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Abstract— In a synthetic biological network it may often
be desirable to maximize or minimize parameters such as
reaction rates, fluxes and total concentrations of reagents, while
preserving a given dynamic behavior. We consider the problem
of parameter optimization in biomolecular bistable circuits. We
show that, under some assumptions often satisfied by bistable
biological networks, it is possible to derive algebraic conditions
on the parameters that determine when bistability occurs.
These (global) algebraic conditions can be included as nonlinear
constraints in a parameter optimization problem. We derive
bistability conditions using Sturm’s theorem for Gardner and
Collins toggle switch. Then we optimize its nominal parameters
to improve switching speed and robustness to a subset of
uncertain parameters.

I. INTRODUCTION

One of the goals of synthetic biology is the design and
construction of de novo biomolecular systems with behav-
iors that satisfy user specifications. An important class of
functional behaviors is bistability, which is essential to build
signaling cascades, developmental networks, and memory
elements [1]. Once the general structure of the desired
bistable system has been identified, it may be desirable to
optimize concentrations and reaction rates of its components
to satisfy given performance specifications, while preserving
bistability. Because bistability is a complex, global dynamic
behavior, the most straightforward option to optimize param-
eters is by trial and error. To our knowledge, no systematic
approaches to this problem are available. (We remark that
this challenge is distinct from the problem of parameter
optimization in the context of data fitting [2], or network
reconstruction [3].)

In this paper we address the problem of defining a sys-
tematic procedure to optimize parameters in biomolecular
bistable systems: we want this procedure to identify param-
eters that maximize or minimize a given objective function
chosen by the user, while preserving the bistable behavior of
the network. For instance, it may be desirable to maximize
or minimize the total concentration of some reagents, or to
speed up or slow down certain reaction rates based on the
specific components used. We formulate our optimization
problem so that desired performance is expressed in the
objective function, while bistability is guaranteed via the
introduction of nonlinear constraints. Nonlinear constraints
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are obtained from algebraic conditions on the equilibria and
on their stability.

Algebraic approaches for optimization have been pre-
viously proposed in the context of biochemical networks.
In [4], the metabolic flux of a biochemical network is
optimized defining an objective function where a single flux,
multiplication of fluxes or concentrations of reactants are
either maximized or minimized. The network is described
using an S-system differential equation model. Algebraic
equilibrium conditions are derived and used as constraints
within the optimization problem, so that fluxes are optimized
while the network is guaranteed to stay in the neighborhood
of the desired steady state. In [5], the stationary behavior
of a metabolic network is optimized by imposing stability
of the equilibrium. The decision variables in this problem
can be fluxes, reaction rates or the concentration of some of
the reactants. Algebraic equilibrium and stability conditions
(derived from a Routh-Hurwitz table) are included in the
problem as part of the optimization constraints. The solution
of the problem is a stable equilibrium which is optimal with
respect to a chosen objective function.

The main limitation of existing approaches is that they
consider optimization of local (near equilibrium) behaviors.
Here, we show that optimization of a network ensuring a
global behavior like bistability can still be done using an
algebraic approach when the system satisfies some structural
conditions. Specifically we focus on a class of bistable sys-
tems for which the bistability property can be related solely
to the number of equilibria of the system and to the sign of
the coefficients of the characteristic polynomial. Equilibrium
polynomials can be analyzed using Sturm’s theorem [6] or a
Routh table [7], obtaining a set of inequalities that guarantee
a desired number of positive roots. Bistability conditions
(global) can thus be expressed as nonlinear constraints to
be enforced in the optimization procedure.

The paper is organized as follows. Several notions from
algebraic geometry and degree theory are reviewed in Sec-
tion II; at the end of this section we formulate our optimiza-
tion problem. Section III describes our case study, for which
we derive algebraic conditions for bistability. Results for
parameter optimization using our algebraic approach on the
described system are presented in Section IV. We summarize
and briefly discuss our results in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

We review definitions and theorems, and formulate as-
sumptions we need to establish algebraic conditions for
bistability in biomolecular networks. These conditions are
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exploited as constraints in the parameter optimization prob-
lem described later.

A. Definitions and assumptions

We consider nonlinear biological dynamical systems that
are successfully modeled with ODEs, which may be derived
from chemical reactions by applying the law of mass-action
or from phenomenological observations. These systems can
be modeled as:

ẋ = f(x), x(0) = x0, x ∈ Rn
≥0 (1)

Equilibria (steady states) are states x̄ of system (1) satisfying
˙̄x = f(x̄) = 0. For a system of order n, equilibrium
conditions are n equations in n unknowns [8]. If we can
merge all equilibrium conditions into a single equation in
the form of polynomial function w.r.t. either of the state
variables, we refer to it as master equilibrium condition.

For every equilibrium point x̄, J(x̄) is the Jacobian of
system (1) evaluated at the equilibrium. Polynomial Px̄(λ) =
det(λI − J(x̄)) = λn + an−1λ

n−1 + · · · + a1λ + a0 is
the characteristic polynomial of the Jacobian evaluated at x̄.
In many practical cases, the characteristic polynomials of
bistable networks have a unique coefficient sign pattern that
we summarize in the definition below [6].

Definition 1 (F-polynomial): A polynomial whose coeffi-
cients are all non-negative (non-positive) except the constant
term a0, which can be either positive or negative, is an F-
polynomial. Because the constant term is a0 = det(−J(x̄)),
its sign depends on the determinant of J(x̄).

This paper focuses on nonlinear systems (1) that are
bistable.

Definition 2 (Bistability): System (1) is bistable if it
presents two asymptotically stable and one unstable equi-
librium points.

We consider biomolecular networks whose linearization
is a positive system. This property will be used to derive
algebraic conditions for bistability.

Theorem 1: [9] A linear system ẋ = Ax is positive if and
only if matrix A is a Metzler matrix, i.e., its elements satisfy:
aij ≥ 0, ∀(i, j) such that i ̸= j.
Finally, we consider systems that are dissipative. In general,
dissipativity (see, e.g., [10]) is defined based on the existence
of compact, forward invariant subsets of Rn

+ that absorb
the system trajectories. The following definition ([11]) is
equivalent and easier to verify:

Definition 3 (Dissipative system): A system ẋ = f(x),
x ∈ Rn is dissipative if its solutions are eventually uniformly
bounded, i.e., there exists a constant k > 0 such that:

lim
t→+∞

supxj(t) ≤ k, j = 1, ..., n.

We conclude this section with a list of assumptions we
make in the rest of this manuscript.

Assumption 1: We assume the linearization of system (1)
is a positive system at each equilibrium point.

Assumption 2: We assume the characteristic polynomial
of system (1) is a F-polynomial at each equilibrium point.

Assumption 3: We assume that system (1) is dissipative.

B. Bistability conditions

The number of equilibria of system (1) can be in many
cases established by finding the roots of a master (poly-
nomial) equilibrium condition [6]. The number of positive
roots of a polynomial can be established using methods such
as Routh table [7] or Sturm’s theorem [6] on the master
equilibrium condition of the system. These methods can
provide parametric conditions for the presence of a desired
number of positive roots, i.e. of equilibria. In this paper we
foucs on Sturm’s theorem.

1) Sturm’s theorem approach: The Sturm sequence asso-
ciated to a polynomial p(x) is a set of polynomials P =
{p0, p1, . . . , pm} defined as:

p0 = p(x),

p1 = dp(x)/dx,

p2 = −rem(p0, p1),

...
pm = −rem(pm−2, pm−1),

0 = −rem(pm−1, pm),

where the symbol rem(pi−2, pi−1) indicates the remainder
of the polynomial long division of pi−2 by pi−1 for i ̸= 0, 1.
It is assumed that p0 and p1 are univariate polynomials. The
sequence ends when pm−1 divided by pm gives a remainder
of zero.

Theorem 2 (Sturm’s theorem): Let p(x) be a real-valued
univariate polynomial and a, b ∈ R∪{−∞,+∞}, with a < b
and p(a), p(b) ̸= 0. Then the number of zeros of p(x) in the
interval (a, b) is the difference var(P, a)− var(P, b) where
P is the Sturm sequence of p(x) and the variations var(P, a)
and var(P, b) are the number of times that consecutive
nonzero elements of the Sturm sequence — evaluated at a
and b, respectively—have opposite signs.

Sturm’s theorem can thus be used to find conditions for the
master equilibrium polynomial to present a desired number
of non-negative, real roots by considering the interval [0,∞).

2) Algebraic equilibrium conditions are also bistability
conditions in a class of bistable networks.: A bistable system
is characterized by the presence of three equilibria; of course,
the correct number of equilibria does not in general guarantee
bistability.

However, biomolecular bistable networks often satisfy
Assumptions 1 – 3 ; several examples can be found in [6].
For these systems, bistability is guaranteed when three equi-
libria are present. For the reader’s convenience, we provide
additional background on this topic.

Theorem 3: Consider a linear positive system ẋ = Ax,
whose characteristic polynomial is an F-polynomial. This
system has an unstable equilibrium if and only if the constant
term of the characteristic polynomial is negative [7].

Definition 4 (Index of an equilibrium point): The index
of a regular equilibrium point x̄ is the sign of the determinant
of −J(x̄):

ind(x̄) = sign [det(−J(x̄))]
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Definition 5 (Degree of a system): The degree of a dy-
namical system ẋ = f(x), over a set U ∈ Rn, having
equilibria x̄i, i = 1, ...,m, is defined as:

deg(f) =

m∑
i=1

{ind(x̄i), x̄i ∈ U, f(x̄i) = 0} ,

where x̄i are regular equilibria.
The following theorem is the last result we need to quote:
Theorem 4: [11] A dissipative dynamical system ẋ =

f(x) defined on Rn has degree +1 with respect to any
bounded open set containing all its equilibria [6].

Theorem 5: Consider a dynamical system (1), satisfying
Assumptions 1–3. If the system has three equilibria, then it
is bistable.

Proof: Due to Theorem 3, since the index is equal to
the sign of the constant term in the characteristic polynomial,
a positive index is associated with a stable equilibrium and
a negative index is associated with an unstable equilibrium.
Due to Theorem 4, we can conclude that when three regular
equilibria are present, our systems are bistable.
We conclude remarking that as a consequence of Theorem 5,
any algebraic equilibrium conditions that enforce the pres-
ence of three equilibria become global algebraic bistability
conditions.

C. Optimization problem

We illustrate the general formulation of our optimization
problem. We consider dynamical systems ẋ = f(x, p) where
p are decision variables (for example, reaction rates), and p ∈
Ω. Ω is the state space of all admissible decision variables
of the optimization problem.
Our concern is to optimize an objective function F(p) which
could be a function of a single or a combination of decision
variables.

min/max
p∈Ω

F(p)

subject to Ci(p) ≤ 0, i = 1, . . . ,m.

lk ≤ pk ≤ uk, k = 1, . . . , N.

(2)

The constraints in the problem above include bistability
algebraic conditions, upper and lower bounds for decision
variables (lk, uk). Because of Assumptions 1–3, our con-
straints are independent from the value of the equilibria.

III. CASE STUDY: GARDNER AND COLLINS TOGGLE
SWITCH

In this section we introduce the toggle switch by Gard-
ner and Collins [12] and describe the derivation of global
algebraic conditions for bistability.

The circuit is composed by two mutually repressing genes,
and its nondimensionalized model is:{

u̇ = α1

1+vβ − u

v̇ = α2

1+uγ − v,
(3)

where αi are the maximal synthesis rates of the i-th repressor,
β and γ are Hill coefficients. The equilibrium conditions of
the toggle switch are ū = α1

1+v̄β and v̄ = α2

1+ūγ where ū
and v̄ are equilibrium points. To simplify our notation, we

will denote ū and v̄ as u and v, dropping the bar. Again for
simplicity, we take the value of β = γ = 2, i.e. the repressors
are dimers.

1) Application of Sturm’s theorem to find algebraic equi-
librium conditions: The master equilibrium condition, ex-
pressed with respect to variable v, is:

α2
1v = (α2 − v)(1 + v2)2.

We rewrite it as a fifth order polynomial w.r.t. v,

P0 = v5 − α2v
4 + 2v3 − 2α2v

2 + (1 + α2
1)v − α2 (4)

We use Sturm’s theorem to find algebraic conditions guar-
anteeing that the circuit has exactly three positive roots.
First, we find the Sturm sequence S = {P0, · · · , P5},
where P1 = dP0/dv and Pi = −rem(Pi−2, Pi−1) for i ∈
{2, · · · , n}. Applying Sturm’s theorem, we find 6 possible
Sturm sequences where 3 cases for v = 0 (var(S, 0) =
S0
I,II,III ) and 2 cases for v → ∞ (var(S,∞) = S∞

I,II )
are admissible and yield exactly three positive solutions.
These admissible sequences were found with the support of
Wolfram Mathematica. Furthermore, for v → ∞ the sign
of P2 doesn’t have any effect on the total number of sign
variations of the sequence (S∞

I,II = {+,+,−/+,−,−,−}),
so we are left with 3 distinct cases S0

I = {−,+,−,−,+,−},
S0
II = {−,+,+,−,+,−}, S0

III = {−,+,−,+,+,−}.
For the polynomials in the sequence, we find conditions

on the parameters so that the appropriate sign changes
are obtained. With some tedious derivations (Appendix) we
identify a single sufficient condition we can use to guarantee
that the master equilibrium polynomial (4) has exactly three
positive roots.

{α1 > 2 ∧ P5(α1, α2) < 0}, (5)

Condition (5) was derived with the support of Wolfram
Mathematica; details can be found in Appendix A. We will
use condition (5) as a constraint of the optimization problem.

In Fig. 1 the mono-stability and bistability regions are
plotted using MATLAB in a range of αi ∈ (0, 200] for
i = 1, 2. In this plot, different colors are associated to the
different Sturm sequences S0

I , S0
II and S0

III .

2) Verification of Assumptions 1 – 3:
• Assumption 1: The Jacobian of system (3) is

J =

[
−1 −a
−b −1

]
,

where a = 2α1v
(1+v2)2 and b = 2α2u

(1+u2)2 . This Jacobian can be
transformed into a Metzler matrix by changing sign to its first
row and first column. This Assumption is verified regardless
of the system’s parameter values.
• Assumption 2: The characteristic polynomial has posi-

tive coefficients except the constant term (a0) which is not
sign definite. This Assumption is verified for arbitrary values
of parameters.

a0 = 1− ab = 1− 4α2
1v

3

α2(1 + v2)3
(6)
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Fig. 1. Stability domains of Gardner’s toggle switch. Gray area: mono-
stable domain. Green, light blue, and orange regions are bistability areas.
Inset shows details for the bistability region for αi ∈ (0, 10]. The green
region is associated to Sturm sequence (S0

I ), light blue is associated to
sequence (S0

II ) and orange is associated to sequence (S0
III ). The blue

curves are the boundaries of condition (5). The red curves represent the
boundaries of conditions βu, βv > 2 derived in Section III-3 examining
the constant term of the characteristic polynomial.

Theorem 3 tells us that the stability of each equilibrium
depends on the sign of a0 : the equilibrium is stable if
a0 > 0, and it is unstable if a0 < 0.
• Assumption 3: It is easy to show that both states of

system (3) are eventually uniformly bounded, for arbitrary
parameter values. For instance, v̇ ≤ α − v, thus v(t) ≤
max{v(0), αe−t}, ∀t ≥ 0.

3) Algebraic conditions to determine admissible locations
of equilibria: Theorem 3 indicates that the stability of each
equilibrium point is determined by the constant term a0 of
the characteristic polynomial. We exploit this fact to derive
algebraic conditions to determine the location of stable and
unstable equilibria. We can rewrite a0 as:

a0 =
n0

d0
=

(1 + v2)3 − β3
vv

3

(1 + v2)3
, βv ≜ 3

√
4α2

1

α2

Because the denominator d0 is positive, the sign of a0 is
only determined by its numerator n0. The sign of n0 can be
studied by rewriting it as:

n0 = (v2−βvv+1)
[
(1 + v2)2 + βvv(1 + v2) + β2

vv
2
]

(7)

The factor in square brackets is positive, thus the sign of n0

depends on the sign of q(v) = (v2 − βvv + 1), a second
order polynomial. Its discriminant ∆q = β2

v − 4 is positive
for βv > 2 and negative for βv < 2. Thus, when βv < 2,
∆q < 0, q(v) > 0 ∀v and the sign of a0 is always positive
in all the domain; we conclude that in this case the system
is never bistable, because any existing equilibrium is stable.
If βv > 2 and ∆q > 0, then the sign of q(v) changes as

follows:

Stable eq. q(v) > 0 v <
βv −

√
∆q

2
∨

βv +
√

∆q

2
< v

Unstable eq. q(v) < 0
βv −

√
∆q

2
< v <

βv +
√

∆q

2
.

We can derive similar inequalities for variable u, by defining

the parameter βu = 3

√
4α2

2

α1
. These results indicate that stable

equilibria always “sandwich” the only unstable equilibrium,
as depicted in Fig. 2. The admissible location of equilibrium

u

v
�v �

p
�2
v � 4

2

�v +
p

�2
v � 4

2

�u +
p

�2
u � 4

2

�u �
p

�2
u � 4

2

Unstable

State

Stable Low State

Stable

High

State

Fig. 2. Admissible regions for stable and unstable equilibria determined
by analyzing the constant term of the characteristic polynomial.

points may be a feature we want to automatically optimize.
A large distance between the stable equilibria, for instance,
means that there is a more significant distinction between
the two admissible states; it also means that switching
due to perturbations may be more difficult. In contrast, a
small distance between stable equilibria may favor rapid
toggling between the stable states. We can influence the size
of the admissible regions for equilibria by maximizing or
minimizing βv > 2 and βu > 2.

We note that values of v and u for which n0 = 0 (dashed
lines in Fig. 2), and thus a0 = 0, are not roots of the master
equilibrium condition (4) (Wolfram Mathematica worksheets
are available at [13]). Thus, all admissible equilibria are
regular equilibria.

IV. PARAMETER OPTIMIZATION EXAMPLES

In this section we formulate the optimization problem
on our case study. In this problem, global algebraic con-
ditions for bistability is enforced as part of the optimization
constraints as explained in Section II-C. Script was written
in MATLAB; optimizations were solved using the genetic
algorithm (GA) toolbox. Simulations were done using a 2.13
GHz Intel Core 2 Duo CPU on Linux interface. The length
of each single optimization run is 300 seconds on average.

Our goal is to optimize the toggle switch so the admissible
regions for its stable steady states are at a minimal distance.
If the purpose of the switch is to toggle rapidly, neighboring
stable steady states are likely to favor fast switching. As
discussed in Section III-3, this can be done by minimizing

parameters βu = 3

√
4α2

2

α1
and βv = 3

√
4α2

1

α2
. In addition, we

want to identify nominal values αn
i that are sufficiently far

from the boundary of the bistability regions so the system is
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less sensitive to the perturbations of the parameters: thus we
define a “distance” parameter di which we want to maximize
so that deviations of αi from the nominal values will still fall
in the bistable regions, i.e. |αi − αn

i | < di. By maximizing
di we improve the robustness of the bistable behavior. This
goal can be described as:

F = { min
βu∈Ω

βu, min
βv∈Ω

βv, max
di∈Ω

di}

This problem can be converted into a single-objective opti-
mization problem:

min
βu,βv,d1,d2∈Ω

λ1β
3
u + λ2β

3
v − λ3d1 − λ4d2 (8)

subject to P5(α1, α2) < 0,

P5(α1 − d1, α2 + d2) < 0,

P5(α1 + d1, α2 − d2) < 0,

lαi ≤ αi ≤ uαi , i = 1, 2

ldi ≤ di ≤ udi , i = 1, 2

lβ ≤ β ≤ uβ , β = {βu, βv}

(9)

Coefficients λis in equation (8) are weights used to scale the
importance of each parameter in the optimization problem.
For instance, in Fig. 3 we compare changes for the pair
λ3 and λ4. The i-th rectangle on the right side shows the
bistability region w.r.t. the nominal rates (αn

1 , α
n
2 ) in the

center (ci) where the d1 = hi

2 and d2 = vi

2 . On left side
plot in Fig. 3 we have three different cases. In the 1st case,
the region is a square which means the value for λ3 equals
to λ4. In this case we consider the robustness issue in the
same level for both αi rates. We can conclude similarly for
the other cases. Here, βu, βv are combinations of parameters,
thus can be considered auxiliary variables (see Section II-C).

Variables are scaled to be comparable; while both αis have
same dimensions and operational ranges as well as dis, βu

and βv are scaled to their third power to be comparable with
the other variables.

2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

9

α1

α 2

1

2

3

hi

vi

ci

i

ci = (↵n
1 ,↵

n
2 )

Fig. 3. Effects of the weighting coefficients λ3 and λ4 in objective
function (8).

Regarding the constraints (9), they include the bistability
condition (5) which must be valid for the new coordinates
(α1∓d1, α2±d2). These coordinates are the diagonal vertices
of the rectangles surrounding the nominal rates in Fig. 3. The
last three inequalities in (9) are the boundary constraints on
the parameters of the problem.
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Fig. 4. The Genetic Algorithm optimization result for 350 uniformly
random selected initial points after 150 generations. (Left): α2 − α1 plots.
(Right): d2 − d1 plots. (Upper): Λ = (λ1, λ2, ...) = (0.5, 0.5, 0.1, 0.1)
and (Bottom): Λ = (0.5, 0.5, 0.1, 0.4).

Fig. 4 shows solutions of the optimization problem found
using MATLAB GA Optimization Toolbox. We ran 350 sim-
ulations with randomly selected initial points (uniformly
sampled). Each dot corresponds to a local minimum of a
single run of the GA after 150 generations; colors from blue
to red indicate an increasing value of the objective function.
Dots with the same color on the different panels of Fig. 4
correspond to the same optimization round. We note that
the optimization results are clustered in parameter space;
choosing nominal parameters at the center of these clusters
would guarantee a robust performance in the presence of
uncertainty.

V. CONCLUSIONS

We have described an approach to parameter optimization
for bistable biological networks. We showed that global
bistability conditions derived from standard algebraic meth-
ods can be included as nonlinear constraints in the opti-
mization procedure. These conditions can be derived for
systems that satisfy a series of assumptions: dissipativity and
positivity are relatively mild assumptions in biomolecular
bistable networks, and are often structural properties [7] that
do not depend on the parameters. Assumption 2, which pre-
scribes the positivity of all coefficients of the characteristic
polynomial, may limit the applicability of our approach, but
several biomolecular networks in the literature are found to
satisfy this requirement [6]. Clearly, algebraic tools such
as Sturm’s theorem can become cumbersome to apply to
systems of large order. However, this method is applicable
to bistable modules within larger networks, in which inputs
or interconnections with the large networks may be regarded
as parameters of the circuit.

APPENDIX

From the Sturm sequence polynomials, we isolated terms
that determine the sign of the sequence element (as a function
of α1 and α2). Term P 0

i (P∞
i ), for instance, is the term that

determines the sign of Pi(v → 0) (Pi(v → ∞)). Due to
space limitations, we do not report the full expressions for
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the Sturm sequence polynomials.
In the following sections the symbol “∨” means “or” and
symbol “∧” means “and”.

• P0(v → 0) = −α2 < 0, ∀α2 > 0.
• P0(v → ∞) → ∞ > 0.
• P1(v → 0) = dP0/dv = (1 + α2

1) > 0.
• P1(v → ∞) → ∞ > 0.

P0 and P1 are sign definite regardless of the values of α1

and α2.
• P2(v → 0): its sign is determined by P 0

2 = −(α2
1−24).

P 0
2 > 0 when α1 < 2

√
6, P 0

2 < 0 when α1 > 2
√
6.

The sign of P2(v → 0) does not depend on α2.
• P2(v → ∞): Its sign is determined by P∞

2 = −5+α2
2.

P∞
2 > 0 if α2 >

√
5 and P∞

2 < 0 if α2 <
√
5.

• P3(v → 0). The sign of P3 is determined by:

P 0
3 (x) = aP 0

3
x2 + bP 0

3
x+ cP 0

3
,

x = α2
2, aP 0

3
= −2, bP 0

3
= (α2

1 − 4), cP 0
3
= −2(α2

1 + 1)

The discriminant is ∆P 0
3

= b2
P 0

3
− 4aP 0

3
cP 0

3
and we

define LP 0
3
(α1) =

−b
P0
3
−
√

∆
P0
3

2a
P0
3

=
(α2

1−4)+
√

α4
1−24α2

1

4

and UP 0
3
(α1) =

−b
P0
3
+
√

∆
P0
3

2a
P0
3

=
(α2

1−4)−
√

α4
1−24α2

1

4 .{
P 0
3 > 0 α1 > 2

√
6 ∧ UP0

3
(α1) < α2

2 < LP0
3
(α1)

P 0
3 < 0 α1 > 2

√
6 ∧ {α2

2 < UP0
3
(α1) ∨ α2

2 > LP0
3
(α1)}

For ∆P 0
3
< 0 we find that P 0

3 < 0 if α1 < 2
√
6.

• P3(v → ∞): its sign is determined by P∞
3 =

−(α2
1(−5 + α2

2) + (1 + α2
2)

2){
P∞
3 < 0 α2 > 0 ∧ α1 ≤ 1√

5

P∞
3 < 0 α1 > 1√

5
∧ α2

2 > UP∞
3
(a1)

UP∞
3
(a1) =

−(α2
1+2)+

√
(α2

1+2)2+4(5α2
1−1)

2
• P4(v → 0). The sign of P4 is determined by:

P 0
4 (x) = aP 0

4
x2 + bP 0

4
x+ cP 0

4

x = α2
1, aP 0

4
= 2, bP 0

4
= (α2

2 − 62), cP 0
4
= 8(α2

2 + 1)2

If LP 0
4
(α2) =

(62−α2
2)−

√
63(60−4α2

2−α4
2)

4 and

UP 0
4
(α2) =

(62−α2
2)+

√
63(60−4α2

2−α4
2)

4 then,{
P 0
4 > 0 α1 > 2 ∧ α2 >

√
6

P 0
4 > 0 α2 <

√
6 ∧ {α2

1 < LP0
4
(α2) ∨ α2

1 > UP0
4
(α2)}

• P4(v → ∞). The sign of this term is determined by

P∞
4 (x) = aP∞

4
x2 + bP∞

4
x+ cP∞

4
, x = α2

2,

aP∞
4

= 16 + 9α2
1, bP∞

4
= 32 + 35α2

1,

cP∞
4

= 16− 64α2
1 − 80α4

1

Then we define LP∞
4
(α1) =

−bP∞
4

+
√

∆P∞
4

2aP∞
4

where

∆P∞
4

= b2P∞
4

− 4aP∞
4
cP∞

4
. The conditions on the sign

of P∞
4 are:{

P∞
4 < 0 α2 > 0 ∧ α1 < 1√

5

P∞
4 < 0 α2

2 > LP∞
4
(α1) ∧ α1 > 1√

5

• P5(v → 0,∞): their sign is determined by:

P 0
5 = P∞

5 = 256α6
1 − 3α4

1(9α
4
2 + 32α2

2 − 256)

− 96α2
1(α

4
2 + 29α2

2 − 8) + 256(1 + α2
2)

3

The last polynomial is P5(v → ∞) = P5(v → 0) < 0
if α1 > 2 and min(R(α1)) < α2

2 < max(R(α1)). The
R(α1) is the set of positive real roots of the polynomial
P∞
5 (x) where x = α2

2.

R(α1) = {y ∈ R|∀y > 0 ∧ P∞
5 (y) = 0}

It is easy to prove that the aforementioned polynomial
has a single negative real root or 2 positive and 1
negative real roots depending on the value of α1.
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