
Relative contributions of conformational selection and induced fit

Denis Michel
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Abstract. A long standing debate in biochemistry
is to determine whether the conformational changes ob-
served during biomolecular interactions proceed through
conformational selection (of preexisting isoforms) or in-
duced fit (ligand-induced 3D reshaping). The latter
mechanism had been invoked in certain circumstances,
for example to explain the non-Michaelian activity of
monomeric enzymes like glucokinase. But the relative
importance of induced fit has been recently depreciated
in favor of conformational selection, assumed to be al-
ways sufficient, predominant in general and in particular
for glucokinase. This question is reconsidered here in
the light of earlier concepts such as the cyclic equilib-
rium rule and the turning wheel of Wyman, in and
out of equilibrium, using single molecule state proba-
bility, one way fluxes and net fluxes. The conditions
for a switch from conformational selection to induced fit
at a given ligand concentration are explicited. Out of
equilibrium, the inspection of the enzyme states circuit
shows that conformational selection alone would give a
Michaelian reaction rate but not the established nonlin-
ear behavior of glucokinase. Moreover, when induced fit
and conformational selection coexist and allow kinetic
cooperativity, the net flux emerging in the linkage cycle
is necessarily oriented in the direction of the induced fit
path.

Keywords: Conformational selection; induced fit; ki-
netic cooperativity; glucokinase; steady state.
Abbreviations: CS: conformational selection; IF: induced
fit.

Introduction

Folding and binding are intertwined processes involved
in intra- and inter-molecular interactions. It is gener-
ally accepted that macromolecular interactions are rarely
rigid (lock and key) and involve conformational changes.
A persistent question in this context is whether these
changes result from the selection of a subset of preex-
isting conformations (conformational selection: CS) or
from a post-binding stereo-adjustment (induced fit: IF).
[1, 2, 3, 4, 5, 6, 7, 8, 9]. CS and IF are important phenom-
ena which can stabilize specific folding states and underly
nonlinear biochemical phenomena such as sigmoidal re-

actions. Sigmoidal or cooperative saturation curves are
themselves essential for regulating biochemical systems
and their possible multistability. Two main modes of sig-
moidal saturation by a single ligand have been identified,
which differ by the presence of a unique or several binding
sites on the macromolecule. Multisite cooperativity, fre-
quently encountered for regulatory enzymes, can proceed
through either conformational selection or induced fit, il-
lustrated by the MWC [10] and KNF [11] models respec-
tively. A general specificity of multisite cooperativity is
to hold as well in equilibrium and nonequilibrium condi-
tions, as long evidenced by the oxygenation of vertebrate
hemoglobin that is not an enzyme. By contrast, single
site cooperativity is more rarely observed and exists out
of equilibrium only. These two modes of cooperativity
have been pertinently called cooperativity through space
(between the different sites at a given time point) and
through time (between the successive states of the same
site) [12]. The latter model, of kinetic cooperativity,
has been developped for the enzyme glucokinase/ATP-D-
glucose 6-phosphotransferase EC 2.7.1.2/hexokinase D,
enriched in the liver and pancreas of vertebrates. Glu-
cokinase displays a non-Michaelien reaction rate with re-
spect to its substrate (glucose), that is not observed for
its counterparts catalyzing the same reaction in other tis-
sues. The mechanism of kinetic cooperativity has been
clearly described by Rabin [13] and then supported ex-
perimentally [14, 15]. Its principle can be visualized in-
tuitively using the scheme of Fig.1. In its basal con-
formation (E), the enzyme binds the substrate with a
low affinity, but once bound, the substrate induces the
transconformation of the enzyme into a new form E∗

that is ”kinetically favourable but thermodynamically
unfavourable” [13], that is to say less stable than E∗

in absence of substrate, but conveniently folded for cat-
alyzing the reaction. After release of the reaction product
(oval in Fig.1), a kinetic competition begins between two
events: the relaxation of the enzyme to its basal con-
formation and the reattachment of a new glucose. For
a fixed relaxation rate, the issue of this race depend on
glucose concentration. The physiological outcome of this
mechanism is remarkable as its greatly contributes to
the regulation of blood glucose levels. All the hexoki-
nases catalyse the transformation of glucose into glucose
6-phosphate (G6P), but the fate of G6P depends on the
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organs. While it is consumed in most tissues, the liver
has the capacity to temporarily store it in the form of
glycogen, but only if the concentration of glucose in the
blood exceeds a certain threshold.

Figure 1. The nonlinear dependence on glucose of the glu-

cokinase activity can be explained by a competition between

relaxation of E∗ into E and the direct rebinding of the sub-

strate to E∗. At low concentration of glucose (triangles),

transconformation takes place, repriming the long cycle with

its inefficient initial association, whereas at higher concentra-

tion of glucose, a molecule binds immediately to the enzyme.

In this short cycle, the enzyme remains in its reactive form

so that the global reaction rate is speeded up.

This exquisite mechanism is based on an induced-fit
mechanism. However, using the criterion of the relax-
ation times [2], authors revised the importance of IF and
suggested that CS is in fact predominant in general [3, 5]
and in particular for glucokinase [16, 2]. In the alter-
native approach proposed here, CS and IF are tested
alone or in combination for their capacity to yield the
well established non-Michaelian activity of glucokinase.
While relaxation times are obtained from a transient re-
turn to pure IF and CS equilibrium (Appendix A) [17, 2],
enzymatic reaction rates are measured in driven non-
equilibrium steady states. Besides, the predominance of
CS over IF described in [3] concerns multimeric coopera-
tivity in equilibrium (for hemoglobin) or under the quasi-
equilibrium hypothesis (for enzymes like aspartate tran-
scarbamylase [10]), but the cooperativity of monomeric
enzymes like glucokinase can not be obtained in this way
[18]. In this study, the substrates will be considered as
rigid small molecules. We will adopt the classical ap-
proximation, as old as the theory of Michaelis-Menten,
that the substrates are much more numerous than the
macromolecules, which allows using pseudo-first order
constants of association.

Pure CS and IF enzymatic reac-
tions

Pure CS gives a traditional Michaelian ve-
locity

The reaction following pure CS is

E
b−−⇀↽−−
r

E* + S
a−−⇀↽−−
d

E*S
c−−→ E*+P

where b (time−1), r (time−1), a (concentration−1

time−1) and d (time−1) are the rates of bending of E∗

into E∗, reversion to the basal conformation, associa-
tion and dissociation respectively. As shown below, this
scheme always gives a Michaelian reaction rate.

Under the quasi-equilibrium approximation

The relative concentration of the different forms of the
enzyme are simply linked by equilibrium constants Kb =
b/r and Ka = a/d. The reaction rate is proportional to
the fraction of enzyme in the form E∗S and is

v

VM
=

[E∗S]

[E]tot
=

KaKb[S]

1 +Kb+KaKb[S]
(1)

With a nonequilibrium-steady state

When c is not negligible, we obtain the familiar hyper-
bolic reaction rate of Briggs and Haldane

v =
VM [S]

KM + [S]
(2a)

with

VM = c (2b)

and

KM =
(b+ r)(c+ d)

ab
(2c)

CS has been shown predominant for glucokinase [2], but
we see here that it is clearly incapable alone to explain
kinetic cooperativity. Let us now examine the pure in-
duced fit mechanism.

The pure induced fit mechanism is neces-
sarily cyclical

At first glance, the scheme

E+S
a−−⇀↽−−
d

ES
b−−⇀↽−−
r

E*S
c−−→ E* + P

seems symmetrical to the CS scheme by permuting
the conformational transition and the binding reaction;
but in fact the above scheme is clearly incomplete be-
cause the enzyme should recover its basal conformation
to bind a new substrate in case of pure IF. An additional
backward transition is thus necessary to connect the fi-
nal form E∗ and the initial form E, thereby giving a cy-
cle. Like the CS scheme, this minimal IF cycle is merely
Michaelian, with new expressions for VM and KM (Ap-
pendix B). In the pure IF scheme, the isoform E∗ does
not accommodate directly a new substrate molecule, but
there is no obvious reason that a substrate can not bind
to E∗ before it relaxes. This would give the full CS/IF
cycle described below.
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The IF/CS dual cycle

The IF/CS dual cycle at equilibrium

The complete cycle of enzyme state transitions is repre-
sented in Fig.2. This cycle is more realistic than pure CS
or IF because even if certain enzyme states have a very
low probability, they are nonetheless not forbidden.

Figure 2. First-order binding scheme coupling CS and IF.

kCS , k−CS , kIF and k−IF are the global rates of CS, reverse

CS, IF and reverse IF respectively.

The CS-IF switch

The relative importance of CS vs IF in equilibrium has
been evaluated through different ways, including the re-
sult of relaxation experiments [2] and one-way fluxes [1].
However, this predominance may be not absolute if it
can pass from one mechanism to another depending on
the conditions. Precisely, authors proposed that a higher
ligand concentration could favor IF [1, 19], as supported
by simulations, provided the conformational transition
is slow enough [20]. Let us use here a minimal method
sufficient for both ranking CS and IF and determining
explicitly the conditions for a switch between CS and
IF. This method is based on the comparative probability
that a single molecule E reaches the state E∗S via either
E∗ (CS, with a global rate kCS) or via ES (IF, with a
global rate kIF ) (Fig.2, Appendix C). The global rates
kCS and kIF are the reciprocal of the mean times of first
arrival to E∗S and can be understood as ”conditional
rates” as follows. In the example of the CS path, the
global rate is the rate that E commits first to E∗ and
that once at this state, it continues forward until E∗S
instead of reverting back to E. The probability of this
event is a2[S]/(r1 + a2[S]) [21], which gives

kCS = b1
a2[S]

r1 + a2[S]
(3a)

and in the same manner

kIF = a1[S]
b2

d1 + b2
(3b)

kCS and kIF are hyperbolic and linear functions of
[S] respectively. Obviously these functions can intersect
if the initial slope of the hyperbola (b1a2/r1) is higher

than the slope of kIF . This condition is satisfied for
r1 < b1 + d1(a2b1/a1b2). In this case, there is a cer-
tain value of [S] below which kCS > kIF and over which
kCS < kIF . The critical substrate concentration is

[S] =
b1d1
a1b2

+
b1
a2
− r1
a2

(4)

The above global rates of CS and IF for a single
molecule E are always valid, but it is also interesting
to consider the number of molecules to which they apply.
The product of single molecule rates by the concentration
of the molecules involved, is called a flux. Expectedly,
the one-way flux approach of [1] gives the same result
(Appendix D). Moreover, when defining the global rates
of reverse CS (k−CS) and reverse IF (k−IF ) (Fig.2), it
can be easily shown (Appendix E) that the forward and
reverse fluxes are strictly identical

kCS [E] = k−CS [E∗S] (5a)

and
kIF [E] = k−IF [E∗S] (5b)

It is somewhat delicate to conclude that a path is
the preferred one when the complexes formed through
a path, are as efficiently dismantled through the same
path.

The CS-IF detailed balance

The generalized reversibility of forward and backward
fluxes at equilibrium is known as the detailed balance
and holds for any transition, as minor as it can be, in a
network of any size [22]. As a consequence for the cyclic
network of Fig.2, the 8 rates are mutually constrained by
the detailed balance rule (Appendix F) reading

a1b2d2r1 = a2b1d1r2 (6a)

or differently written with the equilibrium constants

Ka1
Ka2

=
Kb1
Kb2

(6b)

All studies aimed at determining the relative im-
portance of CS and IF at equilibrium (for non-enzyme
macromolecules or in case of enzymes, using non-
metabolizable substrates or a single substrate for a two-
substrate enzyme), are plausible only if the values of the
constants satisfy Eq.(6). This criterion is for example
verified for the rates given for Flavodoxin in [1], but
strangely not in all the models developed for glucokinase.
At equilibrium, the clockwise (IF) and counterclockwise
(CS) fluxes of Fig.2 cancel each other and the saturation
curve is an hyperbolic function of the substrate:

Y =
[S]

Kapp
d + [S]

(7a)
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with

Kapp
d =

1 +Kb1
(1 +Kb2)Ka1

(7b)

and the enzymatic reaction rate is once again Michaelian
v = VM [S]/(Kapp

d + [S]) with Kapp
d defined above and

VM = c Kb2/(1 + Kb2) (Appendix G). We verify that
the nonlinear mechanism of conformational memory does
not exist in equilibrium [18].

The mixed IF/CS cycle in non-
equilibrium steady state

Equilibrium can be broken if the enzymatic rate c is not
negligible compared to the other rates. In this case, a net
circulation appears in the cycle, clockwise with respect
to Fig.3 and whose value is

JNF =
cr1b2a1[S]

D
(8a)

with

D = (r1 + b1)(d1r2 + (d1 + b2)(d2 + c))

+ (r1(r2 + b2) + (d2 + c)(r1 + b2)) a1[S]

+ (b1(d1 + b2) + r2(d1 + b1)) a2[S]

+ (r2 + b2) a1a2[S]2

(8b)

Figure 3. First-order scheme of enzyme state recycling,

mixing CS, IF and product release (rate c). NF: net flux

arising out of equilibrium (the ”turning wheel” of Wyman

[24])

JNF is maximal at the substrate concentration can-
celling the derivative of this function (Appendix H). This
flux holds for all the transitions, in particular for the IF
transition (b2[ES] − r2[E∗S]), which is strictly positive
for nonzero c. In other words, the transition E → ES →
E∗S is more frequent than E∗S → ES → E whereas
E → E∗ → E∗S is less frequent than E∗S → E∗ → E.
With this net flow around the cycle, non-Michaelian be-
haviors arise. For instance, the fraction of occupation
of the enzyme by the substrate is no longer an hyper-
bola but becomes a nonlinear function of the substrate
(Appendix I). The enzymatic velocity takes the general
form

v =
A[S] +B[S]2

C + (A+D)[S] +B[S]2
c[E]tot (9)

(where the constantsA,B . . . are defined in Appendix
J). This formula can give the expected sigmoidal rate
of glucokinase for a range of parameters. To quantify
this sigmoidicity, the extent of cooperativity is classically
evaluated through the Hill coefficient nH , which cannot
exceed 2 in the present case

nH = 2/(1 +
√
AD/BC) (10)

(Appendix K). Positive cooperativity (Sigmoid) is ob-
tained for nH > 1, that is to say when BC > AD. In-
terestingly for glucokinase, a Hill coefficient of nH = 1.5
has been measured at high ATP concentrations whereas
at low ATP concentrations (when c ≈ 0), nH = 1 [14],
confirming the Michaelian activity in absence of driven
flux. In addition, the net cyclical flux is the primary con-
dition for obtaining kinetic cooperativity through con-
formational memory. To conceive the importance of its
cyclical nature, note for comparison that no kinetic co-
operativity is possible in the linear scheme of pure CS
described previously, in which E∗ had also the dual pos-
sibility to either relax or rebind a substrate molecule.
The net cyclical flux should also be oriented in the di-
rection of the IF path. As a matter of fact, the general
form of velocity classically admitted for glucokinase is not
obtained if we artificially force the net flux to be coun-
terclockwise (Appendix L). Hence, CS is clearly not suf-
ficient in the present context and the positive net IF flux
is necessary for kinetic cooperativity to appear, unless
the accepted conclusion of conformational cooperativity
is wrong for glucokinase and that its behavior results in
fact from a completely different mechanism not based on
conformational changes [25]. This remaining possibility
is described below.

Monomeric sigmoidicity without
IF and CS

The above considerations clearly show that CS is insuffi-
cient to explain the sigmoidal dependence on glucose of
glucokinase through the model of kinetic cooperativity.
Hence, it is necessary to examine if alternative models
can give this result while allowing dominant CS. One
such model exists, this is the random binding of differ-
ent substrates on an enzyme catalyzing bimolecular re-
actions. It could in principle apply to glucokinase which
has two substrates: glucose and ATP. The fixation of
two substrates represented in Fig.4 is theoretically suf-
ficient to give rise to non-Michaelian rates [26] and, in
particular, to sigmoidal rates [26, 27].
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Figure 4. Random building of a ternary complex containing

the enzyme and two different substrate molecules.

Though simple, this system is subtle enough: (i) The
completely hierarchical binding of the substrates, for ex-
ample S1 always before S2, gives a Michaelian reaction
rate. (ii) A completely random filling also leads to a
Michaelian behavior. (iii) But interestingly, the incom-
plete dominance or preference for one substrate, gives
non-Michaelian curves: either sigmoidal or bell-shaped
with a maximum, depending on the relative values of
the constants. The conditions giving these results, the
corresponding inflexion points and the apparent Hill co-
efficients, are detailed in [27]. For this ternary com-
plex mechanism, conformational changes are possible but
dispensable. Similar results are indeed possible with
rigid binding, for example in the case of asymmetrically
charged ligands [27]. This origin of cooperativity has
however been ruled out for glucokinase [28], since glu-
cose binds before ATP to glucokinase and the binding of
ATP remains Michaelian for all the doses of glucose.

Concluding remarks

CS is definitely insufficient to yield the kinetic coopera-
tivity of glucokinase, as well as the functioning of other
enzymes undergoing a conformational change after initial
substrate binding [4]. It is shown here that

• Pure CS and IF modes of binding are unable to ex-
plain the sigmoidal dependence on glucose of glu-
cokinase, suggesting the existence of a mixed cycle
combining CS and IF.

• In the dual cycle mixing CS and IF under the
rapid pre-equilibrium assumption, the relative im-
portance of CS and IF is joined by the detailed
balance to the relative affinities of the two isoforms
for the substrate. In this condition, kinetic coop-
erativity is impossible.

• In non-equilibrium steady state, a net cyclical flow
appears, corresponding to the IF path, opposite to
the CS path and allowing kinetic cooperativity.

The claim that CS is always sufficient seems to not ap-
ply to kinetic cooperativity, which primarily relies upon

IF. This crucial role of IF does not exclude the exis-
tence of pre-equilibria between many enzyme isoforms.
Dynamic disorder is a widespread property of protein
folding which may interfere with binding [9] and the
present report is not aimed at minimizing the impor-
tance of CS. The categories of enzyme states defined
here (E, E∗, ES, E∗S) can be viewed as representa-
tive of many sub-isoforms without altering the results.
For example, fluctuating Michaelian enzymes still display
globally Michaelian behaviors as long as the topology of
the network and the associated net fluxes are maintained
[29]. In the enzymatic reaction studied here involving
the joined CS/IF scheme, the driver transition breaking
equilibrium is the rate c. It has been considered com-
pletely irreversible for simplicity, but a reversible transi-
tion unbalanced enough to break equilibrium would have
been sufficient. The simplified one-way arrow commonly
used in enzymology without corruption of the results,
is not elementary since it covers at least two more ele-
mentary transitions: the transformation of substrate(s)
into product(s) and the subsequent release of the prod-
uct(s). Contrary to a common misconception, the micro-
irreversibility of enzymatic reactions is not due to the fact
that enzymes work in a one-way manner, but simply re-
flects the open nature of cellular systems. Indeed, a reac-
tion is evolutionary selected when its product is useful for
subsequent reactions or syntheses. As a consequence, the
stationary concentration of the product is very low in the
cell, thus preventing its reuptake. This pumping must of
course be compensated by a permanent replenishment
in substrate. This situation is mimicked in vitro when
measuring initial velocities, when the concentration of
products in the mixture is still negligible. In the context
of the present report, the micro-irreversibility of c has
two essential virtues: (i) it breaks the cyclic detailed bal-
ance rule and (ii) it directs the net flow. The topology of
the steady state scheme of Fig.3 and its net IF flux, illus-
trate well the organizational potential of non-equilibrium
mechanisms [30] and the sentence of Prigogine ”Nature
begins to see out of equilibrium”. In the present exam-
ple, a single molecule of glucokinase, without the need
for regulating its synthesis or of other biochemical cir-
cuits, can act as (i) a sensor of glucose concentration,
(ii) an enzyme with a conditional activity and (iii) a reg-
ulator of glucose concentration in the blood, working in
a real time manner but not by corrective feedback. For
monomeric enzymes, this refined behavior necessitates a
non-equilibrium mechanism, that is to say a net flux re-
flecting a difference of free energy between the different
forms of the enzyme. This difference is itself directly re-
lated to the asymmetry between forward and backward
fluxes [31].

G(E∗S)−G(E) = −RT ln(JIF /J−IF ) (11)

(Appendix M) which is of course zero in equilibrium
and negative in driven steady state. It may seem surpris-
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ing that similar behaviors are obtained in equilibrium for
multimeric enzymes [30]. Multimerization can be viewed
as an optimized recipe in which the classical thermody-
namic cost has been replaced by a structural information
which had itself a past evolutionary cost [32]
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Appendices

A Relaxation times

IF has been differentiated from CS through the mean times of equilibrium restoration following perturbation by
changing substrate concentration. When assuming slow conformational changes and rapid ligand turnovers, as the
ligand concentration increases, the relaxation time increases in IF and decreases in CS [17]. Hence, relaxation times
have logically been used as a diagnostic to appraise the relative contributions of CS and IF and led authors to
conclude for instance that CS is predominant for glucokinase previously thought to obey IF [2]. The interpretation
of relaxation times is however more delicate in absence of the poorly justified hypothesis of time scale separation
between the transconformation and binding phenomena [6]. It could be usefully completed by complementary
kinetic studies [8, 9].

B The pure IF enzymatic reaction

If after product release, E∗ cannot bind directly a new substrate and can only relax into E (with a rate written
r∗), the enzymatic velocity would be purely Michaelian, with

VM =
cbr∗

bc+ (b+ c+ r)r∗
(12a)

and

KM =
(bc+ cd+ dr)r∗

a(bc+ (b+ c+ r)r∗)
(12b)

C Comparative contribution of CS and IF predicted by single molecule
probability

The probability for a single molecule E to reach the state E∗S through CS (via E∗) rather than through IF (via
ES) is

P (CS) = 1− P (IF ) =
kCS

kCS + kIF
(13)

where kCS and kIF are the rates of first arrival to E∗S through CS and IF defined in C. This probability is 1/2
and the system switches from predominant CS to predominant IF when the relaxation rate is low enough such that

r1 < b1 + d1
a2b1
a1b2

(14)

for

[S] =
b1d1
a1b2

+
b1
a2
− r1
a2

(15)

D One-way fluxes

The one-way fluxes passing through the CS and IF specific branches of Fig.2 are

JCS =

(
1

b1[E]
+

1

a2[E∗][S]

)−1
=
b1a2[E][S]

r1 + a2[S]
(16)

and

JIF =

(
1

a1[E][S]
+

1

b2[ES]

)−1
=
a1b2[E][S]

d1 + b2
(17)

Solving JCS = JIF gives the same critical value of [S] as the single molecule probability approach of Appendix C.
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E Identity of forward and backward CS and IF fluxes in equilibrium

On the one hand, the global path rates are

• kCS = b1a2[S]/(r1 + a2[S])

• k−CS = d2r1/(r1 + a2[S])

• kIF = b2a1[S]/(d1 + b2)

• k−IF = d1r2/(d1 + b2)

and on the other hand, the relative concentrations of the different forms of the enzyme are related through equilib-

rium constants in equilibrium, as for example [E∗S] =
b1
r1

a2
d2

[E][S]. Coupling these relationships to the global rates

implies the identity of the forward and backward fluxes after simplification, such as

k−CS [E∗S] =
a2b1[E][S]

r1 + a2[S]
= kCS [E]

F The cyclic equilibrium rule

When the enzyme-substrate mixture is in equilibrium, the detailed balance rule (Eq.(6)) directly ensues from the
product of the rate ratios which are related to the energies of each species, such as b1/r1 = e[ε(E)−ε(E∗)]. Hence,
the circular product of these ratios is

b1
r1

a2
d2

r2
b2

d1
a1

= e[ε(E)−ε(E∗)]+[ε(E∗)−ε(E∗S)]+[ε(E∗S)−ε(ES)]+[ε(ES)−ε(E)] = e0 = 1

[30]. An equivalent and even simpler way is to express the equilibrium constants as concentration ratios. Based on
the familiar relationship

∆G = −RT lnKa1 +RT ln
[ES]

[E][S]
(18)

it is clear that at equilibrium, when ∆G = 0,

Ka1 =
[ES]

[E][S]

in the same manner,

Kb2 =
[E∗S]

[ES]
,Ka2 =

[E∗S]

[E∗][S]
,Kb1 =

[E∗]

[E]

so that after simplification, the product of the constants expressed in this form gives

Ka1Kb2 = Ka2Kb1 =
[E∗S]

[E][S]

G Enzymatic reaction rate in quasi-equilibrium

The enzymatic reaction rate proportional to the probability for a single enzyme to be in state E∗S

v = c[E]totP (E∗S) (19)

and

P (E∗S) =
[E∗S]

[E] + [E∗] + [ES] + [E∗S]
(20)

where each concentration can be expressed as a function of [E] through equilibrium constants as shown above, so
that the fraction can finally be simplified by eliminating [E] and gives the Briggs-Haldane velocity, with VM and
KM given in the main text.
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H Substrate concentration giving the maximal net flux

JNF has the general form

JNF =
α[S]

β + γ[S] + δ[S]2
(21a)

where the constants are obtainable from Eq.(8). It is maximal when

[S] =
√
β/δ (21b)

giving the flux

JNF =
α

γ + 2
√
βδ

(21c)

I Enzyme occupancy by the substrate in steady state

Y = P (ES) + P (E∗S) =
A[S] +B[S]2

C + (A+D)[S] +B[S]2
(22)

where A, B, C, D are the following constants:

• A = a1r1(b2 + r2 + d2 + c) + a2b1(b2 + r2 + d1)

• B = a1a2(b2 + r2)

• C = (b1 + r1)(d1r2 + (b2 + d1)(d2 + c))

• D = a1b2(d2 + c) + a2d1r2

J General velocity formula

The general velocity formula corresponding to the enzymatic reaction of Fig.3, is

v = c[E]totP (E∗S) =
A[S] +B[S]2

C + (A+D)[S] +B[S]2
c[E]tot (23)

with

• A = a1b2r1 + a2b1(d1 + b2)

• B = a1a2b2

• C = (b1 + r1)(d1r2 + (d1 + b2)(d2 + c))

• D = a1(r1r2 + (b2 + r1)(d2 + c)) + a2r2(b1 + d1)

K Hill coefficient

The Hill coefficient is the extreme slope (minimal or maximal) of the so-called Hill plot drawn in Logit coordinates.
Starting from

v

VM
=

A[S] +B[S]2

C + (A+D)[S] +B[S]2
(24a)

v

VM − v
=
A[S] +B[S]2

C +D[S]
(24b)

the Hill function H = ln(v/(VM − v)) can be examined directly in Logit coordinates. If writing x = ln[S], its first
and second derivatives are

H ′(x) = 1− A

A+Bex
+

C

C +Dex
(24c)
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H ′′(x) =
A

A+Bex
− A2

(A+Bex)2
− C

C +Dex
+

C2

(C +Dex)2
(24d)

The substrate concentration giving the extreme slope is obtained by solving H ′′(x) = 0

[S] =

√
AC

BD
(25)

giving, when reintroduced into H ′, a Hill coefficient of

nH =
2

1 +

√
AD

BC

(26)

nH has a maximum value of 2 and is higher than 1 (sigmoidal dependance on substrate) for constant values
such that BC > AD.

L Comparative results of IF and CS net fluxes on enzymatic velocity

The net flux arising in the mechanism of kinetic cooperativity is clockwise with respect to Fig.3. Let us push the
asymmetry of the flow to its maximum. To this end, E∗ is supposed to be a high energy species which rarely
appears spontaneously from E (b1 = 0), but is induced by the substrate. In turn, E∗S rarely reverses to ES owing
to the stabilizing effect of the substrate (r2 = 0). In the same way, the tightly bound substrate rarely leaves the
complex E∗S unless it is converted into a product of different shape/charge (d2 = 0). The absence of spontaneous
substrate dissociation is logical when the binding site closes after wrapping around the substrate. In these simplified
but acceptable conditions, the reaction rate reads

v

[E]tot
=

ca1b2(r1[S] + a2[S]2)

cr1(d1 + b2) + (b2c+ b2r1 + cr1)a1[S] + b2a1a2[S]2
(27)

which can be fitted to the observed sigmoidal glucose concentration-dependent rate of glucokinase. For compar-
ison, if we artificially force the net flux to be clockwise, in the orientation of the CS path, by cancelling r1 and b2,
we would obtain a bell-shaped velocity curve vanishing for high substrate concentration, in contradiction with all
the observations.

v

[E]tot
=

cd1b1a2[S]

d1b1(r2 + c) + (d1r2 + b1r2 + d1b1)a2[S] + r2a1a2[S]2
(28)

M The flux-energy relationship

The equation (18) of Appendix F can be rearranged as

∆G = −RT ln
a1
d1

[E][S]

[ES]
(29)

that is simply
∆G = −RT ln(J+/J−) (30)
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