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Abstract

The Dirichlet-multinomial mixture model (DMM) and its extensions provide powerful new tools

for interpreting the ecological dynamics underlying taxon abundance data. However, like many

complex models, how effectively they capture the many features of empirical data is not well

understood. In this work, we expand the DMM to an infinite mixture model (iDMM) and use

posterior predictive distributions (PPDs) to explore the performance in three case studies, including

two amplicon metagenomic time series. We avoid concentrating on fluctuations within individual

taxa and instead focus on consortial-level dynamics, using straight-forward methods for visualizing

this perspective. In each study, the iDMM appears to perform well in organizing the data as

a framework for biological interpretation. Using the PPDs, we also observe several exceptions

where the data appear to significantly depart from the model in ways that give useful ecological
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insight. We summarize the conclusions as a set of considerations for field researchers: problems

with samples and taxa; relevant scales of ecological fluctuation; additional niches as outgroups; and

possible violations of niche neutrality.

Introduction

Metagenomic and amplicon sequencing techniques provide an unpredecented vantage to investi-

gate the complexity of microbial ecologies, allowing researchers to simultaneously observe counts

of thousands of species and will undoubtedly mold advances in human health, environmental sci-

ence, and engineering (Riesenfeld et al., 2004; Steele and Streit, 2005; Tringe et al., 2005). The

ability to observe whole ecosystems in situ has elevated microbiomes to a central position within

ecology(Turnbaugh et al., 2007; Koenig et al., 2011; Aagaard et al., 2012; Caporaso et al., 2012;

Delmont et al., 2012), These massive data sets present researchers with a new challenge: how to

understand what they communicate about microbial ecological dynamics and, in turn, how this

might inform ecology more broadly. This new project requires a dramatic shift in perspective,

away from dynamics of small numbers of species to the interactions of thousands of them.

While metagenomic data adds a new urgency, taxon abundance data or ecological count data –

collections where researchers estimate the number of observed individuals across a set of taxa within

an ecosystem – is one the oldest forms of ecological measurement. Understanding the underlying

phenomena governing how taxon abundance varies in time, space or along other environmental gra-

dients is a foundational challenge within ecology (Bulmer, 1974; Etienne and Olff, 2005). A wide

number of theoretical perspectives attempt to understand these variations, such as Lotka-Volterra

and its descendants to models based on maximum entropy, food webs, trait-based dynamics, meta-

communities, trophic cascades, mass and energy balance, and entropy production, among others
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(Record et al., 2013; Xiao et al., 2015; May, 2001; Hubbell, 2001; Allesina and Pascual, 2008; Lade

et al., 2013; Leibold et al., 2004; Litchman and Klausmeier, 2008; Brown et al., 2004; Warren and

Seifert, 2011; Petchey et al., 2008; Mougi and Kondoh, 2012; Alexander et al., 2012; Kleidon et al.,

2010; Pace et al., 1999), While many approaches have compelling empirical or theoretical features,

it is hard to argue that any have yet risen to provide a unified theoretical/empirical framework

after the fashion of the coalescent model in population genetics (Rosenberg and Nordborg, 2002;

Wakeley, 2009).

One of the most promising avenues to meet this challenge is the unified neutral theroy of bio-

diversity (UNTB), pioneered by Hubbell, that builds on the concept of neutral niches – collections

of species that are ecologically equivalent – within a metacommunity structure (Hubbell, 2001;

Harris et al., 2014). While frequently controversial, the UNTB has provided a versatile framework

for understanding the structure of species abundance, particularly for species richness, dispersal,

and island biogeography (Alonso and McKane, 2004; Dornelas et al., 2006; Rosindell et al., 2011).

The crucial insight for the analysis of ecological count data is that, under suitable conditions, the

Dirichlet-multinomial (DM) distribution is the sampling distribution of a neutral niche (Harris

et al., 2014). If the count data for each sample are assumed to arise from a latent niche mod-

eled by a DM distribution, the full metacommunity structure is given by a DM mixture model

(DMM). (Holmes et al., 2012) gave the first practical inference for the DMM based on a variational

Bayesian approach. Recent work by these authors shows how this framework can be broadened

to an infinite-dimensional framework that can test for metacommunity neutrality (Harris et al.,

2014). An independent extension uses a similar model for supervised feature detection (Shafiei

et al., 2015).

In the rapidly evolving context of metagenomic statistical analysis, the DMM is only one of
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many approaches to make sense of observed count data. Unifrac, a phylogeny-based probability

metric, as well as other distance based methods dominated early approaches and are still widely

used (Lozupone and Knight, 2005; Chen et al., 2012). More recently, regression models based

on single component DM and logistic normal distributions have given researchers a framework to

understand how to associate significant shifts at the taxon level with environmental covariates while

effectively accounting for structure of the overall count data (Chen and Li, 2013; Xia et al., 2013).

An entirely distinct avenue has explored network-based analysis of correlations among taxa with

increasing levels of statistical rigor (Liu et al., 2015; Biswas et al., 2015).

While appreciating the merits of these other approaches, here we focus on the DMM because

of its statistical rigor, capactity for modeling extensions, and its link to the UNTB. For field

researchers, the statistical truism that ‘all models are wrong, but some are useful,’ is naturally

followed by the question ‘how useful are they?’ or, more pointedly, ‘how wrong are they?’ Our

aim in this work is to give some answers to these questions for the DMM. Presented with a taxon

abundance dataset, the DMM will always provide a means of organizing this data into distinct

components; how well this organization can be relied upon is a necessary consideration for empirical

ecologists. While the work of Harris et al. (2014) points to how the DMM may be re-embedded

for general hypothesis testing, the integrated computational frameworks for statistical exploration

common in other biological disciplines appear still far off (Drummond and Rambaut, 2007; Ronquist

and Huelsenbeck, 2003). We emphasize that researchers can hold reasonable doubt about the verity

of the UNTB, and still benefit from the DMM as a productive means of organizing and interpreting

ecological count data (Ricklefs, 2006; McGill, 2003). This approach requires researchers to exercise

due caution about the empirical features that may have be neglected or distorted by this analysis,

such as communities dominated by a single species (e.g. algal blooms) or bias caused by a small
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number of samples.

To measure how well the model captures features of the data, we use posterior predictive

distributions (PPD) to compare between the empirically observed data and the data that would

be expected if the DMM were the correct underlying model (Gelman et al., 1996; Meng, 1994).

PPDs are an important tool in Bayesian analysis, and provide a crucial means of assessing how

adequately complex models are able to capture features of their underlying data sets. Here, we

choose a set of test statistics intended to capture common statistical concerns relevant to ecological

studies: within-sample taxa mean; across-sample mean for taxa; across-sample standard deviation

for taxa; number of absent species within samples; and pairwise correlations among taxa.

Throughout the manuscript, we will refer to the components of the DMM as ecostates. This

represents a departure from the common usage. (Holmes et al., 2012) use the term ‘ecotypes’ for

these consortia, which is easily confused with its more common usage for a geographically-adapted

subpopulation within a species. These components have also been labeled ‘metacommunities,’

though that term could also stand in for the collection of components (Nakatsu et al., 2015).

Though ‘ecostates’ already has a referent within ecology (specifically, a leaf without a midvein), it

is sufficiently distinct from the DMM and other closely-related topics that the meaning should be

clear from context. We believe this phrasing also emphasizes a statistically pragmatic perspective

about what these components represent: consistently inferred taxa consortia from a set of ecological

samples, rather than niches or metacommunities per se.

In this investigation, we first outline a new model and inference scheme that generalizes the

DMM to make use of a Dirichlet process mixture model (DPM). In it’s initial form, the DMM

provides a single estimate, K, of the number of ecostates that best explain a set of count data

(Holmes et al., 2012). However, in considering PPDs, a reasonable concern is that some model
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discrepancy arises purely from uncertainty in the choice of K rather than within the model itself.

The DPM generalization of the DMM allows integration over all possible values of K and so directly

accounts for this form of uncertainty. When necessary, we will refer to this generalization as the

iDMM. We provide the scripts for this model under a Creative Commons License, written in the

open-source R computing environment, available at the Github companion site for this paper:

https://github.com/jacobian1980/ecostates.

We then apply the iDMM to three diverse time-series data sets from across ecology: well-known

amplicon sequence count data collected from two individuals sampled over nearly 450 days at four

bodily locations; amplicon sequence count data collected from the English channel approximately

every two weeks over the year 2009-2010; and copepod abundance count data from continuous

plankton recorders (CPR) collected during transects across the Gulf of Maine over the last fifty

years. For each of these data sets, we use simple visualizations to emphasize how the iDMM reveals

many previously identified features of the data, as well as pointing to some novel insights. The

PPD analysis measures the overall agreement within the datasets, and we highlight problematic

features and possible explanations within each. We conclude with a discussion including guidelines

for field researchers using these methods for analysis.

Data and Methods

Data

We use three publicly available environmental time series as data sets. Each series was filtered

for quality of metadata and the total number of counts per taxa. For the copepod time series, we

filtered the data into three different sets based on taxon abundance. For the other two data sets
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a single set was used that screened out low abundance taxa. While each data set derives from

a publically available archive, the specific data used in this paper have been archived at figshare

with DOIs 3145321, 3145312, and 3145303. The filtered data sets are available on the companion

website at: https://github.com/jacobian1980/ecostates.

Human-associated bacterial abundance time series

To our knowledge, the most intensive amplicon-based, publicly available time series comes from

396 time points collected from four locations on two human individuals, frequently known by the

title of the paper that described the data: ‘Moving Pictures of the Human Microbiome (MPHM)

(Caporaso et al., 2011).’ This data was collected from the right and left palms, feces and saliva

of a male and female subject over a total of 445 days from October 2008 until January 2010, for

a total of 1967 samples. Illumina GAII sequencing targeted at V4 region of the 16S rRNA was

applied to each sample and the resulting reads mapped to the Greengenes reference set, with the

full protocol specified in (Caporaso et al., 2011). We downloaded the processed data and associated

sample metadata from the Earth Microbiome Database on July 15, 2015. The data were filtered

by taxon abundance for all taxa with more than 3100 counts across all samples, yielding 742 taxa

in total.

English channel bacterial abundance times series

The L4 station is a sampling location for the Western Observatory of the English Channel and

the site of one of the first longitudinal metagenomic marine sequencing projects (Gilbert et al.,

2009, 2010; Caporaso et al., 2012). This collection builds on an extensive record of ecological and

environmental sampling at this location dating back to 1903, with continuous plankton recording
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since 1998 (Record et al., 2010). This time series is the publicly available portion of a larger six-

year series, and contains 68 samples gathered approximately 2 weeks apart from April 2009-April

2010. The large majority of samples were collected in pairs. Amplicon sequencing targeted the V4

hypervariable region of the 16S rRNA gene in every sample. We downloaded the raw data set and

metadata including sampling times from the MG-RAST database on March 15, 2013 (Meyer et al.,

2008).

We aligned the raw read data and screened for homopolymer artifacts using functions in the

mothur software(Schloss et al., 2009). Reads were alligned to the SILVA reference alignment of

10,242 prokaryotic species (Release 102) (Quast et al., 2012). These were translated into species

counts. At this stage, samples contained highly variable numbers of counts, from 2 to 267,529, with

most samples near the median value of 33,041. We filtered these data into a single set for analysis,

removing all taxa with fewer than 3 counts, leading to 994 taxa in total.

Gulf of Maine time series copepod abundance data

Zooplankton are a crucial link in the ocean food web between the fish populations and microbial-

scale trophic levels. For the past 70 years, continuous plankton recorders (CPR) monitored their

abundance and diversity, via ships of opportunity that were transiting a region of interest. CPRs

provide count data for identifiable copepod species at a depth of 5-10 meters below the ocean’s

surface and have been used widely due to their low cost and ease of deployment. Here, we con-

sider the copepod data collected via CPRs from 1964 to 2010 during transits across the Gulf of

Maine (GoM), running from near Boston, Massachusetts to Yarmouth, Nova Scotia, available at

the COPEPOD database (OBrien, 2005). While CPR data is among the most extensive marine

ecological measurements, comparisons with metagenomic barcoding methodologies suggest that
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their total counts may be somewhat biased (Lindeque et al., 2013; Hirai et al., 2015).

The complete data contain 4799 samples, each enumerating the observed counts for a single CPR

for 51 copepod species or genera. Each sample posssesses two metadata for the time of collection:

position as longitude and latitude, and phytoplankton color index, a proxy measurement for the

phytoplankton levels at the time of sampling. There is wide variablility in the number samples for

each year, from ten in 1977 to 145 in 1989, with most measurements occurring between 1980 and

2000 (2456/4799). Each sample is located along an approximately one dimensional transect across

the GoM. We filtered the samples to be located within 150 kilometers of the central line of this

transect, that excludes 93 samples. An additional six samples were excluded due to ambiguous

metadata.

Methods

Model

We employ an infinite dimensional generalization of the multinomial-Dirichlet mixture model of

Holmes et al. (Holmes et al., 2012). This allows us to infer a posterior distribution that integrates

over values of K, the number of components, removing this as a factor for aspects of the analysis.

As in Holmes et al. we assume that each sample’s count data arises from a DM distribution. This

distribution allows for additional dispersion relative to a strict multinomial distribution (Holmes

et al., 2012). The model assumes that there are an unknown number of DM components (ecostates)

underlying the data and that each sample comes from one of these components. Presuming the

samples are otherwise exchangeable, a latent variable ci augments each sample to assign it one of

the ecostates. Supposing the DM paramers for an ecostate k are given by Ak = (α1k, · · · , αMk),
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then, conditional upon ci = k, the likelihood for a sample is given by

P(Di|ci, Ak) =
Γ(Ak)

Γ(Di +Ak)

M∏
r=1

(
dir + αkr
αkr

)
(1)

= DM(Ak)

where Γ is the gamma function, Ak =
∑M

r=1 αrk and Di =
∑M

r=1 dir. As the samples are

assumed to be exchangeable, the full likelihood is then the product over all P(Di|ci, Ak):

P(D|A, c) =
N∏
i=1

DM(Aci)

where c = (c1, · · · , cN ). As in (Holmes et al., 2012), we adopt a Bayesian perspective on the

problem. However, to remove K from consideration, we use a Dirichlet process mixture model

(DPM), a nonparametric approach to specify the prior distribution on the parameters (Müller and

Quintana, 2004; Teh et al., 2006). Following (Neal, 2000), the DPM can be formulated in this

context as:

Di|ci = k ∼ DM(Ak)

Ak|G ∼ G

G ∼ DP(G0, η)

where ∼ denotes ‘distributed as’, G0 is the base measure, η > 0 is a concentration parameter, and

DP is a Dirichlet process. The base measure here is the Cartesian product of two independent

distributions, with the first component an exponential distribution with mean one and the second

a uniform Dirichlet distribution of length M .

Inference

We use a Markov chain Monte Carlo (MCMC) methodology to approximate the posterior distri-

bution of the model parameters, following the methods described in (Neal, 2000; Stein and Meng,
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2013). All scripts were implemented in the R computing environment. We use two sets of Gibbs

updates, one for the DPM parameters and one for the DM parameters. The DPM parameters

(the latent variables) are drawn using a collapsed Gibbs sampler. At each iteration, the collapsed

Gibbs update successively moves the sample’s latent variables to possibly new states, as specificed

in Neal’s Algorithm 8 (Neal, 2000). For each sample i, we let l be the number of distinct culture

labels cs for s 6= i and h = l+m where m is a parameter that allows for the assignment of a sample

to a number of new components. We fix m = 3. If ci = cs for some i = s, then we sample values

for that component. If i 6= s for any s, then we set ci = l + 1 and draw m new components from

the base measure. Finally, we draw a new value for ci according to:

P(ci = c|c−i, A1, · · · , Ah) ∝


n−i,c

N−1+η · DM(Ac) for 1 ≤ c ≤ l,

η/m
N−1+η · DM(Ac), for l < c ≤ h,

(2)

where c−i denotes all values of c except ci and n−i,c is the number of values equal to c for i 6= s. At

each iteration, the set of Ac’s is renumbered so all components have at least one associated sample.

The Gibbs steps to update the DM parameters come from recent work on how to generate

efficient sampling from this distribution (Stein and Meng, 2013). The method relies on a data

augmentation that separates the DM distribution into a Dirichlet distribution and a log-concave

single parameter distribution. Since the Dirichlet is conjugate to the prior, it can be directly

sampled. The last parameter, the dispersion parameters for the DM distribution, is sampled using

a griddy Gibbs sampler with 1000 draws at each iteration (Ritter and Tanner, 1992).

For each dataset we ran three MCMC chains for 20,000 iterations. In each MCMC run, we

applied several diagnostics to ensure convergence, including autocorrelation plots, Geweke’s di-

agnostic test, and estimating the effective sample size. We take a 10% of the chain as burn-in.
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As an example, for one run of the full copepod data set, we realized minimal autocorrelation by

thinning by 10. The Geweke statistic on the thinned chain was 2.047, consistent with reasonable

convergence. The effective sample size was 423.78.

Scripts implementing the MCMC as well as visualizations routines are available on the com-

panion website: https://github.com/jacobian1980/ecostates.

Posterior predictive distribution

For a model specified by parameters Θ and data D, the posterior distrubution is the conditional

distribution P(Θ|D). The posterior predictive distribution for a new set of data D̃ is generated by

integrating the model likelihood of D̃ over the posterior distribution:

P(D̃|D) =

∫
Θ
P(D̃|Θ) · P(Θ|D) · dΘ.

For complex models where this integral cannot be done analytically this distribution can be

approximated by simulating a large number of datasets D̃1, · · · , D̃N from P(Θ|D). We then compare

the observed data to these simulated sets through a test statistic T . Absent sufficient statistics, the

appropriate choice of T is critical to reveal the empirical attributes of interest. These comparison

are often summarized in terms of a posterior predictive p-value (PPP), the fraction of simulated

test statistics more extreme than the empirically observed value:

P
(
T (D̃i) > T (D

)
≈ 1

N

∑
i=1

1
[T (D̃i)>T (D)]

,

where 1[.] is an indicator function.

To simulate the PPD, we used simulation routines in the R computing environment developed

for the Human Microbiome Project (Turnbaugh et al., 2007). For each MCMC run, we simulated

data in the following fashion. We thinned the Markov chain by 10 and trimmed it with a burn-in of
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2,000 iterations. For each posterior sample and each data sample, we generated counts according

to the corresponding DM distribution with the total number of counts equal to that observed in the

data sample. We repeated this procedure 1,000 times, generating 50,000 simulated data sets per

sample. We then calculated the PPP summaries for each taxa within each sample, the overal mean,

overall standard deviation, number of zero-count taxa within a sample, and the pairwise correlations

for the 15 most abundant and least abundant species using these simulated data sets. The PPD

for each taxa within each sample was calculated by observing the fraction of simulated samples

with more counts than the observed value. The mean, standard deviation, and pairwise correlation

calculation were taken over all samples, providing metrics for each species. The zero calculation

is taken over all species, provides a metric for each sample. All PPPs were then transformed by

p̃ = |0.5− p|/0.5 so that values of either type of extremity yielded similar values.

Visualizing the posterior distribution

Visualizing complex data is a crucial means to harness understanding from scientific inquiries. The

iDMM effectively clusters the samples into a finite but variable number of components that reflect

similarities in the count distributions across the samples. Most presentations using the DMM show

taxon counts organized by these clusters to emphasize the specific shifts apparent across ecostates

(Zhou et al., 2013; Charlson et al., 2012). This is a natural approach, particularly in a case-control

study, where the researchers often seek to find the taxa that exhibit variation across experimental

treatments. However, in the time series here, we prefer a presentation to highlight the ecostates’

relationship to each other and to time. This visualization is a simple organization of the posterior

samples in a vein similar to the results of chromosome painting, so we term it ‘ecological painting’

(Hellenthal et al., 2008). We include the traditional, species-based presentations as Figures 2, 8,
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and 5 for comparison.

An ecological painting is simply a plot that colors samples according to their ecostate and orders

the samples in time and space. In principle, other covariates may be used but these are natural

first points of utilization. In the case of a finite mixture model, the number of components is fixed

so colors can be assigned proportionally to the fraction of posterior samples in that state. In this

case, we need to identify a homology of the ecostates across the posterior samples.

Unfortunately, there is no intrinsic aspect of the ecostates that render them identifiable across

iterations. We deal with this problem by rendering the posterior into a finite mixture in the

following way. First, we generate a coherence plot of the MCMC chain, showing the frequency of

how often different samples fall within the same component. We also histogram the distribution of

the number of components across the chain. From these we then determine a minimum number of

components, K ′, that reasonably capture the posterior sample. This value may not be the smallest

number that the chain takes, and samples with components fewer that K ′ are excluded from the

visualization. In our data sets, these iterations formed at most 2% of the chain. With K ′ in hand,

for each iteration we find the largest K ′ components, and then enumerate all other components as

K ′ + 1. This effectively reduces the chain to the finite case and so we apply the scheme propopsed

by Stephens to minimize the Kullback-Leibler divergence between components across iterations

(Stephens, 2000). Researchers may also be interested in how the ecostates relate to each other. To

summarize this information, we present the expected frequency for the twenty most frequent taxa

for each component.
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Results

We present the results for each data set, beginning with the biological interpretation of the ecological

painting, followed by the indications the PPD gives about the model fit, and the correlation in

ecostates between different level of taxa filtering. For each data set, we produce two figures – the

painting and a summary of the PPD – for the purpose of comparison.

Human-associated habitat bacterial time series

Figure 1 shows the ecological painting of the iDMM applied to the most heavily filtered set of the

MPHM data. This presentation distills a number of key results from the original paper, rendering

complex data amenable to visual analysis (Caporaso et al., 2011). Most salient is that the three

niches (hand, feces, and tongue/saliva) are clearly separated by their inferred ecostates. Interest-

ingly, the states assigned to tongue/saliva and hand habitats are shared across the two individuals,

while, the feces habitat has a strong separation between them, consistent with the enterotypes

hypothesis (Wu et al., 2011; Arumugam et al., 2011). For each habitat within each individual,

the inferred ecostate exhibits strong temporal consistency. In particular, the female subject’s fecal

samples exhibit near perfect consistency in ecostate across all time points. The ecostate painting

shows the two hand pairs for both individuals exhibit strong correlation in their ecostates (ρ = 0.72,

for maximum likelihood of the male subject’s samples), as observed in the original report.

The iDMM model also supports a more high-level analysis than a species-by-species comparison.

For comparison, species distributions organized by ecostate can be seen in Figure 2. The strong

temporal consistency in ecostate assignment across all habitats is modulated by regular oscillation

within some of them. Within both individuals, the tongue/saliva habitat oscillates between two

ecostates, with the duration of the oscillations lasting approximately one month for the male subject,
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and less than a week for the female subject. The painting also identifies a number of unusual

samples, most obviously those colored green in the male hand and fecal samples. These may be

mislabeled samples, or show unexpected associations in human microbiomes (between saliva and

hand, for instance).

Figure 3 summarizes the posterior predictive analysis for the data set. This indicates that the

model effectively captures the mean and standard deviation in species counts and the frequency

of zero counts in samples. The individual p-vales for each species across each sample (upper left

panel) appear problematic but largely recapitulate the habitat structure, with reasonable p-values

where particular species are common. The model struggles a bit to capture correlations across taxa,

both at high and low levels of association, although they are almost always qualitatively correct

(i.e. both are highly positive, or highly negative) if not quantitatively precise. Due to habitat

structuring, the MPHM shows strong pairwise structure in correlation, with each pair of species

showing high positive correlation (ρ > 0.5), low correlation (−0.5 < ρ < 0.5), or high negative

correlation (ρ < −0.5). In nearly all cases, the model correctly estimates the category where a

pair of species falls. However, the empirical fit provides reasonable p-values for the low-correlation

cases. Even controlling for habitat structure (only considering pairwise correlation among species

prevelant in the same habitat) this pattern persists. This indicates that the iDMM is useful for

qualitatively capturing species correlations but does not provide precise quantitative estimates

across disparate niches.

English channel bacterial time series

Figure 4 shows the ecological painting for the L4 time-series data. This indicates moderate suc-

cessional patterns over the year, beginning with a single ecostate in April, transitioning to a com-
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bination of two states for the summer, then a third state for the late autumn and early winter,

before finally transitioning back to the original state in the late winter. This is consistent with the

broader seasonality observed in this time series, as suggested in the original paper presenting the

entire six-year time series from which the data are excerpted. Without additional context – more

intensive temporal sampling, another spatial location, or envionmental covariates – it is unclear if

the painting reveals genuine seasonal shifts or other heterogeneity that simply coincides with this

pattern, although reports on the larger data set indicate the latter.

Figure 6 summarizes the PPD analysis for the L4 time series. The p-value for each species

within each sample shows no systematic issues, except for poor performance across six low count

samples (horizontal bands). The model appears to precisely capture mean frequency across samples

for nearly all species, while systematically overestimating the amount of variation in counts across

samples. The number of zeros within a sample are generally well-modeled, though a significant

fraction of samples have overestimates of these numbers. As to the pairwise correlations across

species, the model performs generally well for most pairs, although the model overestimates the

correlation for a distinct fraction of most frequent species. For moderately frequent and infrequent

species, the model shows excellent agreement with the data. In this context, where a single location

is observed at moderate temporal resoltion, the iDMM appears to perform very well.

Gulf of Maine copepod time series

Figure 7 displays the ecological painting for the GoM copepod time series, with each panel organized

from left to right by month and bottom to top by distance from Boston, Massachusetts. The

painting shows strong seasonal and spatial trends, as frequently noted in the literature (Pershing

et al., 2005; Record et al., 2010; Stamieszkin et al., 2015). Both the mid-summer months (Jun.-Aug.)
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and mid-winter months (Nov.-Feb.) exhibit substantially less spatial variation than other months.

The ecostates associated with these relatively quiescent periods show a single or small number of

dominant species, with relatively high variation (see Figure 10). The transitional ecostates between

these periods exhibit more complex taxon composition.

The painting also highlights the dramatic shift in species that occurred from 1990-2001 relative

to the years before and after (Record et al., 2010; Johnson et al., 2011). In the years outside the shift,

the winter-summer cycle is fairly stable, with only a short transition period associated with other

ecostates. This transition is largely dominated by changes in the frequency of Calanus finmarchicus,

a crucial species in the north Atlantic food web. During this shift, ecological stability diminishes,

with transitions associated with more defuse taxa distributions within the present ecostates. During

this period, neighboring samples in time and space are less likely to share an ecostate and novel,

highly complex ecostates are more common, suggesting ecological distress such as the changes in

GoM stratification driven by increased transport of water from the Arctic described in (Greene

et al., 2012).

Figure 9 shows the inferred PPD for the dataset. Considering the species/samples values, the

performance for highly abundant species is generally good, with poor performance for all other taxa

(note the correspondence between p-value and mean; upper right and center panels). However, we

see strong performance for the mean, standard deviation, zeros, and pairwise correlation. This is

consistent with an ecosystem largely determined by a small number of highly abundant species that

are likely not exchangeable (in an ecological sense) with other taxa, contrary to the the UNTB.

Consequently, the model fits those species well but captures poorly the remaining species. In

context, the GoM is at the southern boundary of the range of these taxa. The non-interchangeability

revealed here communicates an important vulnerability of this ecosystem to warming.
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Discussion

This work investigates the performance of an infinite dimensional version of the DMM for the

ecological count data. It shows how this approach – like other implementations of the DMM – can

be used to organize and interpret underlying sample dyanmics with a straight-forward visualization

while guarding against overinterpretation by examining the posterior predictive fit. While the model

effectively distills many of the important patterns within the data inferred via other non-model-

based approaches, such as PCA or MDS, it also shows that some caution should be exercised in

these analyses and suggests certain practices may improve the reliability of field investigations.

Posterior checks, especially PPDs, can be an important bulwark in ensuring that these models

are treated with appropriate skepticism (Beaumont, 2010). For the DMMs, this requirement is

not particularly burdensome as PPDs are easy to simulate and can be interpreted using familar p-

values as a metric. Appropriately used, these measures give researchers and their readers increased

assurance in the reported conclusions. We encountered several issues in the analysis of the datasets

above that suggest useful guidance for field researchers. We organize these suggestions below under

the following headings: identifying problems with samples; relevant scales of ecological fluctuation;

niches as ecological outgroups; and departures from niche neutrality.

Identifying problems with samples

In our examples, PPDs consistently identify problematic samples from the iDMM’s perspective

that may suggest experimental issues. In the cases we present, sample-specific deviations from

model expectations may be due to low sample counts, mislabeled samples, unusual taxa present,

or departures from the iDMM’s assumptions. PPDs for the iDMM provide a convenient tool for

identifying these samples, showing low p-value ‘bands’ (bright red) that are indicative of poor
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performance for a sample across a subset of taxa. In the L4 example, bands across all species

indicated insufficient counts for reliable inference within certain samples. In the MPHM painting,

the tongue ecostate is found in the feces habitat, a likely mislabeling. The ecological painting

provides an easy means to identify these questionable samples.

Relevant scales of ecological fluctuation

By ecological fluctuation, we mean the changes in environmental conditions that precipitate shifts

in taxon composition and consequently ecostate. The easiest scale of ecological fluctution to analyze

is the case-control study. As highlighted in their analysis of twin obsesity (Holmes et al., 2012), the

association between iDMM components and case/control status yields a straight-forward statistical

approach. A similar approach was recently used to analyze the microbiomes of human cancers

(Nakatsu et al., 2015). However, ecologists are often interested in more sampling across more

heterogeneous patterns of spatial, temporal or environmental change. While there is some guidance

about the level of read-depth required for DM inference (La Rosa et al., 2012), there is little guidance

available for dealing with ecostate variation.

The analysis of time series datasets here makes it clear that ecologists should prepare a sampling

design of sufficient resolution to capture ecostate transitions. In practice, this means sampling at

a temporal resolution substantially higher than the expected scale of the transition itself. For

instance, the MPHM data is compelling in large part because it shows the relative constancy of

species abundance in time and space. However, this consistency is revealed precisely because the

sampling occurs at a time interval substantially more frequent than the scale of ecostate variation.

Similarly, the absence of intensive sampling renders the conclusion of seasonality in the L4 time

series uncertain. A seasonal transition that would be anticipated for a temperate marine microbiome
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is on the order of 90 days (a single season). A minimum sampling regime should then be an order

of magnitude less than that, or less than 9 days, about 60% of the two week average interval for

the L4 study. In other cases, such as spatial or environmental gradients, a similar rule of thumb

can be employed.

Niches as ecological outgroups

The specific examples we consider here strongly suggest that researchers consider using ‘outgroup’

sampling as important tool for contextualizing their analyses. The term outgroup in phylogenetic

analysis refers to a species included in the collection for the purpose of parsing the relatedness among

the study population (Nixon and Carpenter, 1993). In the context of ecological data, we mean a

sample that has some related properties to the main study target but is sufficiently dissimilar to

provide a backdrop for understanding the degree of variation in the study population. An outgroup

does not need to fall entirely outside the study domain. For instance, in the MPHM, the separate

niches (feces, saliva, skin) provide simultaneous outgroups for each other, allowing more confident

interpretation. In the copepod data set, the extensive temporal and spatial sampling that the study

provides is akin to an outgroup, though a set of off-shelf samples would be better. The analysis of

the L4 time series suffers from the lack of an outgroup, leaving the apparent seasonality in doubt

(though reports from the complete, six year dataset indicate the robustness of this observation).

Departures from the niche neutrality

To some researchers, departures from the DMM model assumptions mean that the UNTB and

analysis based on the DMM can be abandoned immediately (Dornelas et al., 2006). For researchers

content to still use this analysis, these departures may be useful: as the data depart from model
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expectations, the structure of these deviations can reveal important aspects of the ecology. In the

GoM copepod data set, the domination by C. finmarchicus represents a departure from underlying

model assumptions as it cannot be ‘swapped out’ for any other copepod species (i.e. it is not

ecologically equivalent).

This is clearly shown in the PPDs for each species: the model performs well for highly abun-

dant taxa like C. finmarchicus but poorly for all other taxa. This is consistent with the common

hypothesis that C. finmarchicus is irreplaceable in the GoM. This species is at the southern bound-

ary of its range in the GoM, implying a high vulnerability of the system to warming. It also

shows how a departure from the DMM model assumptions and hence the UNTB can reveal critical

characteristics of ecosystem function. We understand that these departures are qualitative (‘bad’

fit with the PPDs) rather than quantitative. An important avenue for future research with the

DMM is to develop precise statistical tests for departures from model expectations with ecological

understandings of their consequence (Harris et al., 2014).

Conclusions

The DMM and its variants provide powerful tools for understanding ecological count data. However,

these approaches possess a number of weaknesses that could be addressed in the next generation of

models. Most obviously, these approaches do not consider the total number of model counts within

a sample, a critical indicator of ecosystem function. Researchers might naturally account for this

by excluding exceptionally high- or low-count samples, though this would be better addressed by

including this variation at the level of the model, as is possible with a negative binomial process

(Zhou and Carin, 2015). The iDMM also does not account for correlation across samples, as could

be done using Gaussian process priors or hidden Markov models to ‘borrow strength’ across samples.
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Finally, we do not believe that using the iDMM requires one to take a strong position on

the UNTB: the underlying ecostates can be treated as phenomenological clusters, rather than

theoretically-precise metacommunity structures, and still provide analytic utility, as evidenced par-

ticularly well in the copepod data set. As the use of the coalescent model in phylogenetics is

not substantially diminished by the frequent observation of violations of its assumptions, the ap-

proach of the iDMM and similar models promise the possibility of a connection to the broader

UNTB framework while often giving a practical means of interpreting datasets independent of its

operation.
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Figure 1: The ecological painting for the MPHM showing the mixture of ecostate for samples collected across two

individuals (female above, male below) and the four collection sites over approximately 450 days. Each ecostate has

a unique color noted in the legend.
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Figure 2: MPHM data set log-abundance arranged as in initial data set (left) and by maximum-likelihood ecostate

(right).
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15 most common speices

Pairwise species
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15 least common species

Pairwise species
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Figure 3: The PPD for the MPHM showing performance for each taxa within each sample (upper left), mean across

all samples (upper middle), standard deviation across all samples (upper right), zeros within samples (lower left),

pairwise correlation among abundant species (bottom middle) and infrequent species (bottom right). Species ordered

by total abundance. Samples orderd by habitat. Upper left panel has extreme p-values in white. Boxplots show

simulated values; blue dots show observed values.
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Figure 4: Presentation of ecostates for L4 Western Channel time series. Both x-axis and color denotes time in order

to distinguish paired samples. Ecostate shown on y-axis.
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Figure 5: L4 time series data set log-abundance arranged as in initial data set (left) and by maximum-likelihood

ecostate (right).
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Figure 6: PPD summary for L4 amplicon time series. Note the low count samples contributing the white horizontal

bands in the upper left hand panel.
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Figure 7: Ecological painting of GoM copepod data set, organized by year. Each panel corresponds to a year, with

samples arranged spatially with Boston, USA at the bottom and Yarmouth, Canada at the top and time on the

horizontal axis.
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Figure 8: Copepod data set log-abundance arranged as in initial data set (left) and by maximum-likelihood ecostate

(right).
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Figure 9: PPD summary for GOM copepod data set. Strong agreement for nearly all aggregate metrics is opposed

to poor performance by less frequent species within samples. Note the correspondence between high abundance and

low p-values in the upper left panel.
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Figure 10: Ecological painting with inverse variance parameter for each ecostate substituted for ecostate coloring.

Black indicates high variance; white indicates low variance.
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Ecostate 1 Ecostate 2 Ecostate 3 Ecostate 4 Ecostate 5

Ecostate 6 Ecostate 7 Ecostate 8 Ecostate 9 ●

Species, in order

Calanus finmarchicus
Centropages typicus
Temora longicornis
Metridia lucens
Tortanus discaudatus
Centropages hamatus
Metridia longa
Paraeuchaeta norvegica
Cyclopoida
Harpacticoida 
Eurytemora
Centropages 
Oithona 
Nannocalanus minor
Mecynocera clausi
Acartia danae
Metridia
Euchaeta marina
Corycaeus 
Calanus
Oncaea 
Macrosetella gracilis
Acartia 
Candacia 
Pleuromamma 
Lucicutia flavicornis
Temora turbinata
Clausocalanus
Paracalanus
Paracalanus Pseudocalanus
Pseudocalanus
Calocalanus 
Clytemnestra 
Eurytemora americana

Figure 11: Expected species frequency for each ecostate from maximum likelihood iteration of GoM data set. Colors

correspond to Figure 7.
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