al.

RESEARCH

BIGMAC : Breaking Inaccurate Genomes and

Merging Assembled Contigs for long read

metagenomic assembly

Ka-Kit Lam1, Richard Hall2, Alicia Clum 3 and Satish Rao1*

*Correspondence:
satishr@cs.berkeley.edu
1Department of Electrical
Engineering and Computer
Sciences, UC Berkeley, Berkeley,
the USA
Full list of author information is
available at the end of the article

Abstract

The problem of de-novo assembly for metagenomes using only long reads is
gaining attention. We study whether post-processing metagenomic assemblies
with the original input long reads can result in quality improvement. Previous
approaches have focused on pre-processing reads and optimizing assemblers.
BIGMAC takes an alternative perspective to focus on the post-processing step.
Using both the assembled contigs and original long reads as input, BIGMAC first
breaks the contigs at potentially mis-assembled locations and subsequently
sca↵olds contigs. Our experiments on metagenomes assembled from long reads
show that BIGMAC can improve assembly quality by reducing the number of
mis-assemblies while maintaining/increasing N50 and N75. The software is
available at https://github.com/kakitone/BIGMAC
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1 Introduction
De-novo assembly is a fundamental yet di�cult [1] computational problem in

metagenomics. Indeed, there is currently an open challenge for metagenomic as-

sembly using short reads, titled ”Critical Assessment of Metagenomic Interpreta-

tion (CAMI [2]).” On the other hand, emerging sequencing technologies can provide

extra information and make the computational problem more tractable. For exam-

ple, long reads are increasingly being shown to be valuable in the de-novo assembly

of single genomes[3]. Therefore, it is natural to study metagenomic assembly us-

ing long reads. Current assembly approaches for long reads focus on developing

more optimized assemblers to leverage the power of the data. However, significant

engineering e↵ort is usually involved to build an end-to-end assembler.

We take a di↵erent perspective, focusing the design e↵ort on a post-processor

that improves assembled contigs using the original long read data (Fig 1). The

main question is whether we can achieve quality improvement with this approach

using typical long reads. This post-pocessing approach is attractive because it lever-

ages existing software. Consequently, we can focus design e↵ort and computational

resources to specifically address thorny issues arising from the nature of new data,

complex repeats, varying abundances and noise. Moreover, since the long reads are

part of the input, the post-processor can bring back information missed upstream.

In single genome assembly, FinisherSC [4] has demonstrated the e↵ectiveness of

this approach. In this paper, we investigate the e↵ectiveness of this post-processing

approach for metagenomic assembly.
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BIGMAC is a post-processor to improve metagenomic assemblies with long read

only data. It first breaks contigs at potentially mis-assembled locations and sub-

sequently sca↵olds contigs. In our experiments, BIGMAC demonstrates promising

results on several mock communities using data from the Pacific Biosciences long

read sequencer. Inputs to BIGMAC include assembled contigs from HGAP [5] and

the original raw reads with adapters removed. After assembly and post-processing,

we use QUAST [6] to evaluate and compare the assembly quality of contigs before

and after using BIGMAC. As shown in Fig 1, BIGMAC improves the quality of

the contigs by reducing the number of mis-assemblies while maintaining/increasing

N50 and N75. This demonstrates the e↵ectiveness of the post-processing approach

for metagenomic assembly with long reads.

Figure 1: Position of post-processor in an assembly pipeline (left). Improve-

ment in assembly quality using post-processor BIGMAC on three di↵erent

datasets (right). BIGMAC shows the e↵ectiveness of the post-processing

approach for long read metagenomic assembly.
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2 A top-down design of BIGMAC
We use a hypothetical yet representative set of input data to illustrate the de-

sign of BIGMAC in a top-down manner. Let g1, g2 be two genomes of abundances

�1,�2 respectively. Assume that they share a long repeat in the middle, that is,

g1 = x1ry1, g2 = x2ry2. Unfortunately, an upstream assembler mis-assembles the

reads and produces two contigs c1, c2 with incorrect joins at the repeat. That is,

c1 = x1ry2, c2 = x2ry1. As an assembly post-processor, BIGMAC takes the mis-

assembled contigs c1, c2 and original reads as input. Its goal is to reproduce g1, g2.

To achieve this, we immediately recognize that there should be components for

fixing mis-assemblies and sca↵olding contigs. In BIGMAC, they are respectively

Breaker and Merger. An illustration is given in Fig 2.

Breaker is further divided into two subcomponents: Signal Detector and Signal

Aggregator. Signal Detector collects signals that indicates mis-assemblies and Signal
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Figure 2: Top-down design of BIGMAC with an example of how BIGMAC

improves a pair of mis-assembled contigs.
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Aggregator subsequently makes decisions on breaking contigs based on the collected

signals. In our example, the coverage fluctuation between �1,�2 along the contigs

c1, c2 and the presence of long repeat r are useful signals that Signal Detector

collects. After aggregating these signals, Signal Aggregator decides on breaking

both the contigs c1 and c2 at the starting points of the repeat r. Therefore, the

output contigs of Breaker are x1, x2, ry1, ry2.

Merger is also divided into two subcomponents: Graph Operator and Contig Ex-

tender. With information from the original reads, Graph Operator establishes con-

nectivity of the input contigs using string graphs. Then, based on the evidence

from spanning reads and contig coverage, Contig Extender extends input contigs

into longer contigs. In our example, the input contigs to Merger are x1, x2, ry1, ry2.

Graph Operator forms a string graph with edges x1 ! ry1, x1 ! ry2, x2 ! ry1
and x2 ! ry2. Contig Extender analyzes the coverage depth of the related contigs

and decides to merge contigs to form x1ry1 and x2ry2, thus reproducing the correct

genomes.

3 Breaker: Breaking Inaccurate Genome
After the functional decomposition of BIGMAC in the previous section, we are

ready to investigate its first component: Breaker. We note that the goal of Breaker

is to fix mis-assemblies. In order to achieve that, we need to collect sensible signals

related to mis-assemblies and subsequently aggregate the signals to make the contig

breaking decisions.

3.1 Signal Detector

Signal Detector collects three important signals related to mis-assemblies.

Palindrome: We are interested in palindromes because of their relationship to a

form of chimeric reads, the adaptor-skipped reads, which are common in today’s long

read technology. Since assemblers get stuck at these chimeric reads, the palindrome

pattern in reads propagates to the corresponding contigs. Thus, the pattern of palin-

drome is a strong signal indicating mis-assemblies, particularly when the palindrome
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is long. A string tuple (a, b) is called a wrapping pair if the reverse complement of a

is a prefix of b or the reverse complement of b is a su�x of a. x is called a palindrome

if it is the concatenation of a wrapping pair (a, b), that is x = ab. The wrapping

length of x is maxx=ab,(a,b) is a wrapping pair min(a.length, b.length). For example,

x = ACGGCCG is a palindrome of wrapping length 3; (a, b) = (ACGG,CCG) is

a wrapping pair because the reverse complement of b is CGG, which is a su�x of

a. Since the minimum length of a and b is min(4, 3) = 3 and the wrapping length

of x cannot exceed 3, the wrapping length for x is 3.

Signal Detector collects information about palindromes by aligning each contig

against itself. It then identifies palindromes with long wrapping length because that

indicates mis-assemblies. The corresponding palindromes’ information is then put

into Spalindrome. To improve sensitivity, Signal Detector allows approximate match

when searching for palindromes.

Repeat: Since long repeats confuse assemblers, their endpoints are possible

candidates for mis-assemblies. Let s1 = axb, s2 = cxd, a repeat between s1, s2
is specified by the endpoints of x in s1, s2. For example, s1 = CAAAAT, s2 =

GAAAAG, the endpoints of the repeat AAAA are the position specified by ! in

C!AAAA!T,G!AAAA!G. Signal Detector aligns contigs against themselves to find

the repeats. It then marks down the positions of the endpoints and puts them

in a set called Srepeat. To improve sensitivity, Signal Detector allows approximate

matches when searching for repeats. Moreover, it only considers repeats that are

maximal and are of significant length.

Coverage: Significant coverage variation along contigs can correspond to false

joins of sequences from di↵erent genomes with di↵erent abundances. Coverage pro-

file is the coverage depth along the contigs. For example, the coverage profile along

a string s = ACGT is (1, 2, 2, 1) if the reads are AC,CG,GT . Signal detector aligns

original reads to the contigs to find the coverage profile, which is called Scoverage.

3.2 Signal Aggregator

After Signal Detector collects signals regarding palindromes Spalindrome, repeats

Srepeat and coverage profile Scoverage, Signal Aggregator uses them to determine

the breakpoints on the input contigs C. The algorithm is summarized in Alg 1.

Algorithm 1 Signal Aggregator

1: Input: Input contigs C and signals from Signal Detector S
palindrome

, S
repeat

and S
coverage

2: Output: Contigs C00 with less mis-assemblies
3: procedure SignalAggregation(S

palindrome

, S
repeat

, S
coverage

, C)
4: C0 = ChimericContigFixing(S

palindrome

, C) . Fix chimeric contigs
5: S

filter

= LocatePotentialMisassemblies(S
repeat

, C0) . Locate mis-assemblies caused by
repeats

6: C00 = ConfirmBreakPoints(S
filter

, S
coverage

, C0) . Confirm mis-assemblies using coverage
7: return C00

3.2.1 ChimericContigFixing

The goal of ChimericContigFixing is to fix the contigs formed from chimeric reads.

We simply break the palindromes in Spalindrome at locations corresponding to their

wrapping lengths. After removing redundant contigs, ChimericContigFixing returns

the broken palindromes with the unchanged contigs.
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3.2.2 LocatePotentialMisassemblies

The goal of the subroutine LocatePotentialMisassemblies is to locate potential mis-

assemblies caused by repeats. We study the design of this subroutine in this section.

Motivating question and example: We can declare all the endpoints of ap-

proximate repeats in Srepeat to be potential mis-assemblies. While this is a sensible

baseline algorithm, it is not immediately clear whether it is su�cient or necessary.

It is thus natural to consider the following question.

Given a set of contigs, how can we find the smallest set of locations on contigs to

break so that the broken contigs are consistent with any reasonable ground truth?

To illustrate our ideas, we consider an example with contigs x1 = abcde, x2 =

fbcg, x3 = hcdi with {a, b, c, d, e, f, g, h, i} being strings of equal length L.

The baseline algorithm of breaking contigs at the starting points of all the

long(� 2L) repeats breaks the contigs 4 times(i.e. a|b|cde, f |bcg, h|cdi). However,

interestingly, we will show that one only need to break the contigs 3 times to pre-

serve consistency (i.e. x1 = ab|cde, x2 = fb|cg, x3 = h|cdi) and that is optimal.

Modelling and problem formulation: We will formalize the notions of feasible

break points, feasible ground truth, consistency between sets of contigs, su�ciency

of break points to achieve consistency and the optimiality criterion.

We use a graph theoretic framework. Specifically, we study a directed graph G =

(V,E) with m sources S and m sinks T where 8v 62 S [ T, indeg(v) = outdeg(v)

and parallel edges between two vertices are allowed. This is used to model a fully

contracted De Bruijn graph formed by successive K-mers of the contigs. Vertices V

are substrings of the contigs and edges E correspond to potentially mis-assembled

locations on contigs. In our example, the set of vertices is V = {a, b, c, d, e, f, g, h, i}
and the set of edges is E = {ab, fb, bc1, bc2, hc, cd1, cd2, cg, de, di}. We use subscripts

to di↵erentiate parallel edges joining the same vertices. The graph corresponding

to our running example is shown in Fig 3.

a

f

h

b c d i

e

g

Figure 3: The graph corresponding to our example contig set x1 =

abcde, x2 = fbcg, x3 = hcdi is shown. We note the optimal set of break

points by the red dotted line.

Given such a graph G, we note that E is the set of all feasible break points

because each edge in the graph corresponds to a potentially mis-assembled location

on contigs. A feasible ground truth corresponds to a set of m edge-disjoint source-

to-sink trails that partitions the edge set E. For simplicity, we represent a trail as

a sequence of the vertices in G, where the edges linking the vertices are ignored.
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For example, {abcde, fbcdi, hcg} is a feasible ground truth while {abcg, fgde, hcdi}
is another feasible ground truth. The set of all feasible ground truths is GT .

We recall that our high level goal is to choose a set of feasible break points R ✓ E

so that the broken contigs are consistent with any feasible ground truth. So, we need

to define the notion of broken contigs and consistency between two sets of contigs

under the current framework. Let gt 2 GT , we denote gt\R be a set of trails after

the removal of the edge set R. In particular, for the original contig set C 2 GT ,

C\R is the set of broken contigs for the set of feasible break points R. For example,

if R = {bc1, bc2, hc} and C = {abcde, fbcdi, hcg}, C\R = {ab, cde, fb, cdi, h, cg}.
To capture consistency between two sets of contigs, we use the following definition.

Given two sets of trails T1, T2, we say that T1 is consistent with T2 if 8x 2 T1, 9y 2
T2 s.t. x ✓ y and 8x0 2 T2, 9y0 2 T1 s.t. x0 ✓ y0. We call R a su�cient breaking set

with respect to (C,GT ) if 8gt 2 GT,C\R is consistent with gt\R. In other words,

R is a set of feasible break points that allows the broken contigs to be consistent

with any feasible ground truth. Although this notion of su�cient breaking set is

a natural model of the problem, it depends on the original contig set C, which is

indeed not necessary. Specifically, we show that we have an equivalent definition of

su�cient breaking set without referring back to the original contig set. Let us call

R a su�cient breaking set with respect to G, or simply a su�cient breaking set, if

8gt1, gt2 2 GT, gt1\R is consistent with gt2\R.

Proposition 3.1 R is a su�cient breaking set with respect to (C,GT ) if and only

if R a su�cient breaking set with respect to G.

Proof The backward direction is immediate because C 2 GT . We will show the

forward direction as follows. Let g1, g2 2 GT and we want to show that g1\R is

consistent with g2\R. Since R is a su�cient breaking set with respect to (C,GT ),

g1\R is consistent with C\R. Therefore, 8x 2 g1\R9y 2 C\R s.t. x ✓ y. But since

g2\R is consistent with C\R , we have 9z 2 g2\R s.t. y ✓ z. By transitivity, we

have x ✓ y ✓ z 2 g2\R. By symmetry, we can also show that 8x0 2 g2\R9y0 2
g1\R s.t. x0 ✓ y0. Thus, g1\R is consistent with g2\R.

Now, we state our optimization criterion. The goal here is to minimize the cardi-

nality of the su�cient breaking set, formally as Eq 1.

OPT = min
R✓E

|R| s.t. R is a su�cient breaking set with respect to G (1)

We will show that if we solve Eq 1 for our running example, the answer is 3. This

thus shows that the baseline algorithm of breaking contigs at all starting points (in

our example, there are 4 of them) of all long repeats is not optimal.

Proposition 3.2 For our running example, OPT = 3.

Proof First, by inspecting the 6 feasible ground truths in GT , we note R =

{bc1, bc2, hc} is a su�cient breaking set with respect to G. Second, we note that the
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edge set need to disconnect sources and sinks, otherwise, we can find g1, g2 2 GT

such that g1\R, g2\R are inconsistent. This means |R| need to be � mincut of the

graph, which is 3.

Algorithm development and performance guarantee: Next we describe

an algorithm that finds a su�cient breaking set with respect to G. Let us de-

note a boolean variable be on each edge e 2 E, with ~b = (be)e2E . For v 2 V ,

InEdges(v), OutEdges(v) are the sets of incoming edges and outgoing edges at

v respectively. Prev(v), Succ(v) are the sets of predecessor vertices and successor

vertices of v respectively. Our algorithm solves the following minimization problem

(Eq 2) as a proxy to (Eq 1).

min
r✓~b:r=True)�(~b)=True

|r| (2)

where,

�(~b) = ^v:|Prev(v)|�2 and |Succ(v)|�2(^e2InEdges(v)be _ ^e2OutEdges(v)be) (3)

In other words, it includes either all the incoming edges or all the outgoing edges

for every vertices with at least 2 successors and at least 2 predecessors to R. We

then seek R with minimum cardinality among the choices available. If G can be de-

composed into connected components, we can optimize �(~b) independently on each

connected component. In our implementation, if the size of the connected compo-

nent is not too large, we optimize the objective function by exhaustion. Beyond a

certain threshold, we simply output a feasible solution without optimizing. Indeed,

in our experiments on real data, most of the connected components are not that

large and this step typically takes a few minutes. But we remark that for more

complex applications, one can further optimize the algorithm. For example, one

can first topologically sort the vertices and then use dynamic programming to solve

Eq 2 along the sorted vertices.

We note that the algorithm described gives an optimal solution for our running

example. Moreover, we show performance guarantee of the algorithm as follows.

Proposition 3.3 Solving Eq 2 gives a su�cient breaking set R if the graph G is

fully contracted.

Proof Let R be the set of edges selected by the algorithm. For any two gt1, gt2 2 GT ,

we want to show that gt1\R and gt2\R are consistent. By symmetry, it su�ces to

prove that if x 2 gt1\R, then 9y 2 gt2\R s.t. x ✓ y. If |x| = 2, it is immediate

because every edge other than those in R are covered. If |x| � 3, we will show

that it is also true using proof by contradiction. If 8y 2 gt2\R, x 6✓ y, we can

find a sub-trail x0 = (a1, a2, ..., ak, ak+1) of x such that 9y0 2 gt2\R s.t. x00 =

(a1, ..., ak) ✓ y0 but 8y 2 gt2\R, x0 6✓ y. This implies 9a⇤ 6= ak+1 s.t. (x00, a⇤) ✓ z

for some z 2 gt2\R. Since the edge (ak, ak+1) ✓ x 2 gt1\R, we know that (ak, ak+1)

is not in R. Similarly, (ak, a⇤) 62 R because (ak, a⇤) ✓ y0 2 gt2\R. But since

|Succ(ak)| � 2, the fact that our algorithm does not include (ak, a⇤), (ak, ak+1)
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in R implies that |Pred(ak)| = 1, namely Pred(ak) = {ak�1}. Note that we are

considering a fully contracted graph. So, the fact that ak�1 exists implies that

|Succ(ak�1)| � 2. But our algorithm has not removed edge (ak�1, ak). This gives

|Pred(ak�1)| = 1. Inductively, we get |Pred(ai)| = 182  i  k. But we know that

(ak, ak+1) ✓ w for some w 2 gt2\R. Since the edges along (a1, ..., ak+1) are not

in R, this gives, x0 = (a1, ..., ak+1) ✓ w 2 gt2\R. This contradicts the assumption

about x0.

Proposition 3.4 If the graph G is fully contracted DAG without parallel edges,

then solving Eq 2 returns a su�cient breaking set that is of optimal cardinality,

OPT .

Proof It su�ces to show that for any su�cient breaking set R, 8v 2 V where

|Succ(v)| � 2, |Pred(v)| � 2, we have either InEdges(v) ✓ R or OutEdges(v) ✓ R.

We prove it by contradiction. If not, 9v 2 V where |Succ(v)| � 2, |Pred(v)| � 2

but InEdges(v) 6✓ R and OutEdges(v) 6✓ R. Because it is a DAG, it means we can

find gt1 2 GT such that 9x, y, x0, y0 such that (x, v, y) 2 gt1 and (x0, v, y0) 2 gt1.

Now consider gt2 to be a clone of gt1 except that it has (x, v, y0), (x0, v, y) instead

of (x, v, y0), (x0, v, y). We note that gt2 2 GT . And because there are no parallel

edges, (x, v, y) is not a subset of any of the trails in gt2. So, we find two distinct

gt1, gt2 2 GT such that gt1, gt2 are not consistent. This contradicts the fact that R

is a su�cient breaking set.

It is noteworthy that if we are given any set of contigs from any gt 2 GT , we still

obtain the same set of broken contigs after the operation of removal of redundant

trails, RemoveRedundant (i.e. we eliminate the contigs in a set A to form a minimal

subset B ✓ A in which 8x 6= y 2 B, x 6✓ y). This can be formalized as follows.

Proposition 3.5 If R is a su�cient breaking set, then for any gt1, gt2 2 GT,

RemoveRedundant(gt1\R) = RemoveRedundant(gt2\R)

Proof Let si = RemoveRedundant(gti\R) for i 2 {1, 2}. By symmetry, it su�ces

to prove that s1 ✓ s2 8x 2 s1 ✓ gt1\R, 9y 2 gt2\R, such that x ✓ y. Note that we

can also find some x⇤ 2 s2 such that y ✓ x⇤. This gives x ✓ y ✓ x⇤. However, since

we have no redundant trails in s1, we get x = x⇤. Thus x = x⇤ 2 s2.

To apply BIGMAC to real data, we have to implement the described algorithm

with some further engineering. This includes methods to tolerate noise, to handle

double stranded nature of DNA, and to construct De Bruijn graph from the repeats.

Interestd readers can refer to the Appendix for these implementation details.

3.2.3 ConfirmBreakPoints

The goal of ConfirmBreakPoints is to utilize the coverage profile Scoverage to confirm

breaking decisions at potentially mis-assembled locations specified in Sfilter. For the

sake of simplicity, we now consider a string s of length L, and a set of positions

Y = {yi}1ik of s which are potential mis-assemblies. Furthermore, let us assume
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that all mis-assemblies are caused by mixing genomes of di↵erent abundances. Using

Y , we can partition s into segments {si}0ik of lengths respectively as {`i}0ik.

We let xi be the number of reads that start in segment si, which can be estimated

from Scoverage. The question is how to classify the points in Y as true mis-assemblies

or as fake mis-assemblies.

One can use heuristics, like comparing coverage depth di↵erence before and after

each yi. However, this is not ideal. For example, if we have coverage depth before

and after y1 di↵ering by 1X, we would expect it to be a much stronger signal for

true mis-assembly if the lengths `0, `1 are of order of 100K rather than of 100 and

this cannot be seen by considering coverage depth di↵erence alone. For the case of

just two segments of equal length and if we assume the xi’s are independent Poisson

random variables, there is a popular statistical test, C-Test[7], that can make the

decision. Formally, if x1 ⇠ Poisson(m1) and x2 ⇠ Poisson(m2), then C-Test is a

test to decide between the hypothesis of H0 : m1 = m2 against H1 : m1 6= m2.

C-Test first considers x1+x2 to compute the decision boundary and it then decides

whether to reject H0 based on x1/x2 and the previously derived decision boundary.

The intuition is that x1 + x2 corresponds to the amount of data, which determines

the confidence of a statistical test. Thus, if x1 + x2 is large, a small perturbation of

x1/x2 from 1 can still be very significant and can correspond to a confident rejection

of H0.

However, we still need to think carefully about how to apply C-Test to our prob-

lem. One method is to directly apply k independent C-Test on each of the junctions

yi. However, that method cannot take advantage of the information from neighbor-

ing segments to boost the statistical power at a junction. Therefore, we develop the

algorithm IterativeCTest. IterativeCTest performs traditional C-Test but in mul-

tiple iterations. Initially, it directly applies k independent C-Test on each of the

junctions yi. Some of the segments are merged and we aggregate the counts from

the merged segments to continue to the next C-Test at the remaining unmerged

junctions in Y . This process is repeated until the algorithm converges. Finally, we

use the breaking decisions from IterativeCTest to break the incoming contigs and

return the fixed contigs.

4 Merger: Merging Assembled Contigs
After fixing mis-assemblies, we are ready to study another pillar of BIGMAC:

Merger. Merger establishes connectivity among contigs and subsequently makes

decisions to extend contigs.

4.1 Graph Operator

The goal of Graph Operator is to identify candidates for contig extension. It forms

and transforms a string graph using the overlap information among original reads

and contigs. It subsequently analyzes the graph to find candidates for contig exten-

sion. The overall algorithm is summarized in Alg 2.

Mapping: We obtain mapping among contigs and reads. This provides the

fundamental building block to construct the connectivity relationship among contigs

and reads.

FormGraph: The goal of FormGraph is to establish connectivity among contigs.

We use contig-read string graph as our primary data structure. Contig-read string
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Algorithm 2 Graph Operator

1: Input: Contigs C and original reads R
2: Output: String graph G with information about candidates for contig extension
3: procedure GraphOperator(R,C)
4: M = Mapping(R, S) . Obtain mapping among contigs and reads
5: G = FormGraph(M) . Form string graph to represent connectivity
6: G.GraphSurgery(M) . Simplify graph
7: G.FindExtensionCandidates() . Identify candidates for contig extension
8: return G

graph is a string graph[8] with both the contigs and the reads associated with their

endpoints as nodes. The size of the graph is thus manageable because most reads

are not included in the graph. Then, we construct an overlay graph (which we call

the contig graph) such that the nodes are the contigs with weights on nodes being

the coverage depth of contigs. In the contig graph, there is an edge between two

nodes if there is a sequence of reads between the associated contigs. With these data

structures, we can switch between macroscopic and microscopic representation of

the contig connectivity easily.

GraphSurgery: GraphSurgery simplifies the contig graph. This includes re-

moval of transitive edge and edge contraction.

For nodes u, v, w, if we have edges u ! v, u ! w and w ! v, then we call

u ! v a transitive edge. We perform transitive reduction[8] on the contig graph to

remove transitive edges. Removing these transitive edges prevents us from finding

false repeats in the next stage. To improve robustness, there is a pre-processing step

before transitive reduction. If the contig w is too short and there are no reads that

form head-to-tail overlap between w, u or w, v, then we can have a missing edge

for transitive reduction to operate properly. Thus, we add the missing edge (either

from u to w or w to v) back when we find contigs and related reads that suggest

the missing edge might be there.

An edge u ! v is contractable when the outgoing degree of u and the incoming

degree of v are both 1. We contract edges to fill gaps. Our experience with Fin-

isherSC is that data are dropped in the assembler and so reconsidering them as

a post-processing step can potentially fill some gaps. However, there is a caveat.

In establishing connectivity in contig-read string graph, we only use reads close to

each contig’s endpoints (as a way to save computation resources), we may miss

some legitimate connections. Therefore, very long repeats prevent the detection of

linkage of contigs, thereby allow contigs to be erroneously merged. To address that,

if there exists contig w that is connected (by some reads) to a region close to the

right end of u/left end of v, then we avoid contraction of u ! v.

FindExtensionCandidates: FindExtensionCandidates identifies candidates

for contig extension by identifying local patterns in the contig graph. One form

of extension candidates is a pair of contigs that are connected without competing

partners. This corresponds to the contigs joined by a contractable edge. Another

form of extension is a set of contigs that are connected with competing partners.

This corresponds to the contigs linked together in the presence of repeats. In the

contig graph, the repeat interior can either be represented as a separate node or

not. If the repeat interior is represented as a separate node, the local subgraph

is a star graph with the repeat node at the center. Otherwise, the local subgraph
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is a bipartite graph consisting of competing contigs. After identifying the contigs

associated with a specific repeat, we can then merge contigs in the next stage.

4.2 Contig Extender

After the operations by Graph Operator, we have extracted the potential contig

extension candidates from the contig graph. It remains to decide whether and how

to merge the corresponding contigs. In a high level, Contig Extender aims at solving

the Contig Merging Decision Problem.

Contig Merging Decision Problem Given a set of incoming contigs I and a

set of outgoing contigs O whose coverage depth and read connectivity information

is known. Decide how to form an appropriate bipartite matching between I and O.

While we do not intend to rigorously define the statement of Contig Merging

Decision Problem now, it is clear that appropriate matching corresponds to one that

achieves high accuracy. Contig Extender carefully analyzes the read connectivity

and contig coverage to make decisions on merging contigs. In the coming discussion,

we first study an e↵ective heuristic that captures the essence of the problem. After

that, we will study how to rigorously define the Contig Merging Decision Problem

in a mathematical form and suggest an EM-algorithm in solving that.

4.2.1 Heuristic in solving the Contig Merging Decision Problem

When the cardinality of the set of incoming contigs I and the set of outgoing contigs

O are both 1, a natural decision is to merge them. Thus, the focus here is to study

the case when |I| > 1 or |O| > 1. We select the reads that uniquely span one contig

a in the incoming set and one contig b in the outgoing set. If there are multiple

such reads, then we decide that a, b should be joined together provided that there

does not exist any paths of reads that lead a to other contigs in the outgoing set

and similarly for b. Moreover, we perform similar tests using contig coverage. If

the coverage depth between two contigs is very close, they will be declared to be a

potential merge pair. Then, we test whether there are any close runner-ups. If not,

they should be merged. To combine the decisions made using spanning reads and

coverage depth, we have a subroutine that discards all conflicting merges. We find

that this heuristic for decision making works quite well in our datasets. However,

in the coming discussion, we will study how to make the extension decisions in a

more principled and unified manner.

4.2.2 General framework in solving the Contig Merging Decision Problem

The challenge for the Contig Merging Decision Problem is the tradeo↵ for many

physical quantities (e.g. abundance, edit distance of reads, noise level, number of

spanning reads, etc). We address this by defining a confidence score based on pa-

rameter estimation. For simplicity of discussion, we assume that k is the cardinality

of both the set of incoming contigs and the set of outgoing contigs. The goal is to

find the best perfect matching with respect to a confidence score.

Let M be a perfect matching of contigs among incoming and outgoing groups I

and O. Under M , there are k merged contigs. Let the observation be the set of
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related reads X = {Ri | 1  i  n}. We define the parameters ✓ = {(�j , Ij)1jk},
where �j is the normalized abundance of contig j and Ij is genomic content of the

contig j. Note that
P

1jk �j = 1. So, the parameter estimation problem can be

cast as sM = max✓ P✓(X | M), where sM is the confidence score of the matching

M . Finally, the best perfect matching can be found by comparing the corresponding

confidence score.

Note that we have hidden variables Z = (Zi)1in which indicate the contigs

that reads X are extracted from (i.e. Zi 2 {1, 2, ..., k}). If we assume the length

of the contig j to be `j and q to be the indel noise level (i.e. probability of 1 � 2q

to be remained unaltered at each location), then we can use an EM-algorithm to

obtain an estimate of ✓. Specifically, the expected value of the log likelihood function

Eq(Z|X,✓(t))[logP✓(t)(X,Z, ✓(t+1)] is

X

1in

X

1jk

M j(Ri, I
(t))[log

�(t+1)
j

`j
+|Ri| log(1�2q)+d(Ri, I

(t+1)) log
q

1� 2q
] (4)

where M j(R, I(t)) = �
j=argminjd(R,I(t)

j )
is the assignment of reads to the most

similar contig (with tie breaking using �(t)), d(A,B) is the best local alignment

score, I(t) = (I(t)j )1jk are the genomic contents of the contigs at iteration t and

�(t) = (�j)1jk are the estimated abundances at iteration t. By maximizing the

log likelihood function with respect to ✓(t+1), we have the update formulas as

�(t+1)
j⇤ =

P
1in M

j⇤(Ri, I(t))P
1jk

P
1in M

j(Ri, I(t))
(5)

I(t+1)
j⇤ = argmin

I

X

1in

M j⇤(Ri, I
(t))d(Ri, I) (6)

Note that the update of Ij⇤ requires multiple sequence alignment. In general, the

problem is NP-hard[9]. However, for noisy reads extracted from several contigs,

the problem is not as di�cult. For example, in the case of pure substitution noise,

an e�cient optimal solution is a column-wise majority vote. Despite the elegance

and feasibility of this approach, it is still computationally more intense than the

heuristic. Therefore, in our implementation of BIGMAC, the heuristic is the default

method used in Contig Extender. But we also provide an experimental version of

the EM-algorithm which can be used when users specify --option emalgo=True

in their commands.

5 Experiments
5.1 End-to-end experiments

5.1.1 Synthetic data

We verify that BIGMAC correctly improves the incoming contigs using the following

synthetic data. We generate two synthetic species of di↵erent abundances ( 27 ,
5
7 ).

They are composed of random nucleotide sequences of length 5M each and share a
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common segment of length 12K. We uniformly sample indel noise corrupted reads of

length 6K from the genomes, with coverage depth of 20X and 50X respectively. We

also artificially construct mis-assembled contigs by switching the genome segments

at the 12K repeat.

The contigs and the reads are passed through BIGMAC. BIGMAC breaks the

contigs at the mis-assembled point and joins them back correctly. One can see the

sample run on [10]. This is also the example that we discuss in the top-down design

of BIGMAC.

5.1.2 Real data

We test the performance of BIGMAC in improving metagenomic assembly on

PacBio only data. We use di↵erent datasets of di↵erent characteristics. Dataset

1 consists of a mock community of 5 species [11], with genomes of high similarity.

Dataset 2 consists of a mock community of 23 species [12], with genomes of di-

verse abundances. We also remark that we have tested BIGMAC on a third PacBio

only dataset (Dataset 3): a real experiment involving Desulfuromonas biwabikus, D.

soudanensis and some other unknown genomes. We note that we know the complete

ground truth for the metagenomes in both Dataset 1 and 2 but only know part of

the ground truth for Dataset 3. We take the output of HGAP and use the raw reads

to improve them using BIGMAC. We observe that in these datasets, BIGMAC re-

duces the number of mis-assemblies while maintaining/increasing N50 and N75. The

results of BIGMAC is summarized in Table 1, where the quantity of mis-assemblies

is obtained from the QUAST reports. By default, QUAST’s statistics are based on

contigs of size >= 500 bp. Interested readers can refer to the Appendix for more

details of the assessment. The data is provided in our online distribution and users

can reproduce the results by issuing a single command python reproduce.py

Table 1: Performance evaluation of BIGMAC on several mock communities is shown.

BIGMAC consistently improves assembly quality by simultaneously increasing con-

tig contiguity and decreasing the number of mis-assemblies.
Dataset Method NContig # Mis-assembly N50 N75
1 HGAP 130 18 818655 274801
1 BIGMAC 129 7 4352719 274801
2 HGAP 477 187 397611 38471
2 BIGMAC 344 28 397611 75666
3 HGAP 185 26 257044 82370
3 BIGMAC 140 14 359704 99878

5.2 Comparison with other post-processing tools

5.2.1 Synthetic data

We use the synthetic data in Section 5.1.1 to evaluate and benchmark BIGMAC,

FinisherSC[13], SSPACE LongRead[14] and PBJelly[15]. BIGMAC is the only tool

among the tested tools that fix the mis-assembled contigs and merge them back

correctly. Other tested tools output the same mis-assembled contigs.

5.2.2 Real data

We perform end-to-end testing to compare performance of di↵erent tools. The com-

parison is shown in Table 2. BIGMAC shows the largest N75/# Mis-assemblies on
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all three datasets and largest N50/# Mis-assemblies on two out of three datasets.

Indeed, in the only dataset that BIGMAC does not have the largest N50/#Mis-

assemblies, the number of contigs(i.e. L50) beyond N50 is 7. Due to the small number

of contigs, this particular measurement on that dataset may not be significant. We

also remark that BIGMAC is the only tool that improves contiguity (N50 and N75)

and the number of mis-assemblies.

Table 2: Comparison of performance of BIGMAC with other post-processing tools

for long read assemblies is shown. BIGMAC shows the largest N75/# Mis on all

three datasets and largest N50/# Mis on two out of three datasets. We also remark

that BIGMAC is the only tool that can improve N50 and N75 while reducing the

number of mis-assemblies. Note that # Mis is an abbreviation for the number of

mis-assemblies.
Data Method # Mis N50 N75 N50/# Mis N75/# Mis
1 HGAP 18 818655 274801 45481 15267

BIGMAC 7 4352719 274801 621817 39257
FinisherSC 32 2531294 415024 79103 12970
PBJelly 19 4642330 418480 244333 22025
SSPACE LR 32 4657611 493683 145550 15428

2 HGAP 187 397611 38471 2126 206
BIGMAC 28 397611 75666 14200 2702
FinisherSC 192 654163 43018 3407 224
PBJelly 271 1585584 61775 5851 228
SSPACE LR 255 1568442 95133 6151 373

3 HGAP 26 257044 82370 9886 3168
BIGMAC 14 359704 99878 25693 7134
FinisherSC 25 996532 97964 39861 3919
PBJelly 27 1103847 128718 40883 4767
SSPACE LR 43 1266912 290104 29463 6747

5.3 Simulation and testing on independent components

We perform micro-benchmarking on individual components of BIGMAC. The set-

tings and results are summarized as follows.

Analysis of LocatePotentialMisassemblies : We test our break point finding

algorithm used in LocatePotentialMisassemblies of Breaker on the synthetic data of

x1 = abcde, x2 = fbcg, x3 = hcdi discussed in the previous section. The algorithm

succeeds in identifying the minimum number of break points as 3. Also, it succeeds

in identifying the minimum number of break points as 2 in the presence of double

stranded DNA, in the test case of x1 = abcd, x2 = ec0b0f , where b0, c0 are the reverse

complement of b, c respectively.

Analysis of ConfirmBreakPoints: We test IterativeCTest used in Confirm-

BreakPoints of Breaker on synthetic data. We simulate mis-assemblies and variation

on abundances by generating a sequence of Poisson random variables and compare

the performance of the algorithms on the simulated data as follows. We generate a

sequence of 100 numbers by 100 independent Poisson random variables. The Pois-

son random variables have parameters of either 20 or 50. To select the parameters,

we simulate 100 steps of a two-states Markov chain with transition probability of

0.1. We then evaluate the performance of C-Test and IterativeCTest on finding the

true transition points, which correspond to the junctions of mis-assemblies. Taking

average from 100 rounds of simulation, the recall of both C-Test and IterativeCTest

are 0.93, meaning that they both can identify almost all transition points. C-Test
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has precision of 0.75 while the precision of IterativeCTest is of 0.87, meaning that

IterativeCTest can avoid more fake mis-assemblies.

Analysis of Merger : We compare Merger with other tools on synthetic data

as follows. We use a synthetic contig set {x1, x2, r, y1, y2} where the ground truth

genomes are (x1, r, y1), (x2, r, y2). The coverage depth of (x1, y1) and (x2, y2) are 20X

and 50X respectively. We pass the reads together with the contig set to FinisherSC,

PBJelly, SSPACE LongRead to perform sca↵olding. We note that BIGMAC is the

only tool the can sca↵old the contigs correctly into 2 contigs by using the abundance

information among the tested tools. Other tools either do not change the input or

simply merge r with some of {x1, x2, y1, y2}, resulting in 4 contigs.

5.3.1 Runtime of BIGMAC

The runtime of BIGMAC is summarized in Table 3. We use 20 threads to run

the tool on a server computer. The server computer is equipped with 64 AMD

Opteron(tm) Processor 6380(8 cores) with frequency 2500 MHz and 362GB RAM.

We note that the majority of the time is spent on alignment of contigs and reads

by MUMmer.

Table 3: Runtime of BIGMAC and the corresponding file size

Dataset Component
Contig
file size (MB)

Read file
size (GB)

Running
time (sec)

Synthetic Breaker 9.6 0.335 164
Synthetic Merger 9.6 0.335 123
1 Breaker 30 5.7 6646
1 Merger 29 5.7 6998
2 Breaker 32 5.8 4865
2 Merger 29 5.8 5087
3 Breaker 17 7.6 7099
3 Merger 14 7.6 6887

5.4 Discussion

There are two main implications from the experiments performed. First, we show

that post-processing assemblies is a feasible alternative in improving assembly qual-

ity to building another assembler from scratch. This is demonstrated by BIGMAC

showing simultanous improvement in terms of number of mis-assembly and con-

tiguity. We note that this is a non-trivial feature because all other tested tools

fail to achieve it. Second, BIGMAC is competitive when compared to the existing

post-processing tools. In particular, it shows better N75/# Mis-assemblies than all

other tested tools in all tested datasets. Moreover, BIGMAC is also the only tool

that can handle abundance information, which makes it an attractive candidate for

improving metagenomic assembly.
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