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A central goal of systems neuroscience is to develop accurate quantitative models of how 
neural circuits process information. Prevalent models of light response in retinal ganglion cells 
(RGCs) usually begin with linear filtering over space and time, which reduces the high-
dimensional visual stimulus to a simpler and more tractable scalar function of time that in turn 
determines the model output. Although these pseudo-linear models can accurately replicate 
RGC responses to stochastic stimuli, it is unclear whether the strong linearity assumption 
captures the function of the retina in the natural environment. This paper tests how accurately 
one pseudo-linear model, the generalized linear model (GLM), explains the responses of 
primate RGCs to naturalistic visual stimuli. Light responses from macaque RGCs were 
obtained using large-scale multi-electrode recordings, and two major cell types, ON and OFF 
parasol, were examined. Visual stimuli consisted of images of natural environments with 
simulated saccadic and fixational eye movements. The GLM accurately reproduced RGC 
responses to white noise stimuli, as observed previously, but did not generalize to predict RGC 
responses to naturalistic stimuli. It also failed to capture RGC responses when fitted and tested 
with naturalistic stimuli alone. Fitted scalar nonlinearities before and after the linear filtering 
stage were insufficient to correct the failures. These findings suggest that retinal signaling 
under natural conditions cannot be captured by models that begin with linear filtering, and 
emphasize the importance of additional spatial nonlinearities, gain control, and/or peripheral 
effects in the first stage of visual processing. 
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Introduction 

Decades of research on the retina have yielded many computational models of its function, 
starting with the linear description of spatial receptive fields of retinal ganglion cells (RGCs) 
[1,2]. A central goal of these computational models is to synthesize current understanding and 
provide quantitative predictions of responses to a range of visual stimuli. Most models of RGC 
light response begin with a linear filter (the spatiotemporal receptive field) which reduces the 
high-dimensional spatiotemporal input stimulus to a scalar function of time, enormously 
simplifying the modeling problem. Subsequent elements in the model then generate a 
sequence of spikes from the scalar output of the linear filter. Despite their simplicity, these 
pseudo-linear models can accurately replicate the temporal structure of RGC light responses 
to stochastic visual stimuli that are commonly used to characterize neural responses in the 
retina [3–5] (see [6]), suggesting that important aspects of neural computation in the retinal 
circuitry are approximately linear. These findings validate the concept of a spatiotemporal 
receptive field for RGCs, which is effectively tied to the linearity assumption. They also permit a 
compact and powerful summary of neural computation at the earliest stage of visual 
processing. Indeed, most models of visual computation in the brain begin with the assumption, 
explicit or implicit, that retinal processing is largely linear. 

However, responses to artificial stochastic stimuli may not reveal how the retina functions in 
the life of the organism. Naturalistic stimuli exhibit distinctive statistics, and numerous studies 
support the notion that the visual system is specifically tuned to represent stimuli with natural 
statistics [7–9]. Furthermore, many studies have revealed nonlinear computations, including 
nonlinear summation over space and time, in several types of RGCs in several species (e.g. 
[10–16]; see [17]) as well as some of the underlying mechanisms [18–21], using tailored 
artificial stimuli. These findings are inconsistent with pseudo-linear models of retinal function. 
However, it is unclear how relevant these nonlinearities are for retinal encoding of natural 
scenes. It has been suggested that they may not be very significant in the mouse retina [22], 
though no tests have been performed in the primate retina. In principle, retinal computations 
could behave mostly linearly in natural conditions, even though nonlinear behavior can be 
elicited with certain stimuli. Given these diverse findings, a basic question arises: is the first 
stage of visual processing effectively linear in a natural setting? 

The goal of the present study is to answer this question in the retina of the macaque monkey, 
the animal model with retina, visual system, and visual behaviors most similar to those of 
humans. To test the adequacy of pseudo-linear models, a natural focus is the generalized 
linear model (GLM), which is among the most recent widely-used models and has several key 
conceptual and technical advantages over other pseudo-linear models [5]. First, the GLM 
includes an instantaneous nonlinearity after the linear filter, which captures the nonlinear 
intensity-response relationship of RGCs. Second, the GLM includes post-spike feedback, 
which accounts for non-Poisson structure in RGC spike trains, such as bursting and 
refractoriness, that are not captured by simpler models [23]. Third, the GLM can be extended 
easily, using post-spike cross-coupling filters, to capture the stimulus-independent correlations 
present in RGC populations. Fourth, the GLM can be robustly fitted to experimental data, 
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including data from entire populations of coupled cells, because the log-likelihood function is 
convex in the model parameters [24]. Finally, the GLM permits optimal reconstruction of the 
stimulus from spike trains, which reveals how specific aspects of the neural response encode 
the stimulus [25,26]. These features of the GLM make it useful for the study of other neural 
systems as well [27,28]. 

Here we test the ability of the GLM to account for RGC responses to movies composed of 
natural images with simulated fixational eye movements. Using large-scale multi-electrode 
recordings from macaque retina, we examined responses to these naturalistic stimuli in 
populations of ON and OFF parasol cells, which initiate the magnocellular pathway of the 
primate visual system. The results indicate that the performance of the GLM in reproducing 
responses to naturalistic stimuli is markedly inferior to its previously reported accurate 
performance with white noise stimuli. We further demonstrate that a GLM modified with 
pointwise scalar nonlinearities before and after the linear filter also fails to reproduce 
responses to naturalistic stimuli. These findings indicate that pseudo-linear models are 
insufficient for explaining the visual signaling function of primate RGCs in natural viewing 
conditions. They also highlight the importance of building computational models which 
incorporate known properties of retinal function, including nonlinear spatial summation, gain 
control, and periphery effects, to understand natural vision. 

Results 

Primate retinal ganglion cell responses to natural scenes 

To understand the pattern of retinal responses elicited by natural scenes, large-scale multi-
electrode recordings were obtained from retinal ganglion cells (RGCs) in the isolated macaque 
retina [29,30]. Spiking responses of hundreds of RGCs were examined, and spatiotemporal 
white noise was used to probe their light responses and classify distinct cell types [30–32]. 
Complete populations of ON and OFF parasol RGCs covering the region recorded were 
examined further. Images of natural scenes from the van Hateren database [33] were 
presented and jittered over time in a manner that simulated fixational eye movements, and 
were replaced once per second to emulate the rapid transitions that occur at saccades (see 
Methods, Fig. 1A,B). 

Unsurprisingly, natural scenes evoked patterns of neural response very different from those 
evoked by spatiotemporal white noise. The combination of natural image structure and 
emulated eye movements produced strong and extended periods of firing and silence (Fig. 
1C), compared to the briskly but weakly modulated responses observed with white noise (Fig. 
2C,D,G,H). Thus, the different statistics of these stimuli give rise to different patterns of activity 
in the retinal output. 
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Testing the extensibility of the generalized linear model to natural scenes  

To test whether pseudo-linear models can generalize easily to capture the natural function of 
the retina, a generalized linear model (GLM) was fitted to data obtained with white noise 
stimuli, and the fitted model was then used to predict light responses to both white noise and 
natural scenes [5]. In the GLM, the stimulus is first convolved with a spatiotemporal linear filter 
to produce a univariate generator signal over time. The generator signal drives spike 
generation through an exponential nonlinearity that controls the rate of an inhomogeneous 
Poisson point process (Fig. 2A). These portions of the model are designed to capture the 
integration of light inputs over space and time, the nonlinear relation between stimulus strength 
and firing probability, and the stochastic nature of retinal responses. In addition, a fitted 
feedback waveform is added to the generator signal after each generated spike. This term 
permits the model to capture non-Poisson structure observed in real spike trains, such as 
refractoriness and bursting [23,34].  

Fits of the model parameters to white noise data revealed spatiotemporal filters and feedback 
filters similar to those seen in previous work (Fig. 2B,2F). With these fitted parameters, the 
GLM provided an accurate reproduction of the structure of RGC firing to held-out data 
consisting of repeated presentations of a white noise stimulus, consistent with previous 
findings (Fig. 2C,2G) [5]. However, this same model, with the same parameters, largely failed 
to reproduce the distinctive firing structure observed with natural scenes (Fig. 2D,2H). 

The inferiority of the model predictions with natural scenes compared to white noise was s 
consistent in 46 ON and 87 OFF parasol cells examined in three retinas (Fig. 2E). To 
summarize model performance across many cells, the quality of the model predictions was 
quantified in two ways (see Methods) that allow for the fact that firing structure is very different 
in the two stimulus conditions. First the likelihood of the rasters given the fitted model was 
quantified by the fractional log-likelihood increment. This metric is a monotonic transform of 
likelihood, normalized to [0,1] in a manner that focuses on the model’s ability to capture 
stimulus-driven response variation over time (see Methods). Second, the ability of the model to 
directly replicate the response was quantified by the fraction of explainable variance. This 
measure is also normalized to [0,1], and focuses on firing modulations which were 
reproducible across trials (see Methods).   

Using both measures, model prediction accuracy was substantially lower for natural scenes 
stimuli than for white noise stimuli (Fig. 2E). Note that the absolute model performance differed 
somewhat in the three retinas recorded, presumably due to differences in the preparations. 
These differences could include the degree of photopigment bleaching, receptive field sizes 
relative to stimulus pixels, and other sources of variability between animals and experimental 
preparations. In all cases, however, the model captured responses to natural scenes much 
less accurately than responses to white noise. Thus, a GLM fitted to white noise data cannot 
generalize to explain responses to natural stimuli. 
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Testing the structure of the model with natural scenes 

One reason for the failure of the GLM to generalize, despite capturing responses to white 
noise accurately, could be that retinal processing adjusts to the statistics of the stimulus by 
changing its properties (see [35]). Adaptive changes in retinal processing could potentially be 
captured by allowing the parameters of the GLM to change in different stimulus conditions. If 
this were true, the GLM would remain useful for summarizing retinal responses, with the 
understanding that model predictions are accurate only if the parameters of the GLM are 
estimated using stimuli with similar statistics, because of adaptation in the retina. 

To test this possibility, the GLM was fitted to data obtained with a subset of natural scenes 
stimuli, and then used to predict the responses to a different subset of natural scenes stimuli 
(cross-validated). This approach produced somewhat more accurate predictions of light 
responses (Fig. 3C,3F). These improvements took the form of both minor corrections in the 
structure of the response as well as overall changes in firing rate. However, the discrepancies 
between data and model remained large compared to those obtained with white noise (Fig. 
3D). Across three preparations, the results were consistent: fitting and testing the model with 
natural scenes produced substantially less accurate predictions of response than fitting and 
testing with white noise (Fig. 3D). Thus, the parametric form of the GLM is less well-suited to 
capturing light responses with natural stimuli than with white noise. 

Extensions of the model to capture simple nonlinearities 

Although the GLM fails to capture responses to natural scenes, it remains possible that slight 
modifications to the model structure would improve its predictions and thus produce an 
accurate model, while retaining the technical and conceptual advantages of the GLM, notably 
the key early linear filtering stage of the model. One modification of this kind is a scalar 
nonlinearity, that is, a function that transforms a single scalar input to a single scalar output. 
Such a nonlinearity could capture the function of some nonlinear mechanisms in the retinal 
circuitry, while only adding a small number of parameters. A nonlinearity of this form can be 
fitted to data by alternating the relatively simple adjustment of the new parameters with the 
adjustment of the more numerous GLM parameters that are mathematically guaranteed to 
converge to a global optimum [24] (see Methods). To test the extensibility of the GLM, the 
model was augmented to accommodate two pointwise scalar nonlinearities, one before and 
one after the spatiotemporal linear filter. 

First, an instantaneous, scalar nonlinearity was applied to each pixel of the stimulus after 
temporal integration that would be expected from cone photoreceptors, but prior to the 
spatiotemporal filter in the GLM (see Methods; Fig 4A). This was performed by convolving the 
stimulus over time with a realistic photoreceptor impulse response (see Methods) and then 
fitting the remaining model. This model structure would capture, for example, a nonlinear 
contrast-response relationship at the cone synapse prior to spatial and temporal processing in 
the retina. For simplicity, a power-law nonlinear form, f(x) = xp ,  was selected. The parameter 
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governing its shape (p) was iteratively modified, alternating with modifying the parameters of 
the rest of the model, to maximize likelihood. In three preparations, the form of the fitted 
nonlinearity was consistent for natural scenes, and consistent for white noise (Fig. 4B, 4C, 4F, 
4G), but different for the two types of stimuli. Thus, the early nonlinearity in the model 
apparently captured modest systematic departures from linearity early in the retinal circuitry, 
and these departures depend on stimulus statistics. Note that this manipulation would not 
account for dynamic nonlinearities in photoreceptor signals (e.g. [36]). 

Second, the exponential nonlinearity in the GLM was modified to allow for different nonlinear 
transformations of the generator signal controlling firing probability. This model structure would 
capture, for example, saturation of the RGC firing rate for strong stimuli. A sigmoidal 
nonlinearity, f(x) = L/(1+exp(-rx)), was fitted by optimizing the parameters governing its shape 
(L,r), and then refitting the parameters for the feedback filter and the background firing rate, 
while holding the parameters for the stimulus filter fixed (see Methods). This procedure 
resulted in reproducible fits with a consistent form across data sets (Fig. 4B,C,F,G).  

Fitting both of these simple nonlinearities to the data simultaneously produced some 
improvement in the natural scenes predictions, as would be expected with a more general 
model. However, the model continued to produce substantially less accurate predictions with 
natural scenes than with white noise. Simulated responses reproduced measured responses 
more accurately than those of the standard GLM, but still featured clearly visible failures (Fig. 
4D,H), consistently across cells and data sets (Fig. 4E). In summary, allowing for simple 
nonlinearities both before and after spatiotemporal linear filtering produced evidence of 
systematic nonlinear behavior not captured by the original GLM, but did not allow the model to 
capture responses to natural scenes with substantially higher accuracy. The failure of the 
modified GLM to capture the response to naturalistic stimuli is thus likely to be attributable to 
its pseudo-linear structure. Furthermore, the fact that pointwise nonlinearities did not correct 
the failures implies that more complex nonlinear interactions over space and/or time govern 
the RGC light response. 

Discussion 

The present results show that the generalized linear model (GLM), which successfully captures 
the responses of populations of primate retinal ganglion cells (RGCs) to white noise stimuli, 
fails to capture responses as accurately with natural scenes stimuli (Fig. 2). This failure not 
only reflects the inability of the model parameters to generalize across stimuli with different 
statistics, but also reflects structural deficits in the model (Fig. 3). Furthermore, simple 
nonlinearities added to the model to account for known retinal mechanisms had little effect on 
the conclusions (Fig. 4). The results suggest that models with fundamentally nonlinear 
structure, potentially including subunits and adaptation, will be necessary to capture how the 
primate retina represents the visual environment for which it evolved.  
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Comparison to expected results from previous models 

Since the first experiments demonstrating the center-surround properties of mammalian RGCs 
[1], many studies have explored the neural computations in the retina which produce patterns 
of activity transmitted to the brain. Most models of these computations are designed to capture 
the results of a particular stimulus manipulation (see [17,37]), and provide insight into retinal 
mechanisms, but are not intended to provide a broad description of the retinal output signal. 
However, certain models are intended to generalize at least to some degree. These usually 
have mostly linear properties, so they can be readily interpreted and fitted to diverse 
experimental data (e.g. [3,4,6,10]). The GLM is such a model: essentially linear, but with 
simple nonlinear components and conditioning terms added to account for major features of 
RGC response not captured by simpler models (nonlinear dependence on stimulus strength, 
non-Poisson time structure such as bursting and refractoriness, and concerted firing across 
cells). The structure of the GLM allows it to capture a wide variety of response patterns elicited 
by white noise stimuli, in complete populations of neurons, with striking accuracy [5]. Given its 
mostly linear structure, however, it is not surprising that substantial failures of the GLM can be 
observed in some conditions (e.g. Fig. 2D,H) (e.g. [11,13]). It is also not surprising that these 
failures are larger with natural scenes than with white noise (e.g. Fig. 2C,D,G,H), because 
white noise only modestly modulates RGC firing and thus may keep responses in a more 
linear operating range, while natural scenes produce large changes in firing during and 
between presentation of distinct images.  

On the other hand, previous work also suggests that the results presented here could have 
been quite different. Some studies point to nearly linear signaling in RGCs of some types in 
some species and conditions (e.g. [10,21,38–41]). Furthermore, nonlinearities previously 
documented were typically observed with targeted artificial stimuli (e.g. [11,13]), and it is 
unclear how important these nonlinearities would be for encoding of natural scenes by the 
retina (but see [42]). Furthermore, early strictly linear models [10] failed to account for 
important features of light responses that are captured by the GLM, such as accelerating 
response to increasing stimulus strength, and non-Poisson spike train structure. Therefore, 
one might have expected the GLM to succeed for a larger range of stimuli, potentially including 
natural scenes, than the strictly linear models did. Finally, recent work suggested that pseudo-
linear models similar to the GLM can capture aspects of RGC responses in the mouse retina to 
natural scenes [22]. 

Simple extensions of the generalized linear model 

The utility of models like the GLM is in their capacity to predict the function of the neural 
circuitry being modeled, without attempting to incorporate all its component parts. In principle, 
more complex models that capture retinal mechanisms in greater detail would out-perform a 
simple model like the GLM (e.g. [42]). However, such models typically greatly increase both 
the difficulty of the fitting process, particularly with complex stimuli such as natural scenes, and 
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the amount of data necessary to constrain the parameters. An alternative approach is to 
augment the GLM with simple components that can capture a greater range of responses.  

The addition of scalar nonlinearities before and after the key spatiotemporal linear step of the 
GLM (Fig. 4) provided an opportunity to improve its predictive power without substantially 
increasing the complexity of the model or the fitting procedure, and perhaps to account for 
significant physiological mechanisms. For example, a scalar nonlinearity could in principle 
capture nonlinear features of the cone response. In practice, the inferred nonlinearity was 
modest (Fig. 4B,C,F,G, pre-filter). Also, the exponential nonlinearity in the GLM is highly 
unrealistic for stimuli that strongly drive firing, while a saturating function is arguably more 
realistic. Such a function (Fig. 4B,C,F,G, post-filter) produced consistent fits across data sets 
and cell types, and an improvement in predictions. With these simple nonlinearities, model 
predictions for natural scenes continued to be substantially inferior to predictions for white 
noise (Fig. 4), suggesting that the failures of the GLM are more fundamental. However, it is 
worth noting that different nonlinearities or more flexible fitting procedures could have an 
impact on the results. 

The full GLM has the ability to account for responses of complete populations of cells, 
including their correlated firing, by the addition of coupling filters [5] that capture interactions 
between cells. Although the present work was focused on individual cell responses, rather than 
populations, model fits were also performed with coupling filters to test whether coupling could 
have an impact on the results. This manipulation had no significant effect (not shown). 

Implications for future work 

The present results reveal that neither the GLM nor simple variants of it will capture responses 
to natural scenes in the primate retina with the fidelity that the GLM exhibited in capturing 
responses to white noise. This strongly suggests that at least some of the phenomena and 
mechanisms revealed in many experiments with artificial stimuli (see [17]) will be necessary to 
explain the output of the retina in natural viewing conditions. Important examples include 
nonlinear subunits within the receptive field [11], adaptation to stimulus intensity and variance 
(see [13,14,35,43,44]), and periphery effects [15,45–49]. Future efforts will be needed to 
determine which aspects of the circuitry in the primate retina are essential for understanding its 
function in natural conditions. 

Methods 

Recordings  

Preparation and recording methods are described elsewhere [29–31]. Briefly, eyes were 
enucleated from three terminally anesthetized macaque monkeys (Macaca sp.) used by other 
experimenters in accordance with institutional guidelines for the care and use of animals. 
Immediately after enucleation, the anterior portion of the eye and the vitreous were removed in 
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room light. Segments of isolated peripheral retina (in Fig. 2-4, red dots 9mm, green dots 7mm, 
blue dots 11mm temporal equivalent eccentricity [31]) were placed flat, RGC side down, on a 
planar array of extracellular microelectrodes.  

The arrays consisted of 512 electrodes in an isosceles triangular lattice. The arrays had 60 µm 
inter-electrode spacing and covered a rectangular region 1800 µm by 900 µm. While 
recording, the retina was perfused with Ames’ solution (34–37°C) bubbled with 95% O2 and 5% 
CO2, pH 7.4. Voltage signals on each electrode were bandpass filtered, amplified, and digitized 
at 20 kHz. A standard spike-sorting algorithm was used to identify spikes from different cells 
[29] (see below). Only identified cells which exhibited a 1 ms refractory period and plausible 
electrical image structure were used in further analysis [29].  

Data selection 

This study focused on ON parasol and OFF parasol cell types, identified by their characteristic 
light response properties measured via reverse correlation with white noise stimuli (see 
[31,32]).   

To guarantee that model failures were attributable to the model rather than poor fitting, any 
cells not meeting a convergence criterion were eliminated from analysis. For each cell, the 
improvement of the GLM model fit, relative to model of constant firing rate, was calculated with 
the first half of the fitting data, and then with all of the fitting data. If the improvement over the 
constant rate model obtained with the first half of the data did not exceed 90% of the 
improvement obtained with all of the data, then the cell was not analyzed further. This criterion 
eliminated 221 out of 537 cells. 

A second criterion was used to eliminate cells demonstrating unstable light responses. A time-
varying rate for each trial of a repeated white noise stimulation was obtained by smoothing the 
spike train with a Gaussian temporal filter (SD = 10 ms). These data were split into odd and 
even trials, and the time-varying firing rates in each group of trials were averaged. The odd trial 
rate was then used as an estimator of the even trial rate, and the fraction of explained variance 
was computed:  

 F( re, ro ) = 1 - ∑t( re(t) - ro(t) )2 /  ∑t( re(t) - µe )2 

where ro(t) is the odd trial rate over time, re(t) is the even trial firing rate over time, and µe is the 
average even trial rate. Cells with a value of F below 0.5 were not analyzed further. The same 
computation was made for the repeated natural scenes presentations, and again cells with a 
score below 0.5 were eliminated. This criterion eliminated an additional 56 cells. 

Finally, all remaining cells were manually screened for spike sorting accuracy. Clusters of 
recorded spike waveforms in a 3-dimensional space (obtained via principal components 
analysis) were examined. If the spikes from an identified cell did not form a discrete cluster in 
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both the white noise and natural scenes data, the cell was not analyzed further. This criterion 
eliminated an additional 127 cells.     

Visual stimulation 

Visual stimuli were delivered using the optically reduced image of a CRT monitor refreshing at 
120 Hz and focused on the photoreceptor outer segments. The optical path passed through 
the mostly-transparent electrode array and the retina. The relative emission spectrum of each 
display primary was measured with a spectroradiometer (PR-701, PhotoResearch) after 
passing through the optical elements between the display and the retina. The total power of 
each display primary was measured with a calibrated photodiode (UDT Instruments). The 
mean photoisomerization rates for the L, M, and S cones were estimated by computing the 
inner product of the primary power spectra with the spectral sensitivity of each cone type, and 
multiplying by the effective collecting area of primate cones (0.6 µm2 [50,51]). During white 
noise stimulation, the mean background illumination level resulted in photoisomerization rates 
of (4100,3900,1600) for the (L,M,S) cones. The naturalistic stimulus resulted in mean 
photoisomerization rates of (1900,1800,700) for the (L,M,S) cones. Typical visual stimulation 
lasted roughly a total of 240 min, and initial testing at the same mean light level prior to visual 
stimulus delivery lasted roughly 30 min. Examination of a fourth data set for which the mean 
natural scenes intensity was the same as the mean white noise intensity yielded similar results 
(not shown). 

Generalized linear model (GLM) 

The GLM [5] consists of the following stages in sequence: linear spatiotemporal filtering of the 
visual input, exponential nonlinearity, Poisson spike generation, and a feedback waveform for 
each spike generated that sums with the post-filter signal (Fig. 2A). All parameters were fitted 
by maximizing the likelihood of observing the fitting data given the model parameters. The 
objective function is convex in parameter space; moreover, the resulting gradient and Hessian 
terms have explicit closed forms [24]. These attributes enable fast and reliable optimization.  

The fitted parameters of the GLM consisted of the following: a tonic rate term (µ) , a 
spatiotemporal stimulus filter (k), and a post-spike filter (h). At each time bin of the computed 
model response, the stimulus filter and post-spike filter contribute to the generator signal by 
the inner product with the most recent 250 milliseconds of the stimulus (x) and the most recent 
100 milliseconds of spiking history (y), respectively. The final instantaneous rate (𝜆) is then 
determined by exponentiating the sum of the generator signal and the tonic drive term, 𝜆 = 
exp(µ + k•x + h•y). Spikes are subsequently generated by a Poisson process with this 
instantaneous rate. 

The stimulus filter maps the high-dimensional spatiotemporal stimulus to a scalar function of 
time. The filter was constructed by computing the outer product of a spatial filter (169 
parameters, one for each location on a 13x13 grid) with a temporal filter (30 parameters, one 
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for each time point over which integration occurs). This produced a spatiotemporal filter that 
was separable in space and time (rank 1). The spatial filter was centered on the receptive field 
of the cell estimated from reverse correlation with white noise. Expanding the grid to 15x15 did 
not improve model performance. The time filter captures the temporal integration of the cell 
over 250 ms with 8.33 ms samples. 

To test the adequacy of the separable filter, for a group of 30 cells an additional pair of space 
and time filters were fitted, producing a spatiotemporal filter that was the sum of two separable 
filters (rank 2). This did not improve the natural scenes model performance.  

The post-spike filter was constructed from a basis of 20 raised sinusoids [5]. The post-spike 
filter was further constrained because an unconstrained filter in some cases generated positive 
feedback and physiologically implausible runaway spiking. To prevent this, the parameter 
space was restricted so that the time integral of the post-spike filter was no larger than zero. 

Stimulus 

The GLM was fitted to both a novel naturalistic stimulus, and to a binary white noise stimulus 
(96% contrast), both achromatic (L,M and S cones modulated together). The naturalistic 
stimulus consisted of 900 achromatic images from a standard database [33]. Each image was 
flipped horizontally and vertically to obtain a total of 3600 unique images. Each image was 
displayed for one second, and jittered over time according to measurements of fixational eye 
movements obtained from fixating, awake macaque monkeys (Z.M. Hafed and R.J. Krauzlis, 
personal communication).  

Both types of stimuli were presented in sequences which interleaved the fitting stimulus, 
consisting of many distinct spatiotemporal sequences, with a test stimulus, consisting of 
multiple repeats of a shorter spatiotemporal sequence. In two data sets (Fig. 2-4, green dots 
and blue dots), the naturalistic fitting stimulus was delivered in 60 second segments, with each 
segment followed by a 30 second presentation of the test stimulus. This sequence of fitting 
and test stimuli was iterated 59 times. The first two iterations were not used for model fitting 
and testing to avoid initial transients and adaptation. The white noise fitting stimulus was 
displayed in 30 second segments, with each such segment followed by a fixed 10 second 
segment of the test white noise stimulus. This sequence was repeated 60 times. The first three 
iterations were not used. In the third data set (Fig. 2-4, red dots), the naturalistic fitting stimulus 
was delivered in 120 second segments with each segment followed by a 60 second 
presentation of the test stimulus. This sequence was repeated 29 times. The first two iterations 
were not used. The white noise stimulus for the third dataset (red dots) was identical to the first 
two datasets (blue and green dots). The overall duration of fitting and testing was 
approximately the same (~130 minutes)  in all three preparations.  

!11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2016. ; https://doi.org/10.1101/045336doi: bioRxiv preprint 

https://doi.org/10.1101/045336


Model evaluation 

Two metrics were used in comparing the accuracy of models of light response using white 
noise and natural scenes stimuli. The first metric, fractional log-likelihood increment, is a 
monotonic transformation of the log-likelihood of the observed data given the model, 
L(data,model) = log( P(data|model)). A transformation was imposed because likelihood is not a 
meaningful way to compare responses of a given cell to visual stimuli with different statistics. 
The focus of this paper is to measure how accurately pseudo-linear models capture 
fluctuations in light response over time, while accounting for the spiking statistics of RGCs. To 
achieve this, the fractional log-likelihood increment K was defined as: 

K = [ L(data,model) - L(data,constant) ] / [ L(data,ideal) - L(data, constant) ] 

where L(data,constant) is the log-likelihood of the data under a model of constant firing 
probability over time, and L(data,ideal) is the log-likelihood of the data with an “ideal” model. 
The ideal model provides an approximate upper bound on the performance of any model 
which, in the manner of the GLM, predicts smooth response fluctuations over time, and uses 
spike history feedback to produce realistic spike trains. The stimulus drive r(t) in the ideal 
model is approximated by computing the empirical time-varying firing rate of the cell in 
response to repeated presentations of test stimuli, smoothed with a Gaussian temporal filter 
(SD = 10 ms). Along with this empirical stimulus drive, a post-spike filter and a constant offset 
term are combined to produce an instantaneous rate, 𝜆 = exp(µ + c log(r) + h•y), where c is a 
scalar and h, y, and µ are as given in the GLM above. These parameters of the ideal model are 
fitted directly to the test data by maximizing likelihood. Note that because both the numerator 
and denominator of K can be interpreted as bits of information about the stimulus transmitted 
per spike [52], the ratio can be interpreted as the fraction of the information transmitted by the 
ideal model. Using this normalization approximately limited the value of K to the range [0,1].  

The second metric, fraction of explainable variance, compares the recorded and simulated 
responses to repeated presentations of the test stimulus in a similar manner. For each cell, 
simulated responses were generated using the model. An average firing rate over time was 
then calculated across repeats, for both the recorded data and the simulation, and smoothed 
with a Gaussian temporal filter (SD = 10 ms). Using the simulated rate as a predictor of the 
recorded rate, the fraction of explained variance was computed: 

F( r, rs ) = 1 - ∑t( r(t) - rs(t) )2 /  ∑t( r(t) - µ )2 

where r(t) is the recorded firing rate over time, rs(t) is the simulated firing rate over time, and µ 
is the average recorded rate. However, this measure does not account for intrinsic variability 
(noise) in the response of the cell across trials, which cannot be captured by a model that 
takes as its input the same stimulus on every trial. The measure was therefore normalized by 
the reproducibility in the recorded repeat responses: 

J = F( r, rs ) / F( re, ro ) 
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where re and ro are the even and odd trial firing rates from the data. This results in a metric J 
indicating the fraction of explainable variance, approximately bounded in the range [0,1]. 

Input nonlinearity   

A possible limitation of the initial linear step in the GLM is that the cone phototransduction 
process is not fully linear (see [36]). A scalar pointwise nonlinearity was fitted to the data to 
take this into account. The stimulus sequence was convolved with a temporal kernel which 
was derived from an estimate of the linear cone impulse response (J.M. Angueyra and F. 
Rieke, personal communication). Following the temporal kernel, the stimulus intensity values 
were rescaled to the range [0,1]. A nonlinear transformation was then applied, f(x) = xp. The 
output of this step was used as the input to the GLM. This parameterization permitted smooth 
exploration of varying degrees of accelerating and compressive nonlinearity. The parameters 
of the GLM and the nonlinearity were fitted to maximize likelihood in alternating steps. This 
parameter fitting converged within three iterations.  

Output nonlinearity 

A possible limitation of the GLM is the exponential form of the nonlinearity, which is unrealistic 
for high values of stimulus drive. To deal with this limitation, the exponential was replaced with 
a sigmoidal function: f(x) = L / (1 + exp(-rx)).  The full optimization consisted of four steps. First, 
the original GLM was fitted. Second, the input to the nonlinearity (x) was defined as the output 
of the fitted linear filter in the GLM. Third, the two parameters (L,r) of nonlinearity were 
adjusted to maximize the likelihood of the data, with the other model parameters unchanged. 
Finally the post-spike filter and tonic drive terms of the GLM (µ,h) were refitted to account for 
changes induced by the fitted nonlinearity. Following the refitting of µ and h, a second round of 
fitting L and r produced no increase in likelihood.  
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Figure 1. Naturalistic stimuli and responses A. Sample images taken from the Van Hateren 
database [33] . B. Two one second fixational eye movement traces taken from recordings of 
awake fixating macaques (see Methods). Note presence of microsaccades, drift and jitter. C. 
Sample of recorded responses to a natural scenes stimulus (top: ON parasol, bottom: OFF 
parasol). Each tick represents the occurrence of a spike, each row represents a single 
presentation of the stimulus (total of 57 presentations). Note strong sustained periods of 
spiking and silence.  
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Figure 2. Generalized linear model (GLM) fitted to white noise does not capture responses to 
natural scenes. A. Schematic of GLM, with linear stimulus filter, response nonlinearity, 
stochastic spike generation, and post-spike feedback (see Results). B. Sample GLM 
components obtained from fits to white noise data, for an ON parasol cell. The stimulus filter is 
decomposed into its separable spatial (left) and temporal (middle) components. The feedback 
filter (right) is expressed in terms of gain after the exponential nonlinearity (see Methods). C. 
White noise raster for the same ON parasol cell (black, 57 repetitions). Response structure is 
approximately reproduced by the fitted model (red). D. Natural scenes rasters for the same ON 
parasol cell (black, 57 repetitions). Response structure is not reproduced by the GLM fitted to 
white noise (red). E. Comparison of GLM predictions of responses to white noise (C,G) and 
natural scenes (D,H), using fractional log-likelihood increment (left) and fraction of explainable 
variance (right) measures (see Methods). In both cases the GLM was fitted to white noise 
data. Colors of points denote different retinas. Negative scores were set to zero. White-center 
points represent ON parasol cells, black-center points represent OFF parasol cells. F-H. Same 
as B-D for an OFF parasol cell. 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Figure 3. GLM fitted to natural scenes data also fails to predict responses. Details as in Fig. 2. 
A. Schematic of the GLM. B. Sample GLM components obtained from fits to natural scenes 
data for an ON parasol cell (same cell as Fig. 2). C. Raster of responses to natural scenes for 
the same cell (black, 57 repetitions). Response structure is only partially reproduced by the 
GLM (red). D. Comparison of GLM predictions of natural scenes and white noise responses. In 
each case the GLM was fitted to the same type of stimulus, cross-validated. E-F. Same as B-C 
for a sample OFF parasol cell (same cell as Fig. 2). 
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Figure 4. GLM with added scalar nonlinearities performs similarly. Details as in Fig. 3. A. 
Schematic of the modified GLM, with added nonlinearities highlighted in blue (see text for 
details). B. Nonlinearities for ON parasol cells fitted with white noise data, with 1 SD variability 
range across cells given by the gray zone. C. Same as B, except fitted with natural scenes 
data. D. Raster of responses to natural scenes for an ON parasol cell (same cell as in Fig. 
2,3). Response structure is only partially reproduced by the extension of the GLM. E. 
Comparison of modified GLM predictions of white noise and natural scenes data. F-H. Same 
as B-D for a sample OFF parasol cell (same cell as in Fig. 2,3). 
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