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Abstract 14 

To understand the biological mechanisms underlying the thousands of genetic variants robustly associated with 15 

complex traits, scalable methods that integrate GWAS and functional data generated by large-scale efforts are 16 

needed. We derived a mathematical expression to compute PrediXcan results using summary data (S-17 

PrediXcan) and showed its accuracy and robustness to misspecified reference populations. We compared S-18 

PrediXcan with existing methods and combined them into a best practice framework (MetaXcan) that 19 

integrates GWAS with QTL studies and reduces LD-confounded associations. We applied this framework to 44 20 

GTEx tissues and 101 phenotypes from GWAS and meta-analysis studies, creating a growing catalog of 21 

associations that captures the effects of gene expression variation on human phenotypes. Most of the 22 

associations were tissue specific, indicating context specificity of the trait etiology. Colocalized significant 23 

associations in unexpected tissues underscore the advantages of an agnostic scanning of multiple contexts to 24 

increase the probability of detecting causal regulatory mechanisms. 25 

Prediction models, efficient software implementation, and association results are shared as a resource for 26 

the research community. 27 
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Introduction 28 

Over the last decade, GWAS have been successful in identifying genetic loci that robustly associate with human 29 

complex traits. However, the mechanistic understanding of these discoveries is still limited, hampering the 30 

translation of the associations into actionable targets. Studies of enrichment of expression quantitative trait 31 

loci (eQTLs) among trait-associated variants [1–3] show the importance of gene expression regulation. 32 

Functional class quantification showed that 80% of the common variant contribution to phenotype variability in 33 

12 diseases can be attributed to DNAase I hypersensitivity sites, further highlighting the importance of 34 

transcript regulation in determining phenotypes [4]. 35 

Many transcriptome studies have been conducted where genotypes and expression levels are assayed for a 36 

large number of individuals [5–8]. The most comprehensive transcriptome dataset, in terms of examined 37 

tissues, is the Genotype-Tissue Expression Project (GTEx); a large-scale effort where DNA and RNA were 38 

collected from multiple tissue samples from nearly 1000 individuals and sequenced to high coverage [9,10]. 39 

This remarkable resource provides a comprehensive cross-tissue survey of the functional consequences of 40 

genetic variation at the transcript level. 41 

To integrate knowledge generated from these large-scale transcriptome studies and shed light on disease 42 

biology, we developed PrediXcan [11], a gene-level association approach that tests the mediating effects of 43 

gene expression levels on phenotypes. PrediXcan is implemented on GWAS or sequencing studies (i.e. studies 44 

with genome-wide interrogation of DNA variation and phenotypes) where transcriptome levels are imputed 45 

with models trained in measured transcriptome datasets (e.g. GTEx). These predicted expression levels are 46 

then correlated with the phenotype in a gene association test that addresses some of the key limitations of 47 

GWAS [11]. 48 

Meta-analysis efforts that aggregate results from multiple GWAS have been able to identify an increasing 49 

number of associations that were not detected with smaller sample sizes [12–14]. We will refer to these results 50 

as GWAMA (Genome-wide association meta-analysis) results. In order to harness the power of these increased 51 

sample sizes while keeping the computational burden manageable, methods that use summary level data 52 

rather than individual level data are needed. 53 

A method based on similar ideas to PrediXcan was proposed by Gusev et al. [15] called Transcriptome-wide 54 

Association Study (TWAS). For the individual level data based version, the main difference between PrediXcan 55 

and TWAS resides in the models used for the prediction of gene expression levels in each implementation. An 56 

important extension of this approach was implemented by Gusev et al. [15] that allows the computation of 57 
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gene-level association results using only summary statistics. We will refer to this method as Summary-TWAS (or 58 

S-TWAS for short). 59 

Zhu et al [16] proposed another method that integrates eQTL data with GWAS results based on summary 60 

data. The method, Summary Mendelian Randomization (SMR), uses Wald statistics (effect size/standard error) 61 

from GWAS and eQTL studies to estimate the effect of the genetic component of gene expression on a 62 

phenotype using the delta approximation [17]. By design, this approach uses one eQTL per gene so that in 63 

practice only the top eQTL is used per gene. SMR incorporates uncertainty in the eQTL association and a post-64 

filtering step, HEIDI, that tests the heterogeneity of the GWAS and eQTL hits. 65 

To examine whether eQTL and GWAS hits in close proximity share the same underlying causal signal, 66 

several methods have been developed such as RTC [1], Sherlock [18], COLOC [19], and more recently eCAVIAR 67 

[20] and ENLOC [21]. Thorough comparison between RTC, COLOC, and eCAVIAR can be found in [20]. HEIDI, 68 

part of SMR, is another approach that computes the degree of non-colocalization or heterogeneity of signals. 69 

Here we derive a mathematical expression that allows us to compute the results of PrediXcan without the 70 

need to use individual-level data, greatly expanding the applicability of PrediXcan. We compare with existing 71 

methods and outline a best practice framework to perform integrative gene mapping studies, which we term 72 

MetaXcan. 73 

We apply the MetaXcan framework by first training over 1 million elastic net prediction models of gene 74 

expression traits, covering protein coding genes across 44 human tissues from GTEx, and then performing gene-75 

level association tests for 101 phenotypes from 37 large meta-analysis consortia. 76 

A limitation of this approach is linkage disequilibrium (LD) confounding: when different causal SNPs are 77 

affecting expression levels and the phenotypic trait in a GWAS, PrediXcan may yield significant results if the 78 

SNPs are in LD. To reduce false positive links caused by this confounding, we filter out associations based on the 79 

colocalization status of the eQTL and GWAS signals. Using these results, we build a growing catalog of 80 

downstream phenotypic associations with molecular traits across multiple tissues and contexts, and make it 81 

publicly available at gene2pheno.org. 82 

Results 83 

Inferring PrediXcan results with summary statistics 84 

We have derived an analytic expression that allows us to compute the outcome of PrediXcan using only 85 

summary statistics from genetic association studies. Details of the derivation are shown in the Methods 86 

section. In Figure 1-A, we illustrate the mechanics of Summary-PrediXcan (S-PrediXcan) in relation to traditional 87 

GWAS and the individual-level PrediXcan method [11]. 88 
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For both GWAS and PrediXcan, the input is a genotype matrix and phenotype vector. GWAS computes the 89 

regression coefficient of the phenotype on each marker in the genotype matrix and generates SNP-level results. 90 

PrediXcan starts by estimating the genetically regulated component of the transcriptome (using weights from 91 

the publicly available PredictDB database) and then computes regression coefficients of the phenotype on each 92 

predicted gene expression level generating gene-level results. S-PrediXcan, on the other hand, can be viewed as 93 

a shortcut that uses the output from a GWAS to infer the output from PrediXcan, using the LD structure 94 

(covariances) from a reference population. Since S-PrediXcan only uses summary statistics, it can effectively 95 

take advantage of the considerably larger sample sizes available from GWAMA studies, avoiding the 96 

computational and regulatory burden of handling large amounts of protected individual-level data. 97 

MetaXcan framework 98 

Building on S-PrediXcan and existing approaches, we define a general framework (MetaXcan) to integrate QTL 99 

information with GWAS results to map disease-associated genes as illustrated on Figure 2. This evolving 100 

framework will incorporate state of the art models and methods to increase the power to detect causal genes 101 

and filter out false positives. Existing methods fit within this general framework as instances or components as 102 

outlined in Figure 2-A. 103 

The framework starts with the training of prediction models for gene expression traits followed by a 104 

selection of high-performing models. Next, a mathematical operation is performed to compute the association 105 

between each gene and the downstream complex trait. Additional adjustment for the uncertainty in the 106 

prediction model can be added. To avoid capturing LD-confounded associations, which can occur when 107 

expression predictor SNPs and phenotype causal SNPs are different but in LD, we use state of the art methods 108 

that estimate the probability of shared or independent signals. 109 

PrediXcan implementations work mostly with elastic net models motivated by our observation that gene 110 

expression variation is mostly driven by sparse components [22]. TWAS implementations have used Bayesian 111 

Sparse Linear Mixed Models [23] (BSLMM), which allows both polygenic and sparse components. SMR fits into 112 

this scheme with prediction models consisting solely of the top eQTL for each gene (weights are not necessary 113 

here since only one SNP is used at a time). 114 

SMR has implemented an adjustment for model uncertainty by using half of the harmonic average of GWAS 115 

and eQTL χ2-statistics. It is in principle possible to extend this idea to S-PrediXcan, but this would bound the 116 

significance of the association to the smaller of the prediction model or GWAS significance, which is an overly 117 

stringent penalization of the uncertainty in the prediction model (see the comparison subsection for details). 118 
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For the last step, we chose COLOC to estimate the probability of colocalization of GWAS and eQTL signals. 119 

SMR uses its own estimate of “heterogeneity” of signals calculated by HEIDI. We chose to use COLOC 120 

probabilities because COLOC clusters more distinctly into different classes and, unlike other methods, does not 121 

require an arbitrary cut off threshold. Another advantage of COLOC is that for genes with low probability of 122 

colocalization, it further distinguishes distinct GWAS and eQTL signals from low power. This is a useful feature 123 

that future development of colocalization methods should also offer. 124 

Gene expression variation in humans is associated to diverse phenotypes 125 

Next, we downloaded summary statistics from meta analyses of 101 phenotypes from 37 consortia. The full list 126 

of consortia and phenotypes is shown in Supplementary Table 3. We tested association between these 127 

phenotypes and the predicted expression levels using elastic net models in 44 human tissues from GTEx as 128 

described in the Methods section, and a whole blood model from the DGN cohort presented in [11]. 129 

We used a Bonferroni threshold accounting for all the gene-tissue pairs that were tested (0.05/total 130 

number of gene-tissue pairs ≈ 2.5e-7). This approach is conservative because the correlation between tissues 131 

would make the total number of independent tests smaller than the total number of gene-tissue pairs. Height 132 

had the largest number of genes significantly associated with 1,690 unique genes (based on a GWAMA of 250K 133 

individuals). Other polygenic diseases with a large number of associations include schizophrenia with 307 134 

unique significant genes (n = 150K individuals), low-density lipoprotein cholesterol (LDL-C) levels with 297 135 

unique significant genes (n = 188K), other lipid levels, glycemic traits, and immune/inflammatory disorders such 136 

as rheumatoid arthritis and inflammatory bowel disease. For other psychiatric phenotypes, a much smaller 137 

number of significant associations was found, with 8 significant genes for bipolar disorder (n = 16,731) and 138 

none for major depressive disorder (n = 18,759), probably due to smaller sample sizes, but also smaller effect 139 

sizes. 140 

When excluding genes with evidence of independent GWAS-eQTL signals (P3>0.5), these numbers dropped 141 

by about 10-20% to 1377 for height, 231 for schizophrenia, and 244 for LDL-C levels. If we further exclude 142 

genes with low power to determine either shared or non-shared GWAS-eQTL signals, we find 642 genes for 143 

height, 157 for schizophrenia, and 78 for LDL-C. The quantities for the full set of phenotypes can be found in 144 

Supplementary Table 3. 145 

Mostly, genome-wide significant genes tend to cluster around known SNP-level genome-wide significant 146 

loci or sub-genome-wide significant loci. Regions with sub-genome-wide significant SNPs can yield genome-147 

wide significant results in S-PrediXcan because of the reduction in multiple testing and the increase in power 148 
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from taking into account the combined effects of multiple variants. Supplementary Table 2 lists a few examples 149 

where this occurs. 150 

As expected, results of S-PrediXcan tend to be more significant as the genetic component of gene 151 

expression increases (larger cross-validated prediction performance R2). Similarly, S-PrediXcan associations 152 

tend to be more significant when prediction performance p-values are more significant. The trend is seen both 153 

when results are averaged across all tissues for a given phenotype or across all phenotypes for a given tissue. 154 

All tissues and representative phenotypes are shown in Supplementary Figures 2-5. This trend was also robust 155 

across different monotone functions of the Z-scores. 156 

The full set of results can be queried in our online catalog gene2pheno.org, and we provide the significant 157 

association results in Supplementary Table 4. Our web application allows filtering the results by gene, 158 

phenotype, tissue, p-value, prediction performance, and colocalization status. For each trait we assigned 159 

ontology terms from the Experimental Factor Ontology (EFO) [24] and Human Phenotype Ontology (HPO) [25], 160 

if applicable. As the catalog grows, the ontology annotation will facilitate analysis by hierarchy of phenotypes. 161 

Supplementary Table 3 shows the list of consortia and phenotypes for which gene-level associations are 162 

available. 163 

To facilitate comparison, the catalog contains all SMR results we generated and the S-TWAS results 164 

reported by [26] for 30 GWAS traits and GTEx BSLMM models. SMR application to 28 phenotypes was reported 165 

by [27] using whole blood eQTL results from [28]. 166 

Moderate changes in ClinVar gene expression is associated with milder phenotypes 167 

We reasoned that if complete knock out of monogenic disease genes cause severe forms of the disease, more 168 

moderate alterations of gene expression levels (as effected by regulatory variation in the population) could 169 

cause more moderate forms of the disease. Thus moderate alterations in expression levels of monogenic 170 

disease genes (such as those driven by eQTLs) may have an effect on related complex traits, and this effect 171 

could be captured by S-PrediXcan association statistics. To test this hypothesis, we obtained genes listed in the 172 

ClinVar database [29] for obesity, rheumatoid arthritis, diabetes, Alzheimer’s, Crohn’s disease, ulcerative colitis, 173 

age-related macular degeneration, schizophrenia, and autism. As postulated, we found enrichment of 174 

significant S-PrediXcan associations for ClinVar genes for all tested phenotypes except for autism and 175 

schizophrenia. The lack of significance for autism is probably due to insufficient power: the distribution of p-176 

values is close to the null distribution. In contrast, for schizophrenia, many significant genes were found in the 177 

S-PrediXcan analysis. There are several reasons that may explain this lack of enrichment: genes identified with 178 

GWAS and subsequently with S-PrediXcan have rather small effect sizes, so that it would not be surprising that 179 

they were missed until very large sample sizes were aggregated; ClinVar genes may originate from rare 180 
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mutations that are not well covered by our prediction models, which are based on common variation (due to 181 

limited sample sizes of eQTL studies and the minor allele frequency -MAF- filter used in GWAS studies); or the 182 

mechanism of action of the schizophrenia linked ClinVar genes may be different than the alteration of 183 

expression levels. Also, the pathogenicity of some of the ClinVar entries has been questioned [30]. The list of 184 

diseases in ClinVar used to generate the enrichment figures can be found in Supplementary Table 1, along with 185 

the corresponding association results. 186 

Agnostic scanning of a broad set of tissues enabled by GTEx improves discovery 187 

The broad coverage of tissues in our prediction models enabled us to examine the tissue specificity of 188 

phenotypic associations of GWAS signals. We started by computing average enrichment of significance by 189 

tissue. We used several measures of enrichment such as the mean Z-scores squared across all genes, or across 190 

significant genes for different thresholds, as well as the proportion of significant genes for different thresholds. 191 

We also compared the full distribution of the p-values of a given tissue relative to the remaining tissues. 192 

Supplementary Figure 6 shows the average Z-score2 as a measure of enrichment of each tissue by phenotype. 193 

For LDL-C levels, liver was the most enriched tissue in significant associations as expected given known 194 

biology of this trait. This prominent role of liver was apparent despite the smaller sample size available for 195 

building liver models (n=97), which was less than a third of the numbers available for muscle (n=361) or lung 196 

(n=278). In general, however, expected tissues for diseases given currently known biology did not consistently 197 

stand out as more enriched when we looked at the average across all (significant) genes using various measures 198 

of enrichment in our results. For example, the enrichment in liver was less apparent for high-density lipoprotein 199 

cholesterol (HDL-C) or triglyceride levels. 200 

Next we focused on three genes whose functional role has been well established: C4A for schizophrenia 201 

[31] and SORT1 [32] and PCSK9 both for LDL-C and cardiovascular disease. The S-PrediXcan results for these 202 

genes and traits and regulatory activity by tissue (as measured by the proportion of expression explained by the 203 

genetic component) are shown in Figure 3 with additional details in Supplementary Tables 5, 6, and 7. 204 

SORT1 is a gene with strong evidence for a causal role in LDL-C levels, and as a consequence, is likely to 205 

affect risk for cardiovascular disease [32]. This gene is most actively regulated in liver (close to 50% of the 206 

expression level of this gene is determined by the genetic component) with the most significant S-PrediXcan 207 

association in liver (p-value ≈ 0, Z = −28.8), consistent with our prior knowledge of lipid metabolism. In this 208 

example, tissue specific results suggest a causal role of SORT1 in liver. 209 

However, in the following example, association results across multiple tissues do not allow us to 210 

discriminate the tissue of action. C4A is a gene with strong evidence of causal effect on schizophrenia risk via 211 

excessive synaptic pruning in the brain during development [31]. Our results show that C4A is associated with 212 
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schizophrenia risk in all tissues (p< 2.5 × 10−7 in 36 tissue models and p<0.05 for the remaining 4 tissue 213 

models). 214 

Note that p-values of 0.02 and 0.03 for the Brain Hippocampus and Cortex results should not be interpreted 215 

as not being associated. Brain tissues have limited sample size which could be one of the reasons why this 216 

association is less significant than in other tissues. There is no significant eQTL for this gene in Brain 217 

Hippocampus and Cortex so that SMR runs, performed using significant eQTL dataset from GTEx as 218 

recommended, did not return any result. By using a multi snp model we obtain significant models even when 219 

single eQTL analysis does not produce significant results. 220 

PCSK9 is a target of several LDL-C lowering drugs currently under trial to reduce cardiovascular events [33]. 221 

The STARNET study [34] profiled gene expression levels in cardiometabolic disease patients and showed tag 222 

SNP rs12740374 to be a strong eQTL for PCSK9 in visceral fat but not in liver. Consistent with this, our S-223 

PrediXcan results also show a highly significant association between PCSK9 and LDL-C (p ≈ 10−13) in visceral fat 224 

and not in liver (our training algorithm did not yield a prediction model for PCSK9, i.e. there was no evidence of 225 

regulatory activity). In our results, however, the statistical evidence is much stronger in tibial nerve (p ≈ 10−27). 226 

The association between PCSK9 and coronary artery disease is also significant in tibial nerve (p ≈ 10−8) but only 227 

nominally significant in visceral fat (p ≈ 0.02). Accordingly, in our training set (GTEx), there is much stronger 228 

evidence of regulation of this gene in tibial nerve compared to visceral fat. Moreover, visceral fat association 229 

shows evidence of independent rather than shared GWAS and eQTL signals in the PCSK9 locus (probability of 230 

independent signals P3=0.69 in LDL-C). It is likely that the relevant regulatory activity in visceral adipose tissue 231 

was not detected in the GTEx samples for various reasons but it was detected in tibial nerve. Thus by looking 232 

into all tissue results we increase the window of opportunities where we can detect the association. 233 

These examples demonstrate the power of studying the regulation in a broad set of tissues and contexts 234 

and emphasize the challenges of determining causal tissues of complex traits based on in-silico analysis alone. 235 

Based on these results, we would recommend to scan all tissue models to increase the chances to detect the 236 

relevant regulatory mechanism that mediates the phenotypic association. False positives will be controlled by 237 

accounting for the multiple testing with a more stringent significance cutoff. 238 

Replication in an independent cohort 239 

We used data from the Resource for Genetic Epidemiology Research on Adult Health and Aging study (GERA, 240 

phs000674.v1.p1) [35,36]. This is a study led by the Kaiser Permanente Research Program on Genes, 241 

Environment, and Health (RPGEH) and the UCSF Institute for Human Genetics with over 100,000 participants. 242 

We downloaded the data from dbGaP and performed GWAS followed by S-PrediXcan analysis of 22 conditions 243 
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available in the dataset in the European subset of the cohort. Genotypes were imputed using the University of 244 

Michigan server and principal components provided by the GERA study were used to adjust for population 245 

stratification. More details can be found in the Methods section. 246 

For replication, we chose Coronary Artery Disease (CAD), LDL cholesterol levels, Triglyceride levels, and 247 

schizophrenia, which had closely related phenotypes in the GERA study and had a sufficiently large number of 248 

significant associations (FDR< 0.05) in the discovery set. Analysis and replication of the type 2 diabetes 249 

phenotype can be found in [37]. Coronary artery disease hits were compared with “Any 250 

Discovery Replication # signif genes # replicated π1(all) π1(sig) % replicated # replicated

phenotype phenotype in disc set genes in repl in repl genes coloc or undeterm

Coronary artery Any cardiac 56 6 0.4% 49.1% 10.7% 6

disease event   

LDL cholesterol Dyslipidemia 282 219 5.8% 90.8% 78.5% 184
Triglycerides Dyslipidemia 233 100 5.8% 73.1% 43.5% 69

Schizophrenia Any psychiatric 
event 

285 60 1.2% 47.6% 21.1% 51

Table 1. Replication of results in GERA. Significant genes/tissue pairs were replicated using a closely matched 251 
phenotype in an independent dataset from the GERA cohort [35]. The significance threshold for replication was 252 
p< 0.05, concordant directions of effect, and meta-analysis p-value less than the Bonferroni threshold in the 253 
discovery set. π1 is an estimate of proportion of true positives in the replication set. π1(all) uses all gene/tissue 254 
pairs whereas π1(sig) is computed using only gene/tissue pairs that were significant in the discovery set. The 255 
column “# replicated genes coloc or undeterm" is the number of replicated genes excluding the ones for which 256 
there was strong evidence of independent GWAS and eQTL signals. 257 

cardiac event”, LDL cholesterol and triglyceride level signals were compared with “Dyslipidemia”, and 258 

schizophrenia was compared to “Any psychiatric event” in GERA. 259 

First, we estimated the proportion of true associations in the replication set (these include LD-induced 260 

ones) using the π1 statistics from the q-value approach [38]. This approach does not indicate which genes are 261 

true positives but provides an estimate of the proportion. If we take all genes in the replication set, the 262 

estimated proportions of true associations are 0.4% for “Any cardiac event”, 5.8% for “Dyslipidemia”, and 1.2% 263 

for schizophrenia (see third column in Table 1). When we compute π1 for the subset of genes that were found 264 

to be Bonferroni significant in the discovery analysis we find that π1 goes up ten to one hundred fold as shown 265 

in Table 1. Following standard practice in meta-analysis, we consider a gene to be replicated if the p-value in 266 

the replication set is <0.05, the direction of discovery and replication effects are the same, and the meta 267 

analyzed p-value is Bonferroni significant with the discovery threshold. 268 

Among the 56 genes significantly associated with CAD in the discovery set, 6 (11%) were significantly 269 

associated with “Any cardiac event” in GERA. Using “Dyslipidemia” as the closest matching phenotype, 78.5% 270 
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and 43.5% of LDL and triglyceride genes replicated, respectively. Among the 285 genes associated with 271 

schizophrenia in the discovery set, 51 (21%) replicated. The low replication rate for CAD and 272 

Schizophrenia is likely due to the broad phenotype definitions in the replication. 273 

The full list of significant genes can be queried in gene2pheno.org. 274 
 275 

Comparison of S-PrediXcan to other integrative methods based on summary results 276 

Zhu et al. have proposed Summary Mendelian Randomization (SMR) [16], a summary data based Mendelian 277 

randomization that integrates eQTL results to determine target genes of complex traitassociated GWAS loci. 278 

They derive an approximate χ2-statistic (Eq 5 in [16]) for the mediating effect of the target gene expression on 279 

the phenotype. This approximation is only valid in two extreme cases: when the eQTL association is much 280 

stronger than the GWAS association or vice versa, when the GWAS association is much stronger than the eQTL 281 

association. Without this assumption, the mean of the distribution is off by a factor of 4. See Methods section 282 

for further details. 283 

When the eQTL association is much stronger than the GWAS association, we show that the SMR statistic is 284 

approximately equal to the GWAS χ2-statistics of the top eQTL for the gene, which is equal to the Summary-285 

PrediXcan Z-score2 if top eQTL is used as predictor. See derivation in Methods section. 286 

On the other extreme, when the GWAS association is much stronger, the SMR statistic is approximately 287 

equal the top eQTL χ2-statistic (slightly smaller). In general, the SMR statistic is bounded by the eQTL and GWAS 288 

significance in practically all cases as shown in Figure 4-D and E. 289 

Given the cost differences, the current trend of much larger GWAS studies compared to eQTL studies will 290 

continue. This means that the SMR significance will be bounded by the significance of the eQTL association, 291 

which seems too conservative. 292 

Gusev et al. have proposed Transcriptome-Wide Association Study based on summary statistics (S-TWAS), 293 

which imputes the SNP level Z-scores into gene level Z-scores. This is a natural extension of ImpG [39] or DIST 294 

[40], which are SNP-based methods that impute summary statistics of unmeasured SNPs using Gaussian 295 

imputation [41]. If restricted to Gaussian imputation, we show that this approach is equivalent to predicting 296 

expression levels using BLUP/Ridge Regression, which has been shown to be suboptimal for gene expression 297 

traits [22]. However, the mathematical expression used by S-TWAS can be extended to any set of weights such 298 

as Bayesian Sparse Linear Mixed Models (BSLMM) as used by Gusev et al. [15]. S-TWAS imputes the Z-score of 299 

the gene-level result assuming that under the null hypothesis the Z-scores are normally distributed with the 300 

same correlation structure as the SNPs whereas in S-PrediXcan we compute the result of PrediXcan using 301 

summary statistics. In the Methods Section we establish the approximate equivalence of the two approaches 302 
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when the same prediction weights are applied. Figure 4-A illustrates the components of SMR, S-TWAS, and S-303 

PrediXcan methods. All three seek to identify target genes by computing the strength of association between 304 

the unobserved predicted expression levels (Tg) of a gene with the complex trait (Y ) quantified with ZTg,Y or its 305 

square. SMR also incorporates uncertainty of the predicted expression in the statistics and adds a test for (non-306 

) colocalization of GWAS and eQTL hits (HEIDI). 307 

Next we show the comparison of S-PrediXcan associations to SMR, S-TWAS in practice. We computed SMR 308 

and COLOC results using the software provided by the authors and the GTEx eQTL data [9,10]. For S-TWAS we 309 

use the results made available by [26], which only include significant associations. We show results for the 310 

height phenotype and all GTEx tissues. Other phenotypes exhibit qualitatively similar patterns. 311 

SMR, S-TWAS, and S-PrediXcan are directly comparable since all three provide the significance of the 312 

association between the mediating gene and the phenotype. Figure (4-B and -C) compare the significance of S-313 

PrediXcan (elastic net) associations with S-TWAS and SMR results. As expected, SMR p-values tend to be less 314 

significant than Summary-PrediXcan’s in large part due to the additional adjustment for the uncertainty in the 315 

eQTL association. S-TWAS (≈S-PrediXcan BSLMM) results are similar to S-PrediXcan with elastic net models 316 

(there is a small bias favoring the results of S-TWAS because only significant results were available). Overall all 317 

three methods rank results similarly with some differences that in part are a consequence of the effect size 318 

distributions of the eQTL and GWAS variants in each locus. 319 

 320 

Colocalization estimates complement PrediXcan results 321 

Here we compare to another class of methods that attempts to determine whether eQTL and GWAS signals are 322 

colocalized or are distinct although linked by LD. Among this class of methods are COLOC [19], Sherlock [18], 323 

and RTC [1], and more recently eCAVIAR [20], and ENLOC [21]. Thorough comparison between these methods 324 

can be found in [19,20]. HEIDI, the post filtering step in SMR that estimates heterogeneity of GWAS and eQTL 325 

signals, is another method in this class. We focus here on COLOC, whose quantification of the probability of five 326 

configurations complements well with the S-PrediXcan results. 327 

COLOC provides the probability of 5 hypotheses: H0 corresponds to no eQTL and no GWAS association, H1 328 

and H2 correspond to association with eQTL but no GWAS or vice-versa, H3 corresponds to eQTL and GWAS 329 

association but independent signals, and finally H4 corresponds to shared eQTL and GWAS association. P0, P1, 330 

P2, P3, and P4 are the corresponding probabilities for each configuration. The sum of the five probabilities is 1. 331 

Figure 5 shows ternary plots [42] with P3, P4, and 1-P3-P4 as vertices (for convenience we aggregate H0, 332 

H1, and H2 into one event with probability 1-P3-P4). This representation restricts the sum to be 1. The top 333 

vertex corresponds to probability of colocalized eQTL and GWAS signals (P4) to be high. The bottom left vertex 334 
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corresponds to distinct eQTL and GWAS signals (P3 high). The bottom right vertex corresponds to low 335 

probability of both colocalization and independent signals, which the authors [19] recommend to interpret as 336 

limited power. 337 

Figure 5-B shows association results for all gene/tissue pairs to the height phenotype. We find that most 338 

gene-tissue pairs’ association falls in the bottom right, “undetermined” region. When we restrict the plot to S-339 

PrediXcan signficant genes (p-value<1E-6) (Figure 5-C), three distinct peaks emerge in the high P4 region 340 

("colocalized signals"), high P3 region ("independent signals"), and "undetermined" region. Moreover, when 341 

genes with low prediction performance are excluded (Supplementary Figure 7-D) the "undetermined" peak 342 

significantly diminishes. 343 

These clusters provide a natural way to classify significant genes and complement S-PrediXcan results. 344 

Depending on false positive/false negative trade-off choices, genes in the "independent signals" or both 345 

"independent signals" and "undetermined" can be filtered out. 346 

This post-filtering idea was first implemented in the SMR approach using HEIDI. Comparison of COLOC 347 

results with HEIDI is shown in Figure 5-D and E. Panel D shows the colocalization probabilities of genes with 348 

small HEIDI p-values, which indicates heterogeneity of GWAS and eQTL signals. As expected, most genes fall in 349 

the lower left region, "independent signals" although there is a small cluster of genes that fall in the colocalized 350 

region, showing the disagreement between the two methods. When HEIDI p-values are large, i.e. the majority 351 

of genes cluster in the "colocalized" region, but there is a substantial number of genes that fall on the opposite 352 

end. COLOC and HEIDI tend to agree but in a number of cases they provide opposite conclusions. HEIDI does 353 

not provide a natural cutoff point for classification as COLOC does. 354 

Discussion 355 

Here we derive a mathematical expression to compute the results of PrediXcan (an integrative method that 356 

combines eQTL and GWAS data to map genes associated with complex traits) using only summary results, 357 

avoiding the need to use individual-level data. We show that our approach is accurate and robust to population 358 

mismatches. This allows us to greatly expand the applicability of PrediXcan given the widespread availability of 359 

summary results for massive sample size GWAS. 360 

It also allows us to infer the downstream phenotypic association of any molecular trait as long as it can be 361 

approximately represented as linear functions of SNPs. These traits include expression levels of genes, intron 362 

usage, methylation status, telomere length, within different spatial, temporal, and developmental contexts. 363 
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Building on this derivation and existing methods to integrate GWAS and QTL data, we outline a general 364 

framework in which our method and others can be placed. We term this MetaXcan and view it as an evolving 365 

framework that computes the downstream phenotypic associations of genetic regulation of molecular 366 

(intermediate) traits. So far it is built on transcriptome prediction models based on elastic net, the calculator 367 

itself (implementation of the formula), adjustment for model uncertainty (hard threshold on minimum 368 

prediction performance), and an LD-confounding filter (colocalization of GWAS and eQTL status). SMR and S-369 

TWAS can be considered different implementations of this framework. SMR uses top eQTL as predictor 370 

whereas Summary-TWAS has been implemented with BSLMM for prediction. SMR incorporates uncertainty of 371 

the prediction model into the association Z-score but the distribution of the combined statistics should be 372 

computed numerically instead of using the χ2-square approximation, which will be valid only in extreme cases 373 

where the eQTL significance is much larger than the GWAS or vice-versa. 374 

Methods to estimate colocalization is an active area of research. For example, COLOC assumes that there is 375 

a single causal variant for each gene. As they evolve, we will include the improved assessments to the 376 

MetaXcan framework. 377 

We applied the MetaXcan framework by training transcriptome models in 44 human tissues from GTEx and 378 

estimating their effect on phenotypes from over 101 available GWAMA studies. We find known disease and 379 

trait associated genes active in relevant tissues but we also discover patterns of regulatory activity in tissues 380 

that are not traditionally associated with the trait. Further investigation of context and tissue specificity of 381 

these processes is needed but our results emphasize the importance of methods that integrate functional data 382 

across a broad set of tissues and contexts to augment our ability to identify novel target genes and provide 383 

mechanistic insight. 384 

We also replicate some of our phenotypes using an independent cohort from the GERA study. Using the 385 

most related phenotypes available to us in GERA, we found that the proportion of true associations (estimated 386 

using the replication results) for the set of genes (BF significant in discovery) was between 48% and 91%. For 387 

LDL cholesterol, we find that 79% of discovery genes replicate in GERA. 388 

To facilitate broad adoption of the MetaXcan framework, we make efficient and user-friendly software and 389 

all pre-computed prediction models publicly available. We also host S-PrediXcan results for publicly available 390 

GWAMA results and make it freely available to the research community. This database lays the groundwork for 391 

a comprehensive catalog of phenome-wide associations of complex molecular processes. 392 
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Software and Resources 393 

We make our software publicly available on a GitHub repository: https://github.com/hakyimlab/MetaXcan. 394 

Prediction model weights and covariances for different tissues can be downloaded from PredictDB 395 

(http://predictdb.org). A short working example can be found on the GitHub page; more extensive 396 

documentation can be found on the project’s wiki page. The results of MetaXcan applied to the 44 human 397 

tissues and a broad set of phenotypes can be queried on gene2pheno.org. 398 

Methods 399 

Summary-PrediXcan formula 400 

Figure 6 shows the main analytic expression used by Summary-PrediXcan for the Z-score (Wald statistic) of the 401 

association between predicted gene expression and a phenotype. The input variables are the weights used to 402 

predict the expression of a given gene, the variance and covariances of the markers included in the prediction, 403 

and the GWAS coefficient for each marker. The last factor in the formula can be computed exactly in principle, 404 

but we would need additional information that is unavailable in typical GWAS summary statistics output such 405 

as phenotype variance and sample size. Dropping this factor from the formula does not affect the accuracy of 406 

the results as demonstrated in the close to perfect concordance between PrediXcan and Summary-PrediXcan 407 

results on the diagonal of Figure 1A. 408 

The approximate formula we use is: 409 

 ௚ܼ ≈ ෍ ௟௚ݓ ො௚௟ ∈ ெ௢ௗ௘௟೒ߪො௟ߪ
መ௟൯ߚመ௟se൫ߚ  

(1)

where 410 • wlg is the weight of SNP l in the prediction of the expression of gene g, 411 

መߚ • l is the GWAS regression coefficients for SNP l, 412 

• se(ߚመ l) is standard error of ߚመ l, 413 

ො௟ߪ •  is the estimated variance of SNP l, 414 

ො௚ߪ •  is the estimated variance of the predicted expression of gene g, and 415 
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• dosage and alternate allele are assumed to be the same. 416 

The inputs are based, in general, on data from three different sources: 417 • study set (e.g. GWAS study set), 418 

• training set (e.g. GTEx, DGN), 419 

• population reference set (e.g. the training set or 1000 Genomes). 420 

The study set is the main dataset of interest from which the genotype and phenotypes of interest are 421 

gathered. The regression coefficients and standard errors are computed based on individual-level data from the 422 

study set or a SNP-level meta-analysis of multiple GWAS. Training sets are the reference transcriptome datasets 423 

used for the training of the prediction models (GTEx, DGN, Framingham, etc.) thus the weights wlg are 424 

computed from this set. Training sets are also used to generate variance and covariances of genetic markers, 425 

which will usually be different from the study sets. When individual level data are not available from the 426 

training set we use population reference sets such as 1000 Genomes data. 427 

In the most common use scenario, users will need to provide only GWAS results using their study set. The 428 

remaining parameters are pre-computed, and download information can be found at the 429 

https://github.com/hakyimlab/MetaXcan resource. 430 

Performance in simulated data 431 

We first compared PrediXcan and Summary-PrediXcan using simulated phenotypes and a single transcriptome 432 

model trained on Depression Genes and Network’s (DGN) Whole Blood data set [5,22] downloaded from 433 

PredictDB (http://predictdb.org). The phenotype was sampled from a normal distribution without any link to 434 

genotype. For genotypes we used three ancestral subsets of the 1000 Genomes project: Africans (n=661), East 435 

Asians (n=504), and Europeans (n=503). Each set was taken in turn as reference and study set yielding a total of 436 

9 combinations as shown in Figure 1B. For each population combination, we computed PrediXcan association 437 

results for the simulated phenotype and compared them with results generated using S-PrediXcan in a scatter 438 

plot. In this manner we assess the effect of ancestral differences between study and reference sets. 439 

As expected, when the study and reference sets are the same, the concordance between PrediXcan and S-440 

PrediXcan is 100%, whereas for sets of different ancestral origin the R2 drops a few percentage points, with the 441 

biggest loss (down to 85%) when the study set is African and the reference set is Asian. This confirms that our 442 

formula works as expected and that the approach is robust to ethnic differences between study and reference 443 

sets. 444 
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Performance in cellular growth phenotype from 1000 genomes cell lines 445 

Next we tested with an actual cellular phenotype - intrinsic growth. This phenotype was computed based on 446 

multiple growth assays for over 500 cell lines from the 1000 Genomes project [43]. We used a subset of values 447 

for European (EUR), African (AFR), and Asian (EAS) individuals. 448 

We compared Z-scores for intrinsic growth generated by PrediXcan and S-PrediXcan for different 449 

combinations of reference and study sets, using whole blood prediction models trained in the DGN cohort. The 450 

results are shown in Supplementary Figure 1B. Consistent with our simulation study, the S-PrediXcan results 451 

closely match the PrediXcan results. Again, the best concordance occurs when reference and study sets share 452 

similar continental ancestry while differences in population slightly reduce concordance. Compared to the plots 453 

for the simulated phenotypes, the diagonal concordance is slightly lower than 1. This is due to the fact that 454 

more individuals were included in the reference set than in the study set, thus the study and reference sets 455 

were not identical for S-PrediXcan. 456 

Performance on disease phenotypes from WTCCC 457 

We show the comparison of PrediXcan and summary-PrediXcan results for two diseases: Bipolar Disorder (BD) 458 

and Type 1 Diabetes (T1D) from the WTCCC in Supplementary Figure 1C. Other diseases exhibited similar 459 

performance (data not shown). Concordance between PrediXcan and Summary-PrediXcan is over 99% for both 460 

diseases (BD R2 = 0.996 and T1D R2 = 0.995). The very small discrepancies are explained by differences in allele 461 

frequencies and LD between the reference set (1000 Genomes) and the study set (WTCCC). 462 

It is worth noting that the PrediXcan results for diseases were obtained using logistic regression whereas 463 

Summary-PrediXcan formula is based on linear regression. As observed before [23], when the number of cases 464 

and controls are relatively well balanced (roughly, at least 25% of a cohort are cases or controls), linear 465 

regression approximation yields very similar results to logistic regression. This high concordance also shows 466 

that the approximation of dropping the factor ටଵିோ೗మଵିோ೒మ does not significantly affect the results. 467 

Derivation of Summary-PrediXcan Formula 468 

The goal of Summary-PrediXcan is to infer the results of PrediXcan using only GWAS summary statistics. 469 

Individual level data are not needed for this algorithm. We will introduce some notations for the derivation of 470 

the analytic expressions of S-PrediXcan. 471 
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Notation and Preliminaries 472 

Y is the n-dimensional vector of phenotype for individuals i = 1,n. Xl is the allelic dosage for SNP l. Tg is the 473 

predicted expression (or estimated GREx, genetically regulated expression). wlg are weights to predict 474 

expression ௚ܶ = ∑ ௟௚ݓ ௟ܺ௟ ∈ ୑୭ୢୣ୪ ௚  , derived from an independent training set. 475 

We model the phenotype as linear functions of Xl and Tg 476 ܻ = ଵߙ  + ௟ܺߚ௟ +  ߟ

ܻ = ଶߙ  + ௚ܶߛ௚ + ߳ 

where α1 and α2 are intercepts, ߟ and ߳ error terms independent of Xl and Tg, respectively. Let ߛොg and ߚመ l be the 477 

estimated regression coefficients of Y regressed on Tg and Xl, respectively. ߛොg  is the result (effect size for gene 478 

g) we get from PrediXcan whereas ߚመ l  is the result from a GWAS for SNP l. 479 

We will denote as Var෢  and Cov෢  the operators that compute the sample variance and covariance, i.e.: 480 Var෢ (ܻ) = ො௒ଶߪ =  ∑ ( ௜ܻ − തܻ)ଶ/(݊ − 1௜ୀଵ,௡ )  with   തܻ  = ∑ ௜ܻ/݊௜ୀଵ,௡  .  Let ߪො௟ଶ = Var෢ ( ௟ܺ),  ߪො௚ଶ = ො௟ଶߪ  = Var෢ ൫ ௚ܶ൯  481 

and  ߁௚  =  ഥ is a n × p matrix where column 482܆ ᇱ is the p × n matrix of SNP data and܆ n, where/(ഥ܆ − ܆)′(ഥ܆ − ܆) 

l has the column mean of Xl (p being the number of SNPs in the model for gene g, typically p << n). 483 

With this notation, our goal is to infer PrediXcan results (ߛො௚  and its standard error) using only GWAS results 484 

መ௟ߚ)  and their standard error), estimated variances of SNPs (ߪො௟ଶ), estimated covariances between SNPs in each 485 

gene model (Γg), and prediction model weights wlg. 486 

Input: ߚመ l, se(ߚመ l), ߪො௟ଶ, ߁௚, wlg. Output: ߛො௚  /se(ߛො௚). 487 

Next we list the properties and definitions used in the derivation: 488 

ො௚ߛ  = Cov෢ ( ௚ܶ, ܻ)Var෢ ( ௚ܶ) = Cov෢ ( ௚ܶ, ො௚ଶߪ(ܻ  
(2) 

and 489 
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௟෡ߚ  = Cov෢ ( ௟ܺ, ܻ)Var෢ ( ௟ܺ) = Cov෢ ( ௟ܺ, ො௟ଶߪ(ܻ  
(3)

The proportion of variance explained by the covariate (Tg or Xl) can be expressed as: 490 

ܴ௚ଶ = ො௚ଶߛ ො௒ଶ   ܴ௟ଶߪො௚ଶߪ = ො௟ଶߛ   ො௒ଶߪො௟ଶߪ
By definition 491 

௚ܶ = ෍ ௟௚ݓ ௟ܺ௟∈ெ௢ௗ௘௟೒  

Thus Var෢ ൫ ௚ܶ൯ =  ො௚ଶ can be computed as 492ߪ 

ො௚ଶߪ = Var෢ ቌ ෍ ௟௚௟∈ெ௢ௗ௘௟೒ݓ ௟ܺቍ 
= Var෢ ൫܅௚܆௚൯ = ௚ᇱ܅   Var෢ ൫܆௚൯ ܅௚ 

, where ܅௚ is the vector of ݓ௟௚ for SNPs in the model of g. By definition, Γ௚ is  Var෢  the sample covariance 493  ,(௚܆)

of ܆௚, so that we arrive to: 494 ෝ࣌ࢍ૛ =  495   (4)            ࢍ܅ ᇱ ડࢍ܅

 496 

Calculation of regression coefficient ࢽෝߛ 497 ࢍො௚ can be expressed as 498 

ො௚ߛ = Cov෢ ൫ ௚ܶ, ܻ൯ߪො௚ଶ  
= Cov෢ ቀ∑ ௟௚ݓ ௟ܺ௟ ∈ ெ௢ௗ௘௟೒ , ܻቁߪො௚ଶ   
= ෍ ௟௚Cov෢ݓ ( ௟ܺ, ො௚ଶ௟ ∈ ெ௢ௗ௘௟೒ߪ(ܻ  

, where we used the linearity of  ݒ݋ܥ෢  in the last step. Using equation (3), we arrive to: 499 
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 500 

ො௚ߛ  = ෍ ො௚ଶ௟ ∈ ெ௢ௗ௘௟೒ߪ௟ଶߪመ௟ߚ௟௚ݓ  
(5)

 501 

Calculation of standard error of ࢽෝ502 ࢍ 

Also from the properties of linear regression we know that 503 

 504 

 seଶ൫ߛො௚൯ = Var൫ߛො௚൯ = ො௚ଶߪොఢଶ݊ߪ = ො௒ଶ(1ߪ − ܴ௚ଶ)݊ ො௚ଶߪ  
(6)

In this equation, ߪො௒ଶ/݊ is not necessarily known but can be estimated using the equation analogous to (6) for βl: 505 

 seଶ൫ߚመ௟൯ = ො௒ଶ(1ߪ − ܴ௟ଶ)݊ ො௟ଶߪ  
(7)

Thus: 506 
ො௒ଶ݊ߪ  = seଶ൫ߚመ௟൯ ො௟ଶ(1ߪ − ܴ௟ଶ)  

(8)

 507 
Notice that the right hand side of (8) is dependent on the SNP l while the left hand side is not. This equality 508 

will hold only approximately in our implementation since we will be using approximate values for σˆl2, i.e. from 509 

reference population, not the actual study population. 510 

Calculation of Z-score 511 

To assess the significance of the association, we need to compute the ratio of the estimated effect size  ߛො௚  and 512 

standard error se(γg), or Z-score, 513 

 ௚ܼ =  (ො௚ߛ)ො௚seߛ
(9)

 514 

 515 
with which we can compute the p-value as p = 2Φ(−|Zg|) where Φ(.) is the normal CDF function. Thus: 516 

௚ܼ =  ො௚൯ߛො௚se൫ߛ
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= ෍ ො௚ଶ௟ ∈ ெ௢ௗ௘௟೒ߪො௟ଶߪመ௟ߚ௟௚ݓ ඨ݊ߪො௒ଶ ො௚ଶ(1ߪ − ܴ௚ଶ) 
= ෍ ො௚ଶ௟ ∈ ெ௢ௗ௘௟೒ߪො௟ଶߪመ௟ߚ௟௚ݓ ඨ (1 − ܴ௟ଶ)seଶ൫ߚመ௟൯ߪො௟ଶ ො௚ଶ(1ߪ − ܴ௚ଶ)  

, where we used equations (5) and (6) in the second line and equation (8) in the last step. So: 517 

 ௚ܼ = ෍ ௟௚ݓ ො௚ߪො௟ߪ መ௟൯௟ ∈ ெ௢ௗ௘௟೒ߚመ௟se൫ߚ ඨ(1 − ܴ௟ଶ)൫1 − ܴ௚ଶ൯
 

(10)

 ௚ܼ ≈ ෍ ௟௚ݓ ො௚ߪො௟ߪ መ௟൯௟ ∈ ெ௢ௗ௘௟೒ߚመ௟se൫ߚ  
(11)

Based on results with actual and simulated data for realistic effect size ranges, we have found that the last 518 

approximation does not affect our ability to identify the association. The approximation becomes inaccurate 519 

only when the effect sizes are very large. But in these cases, the small decrease in statistical efficiency induced 520 

by the approximation is compensated by the large power to detect the larger effect sizes. 521 

Expression model training 522 

To train our prediction models, we obtained genotype data and normalized gene expression data collected by 523 

the GTEx Project. We used 44 different tissues sampled by GTEx and thus generated 44 different tissue-wide 524 

models (dbGaP Accession phs000424.v6.p1). Sample sizes for different tissues range from 70 (Uterus) to 361 525 

(Muscle - Skeletal). The models referenced in this paper make use of the GTEx Project’s V6p data, a patch to 526 

the version 6 data and makes use of improved gene-level annotation. We removed ambiguously stranded SNPs 527 

from genotype data, i.e. ref/alt pairs A/T, C/G, T/A, G/C. Genotype data was filtered to include only SNPs with 528 

MAF > 0.01. For each tissue, normalized gene expression data was adjusted for covariates such as gender, 529 

sequencing platform, the top 3 principal components from genotype data and top PEER Factors. The number of 530 

PEER Factors used was determined by sample size: 15 for n < 150, 30 for n between 150 and 250, and 35 for n > 531 

250. Covariate data was provided by GTEx. For our analysis, we used protein-coding genes only. 532 

For each gene-tissue pair for which we had adjusted expression data, we fit an Elastic-Net model based on 533 

the genotypes of the samples for the SNPs located within 1 Mb upstream of the gene’s transcription start site 534 

and 1 Mb downstream of the transcription end site. We used the R package glmnet with mixing parameter 535 

alpha equal to 0.5, and the penalty parameter lambda was chosen through 10-fold cross-validation. 536 
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Once we fit all models, we retained only the models which reached significance at a False Discovery Rate of 537 

less than 0.05. For each tissue examined, we created a sqlite database to store the weights of the prediction 538 

models, as well as other statistics regarding model training. These databases have been made available for 539 

download at PredictDB.org. 540 

Online Catalog and SMR, COLOC, TWAS 541 

We have executed all methods and programs in the High-Performance Cluster of the Center for Research 542 

Informatics. 543 

Supplementary Table 3 shows the list of GWA/GWAMA studies we considered in this analysis. We applied S-544 

PrediXcan to these studies using the transcriptome models trained on GTEx studies for patched version 6. For 545 

simplicity, S-PrediXcan only considers those SNPs that have a matching set of alleles in the prediction model, 546 

and adjusts the dosages (2 − dosage) if the alleles are swapped. 547 

To make the results of this study broadly accessible, we built a Postgre SQL relational database to store S-548 

PrediXcan results, and serve them via a web application. 549 

We also applied SMR [16] to the same set of GWAMA studies, using the GTEx eQTL associations. We 550 

downloaded version 0.66 of the software from the SMR website, and ran it using the default parameters. We 551 

converted the GWAMA and GTEx eQTL studies to SMR input formats. In order to have SMR 552 

compute the colocalization test, for those few GWAMA studies where allele frequency was not reported, we 553 

filled in with frequencies from the 1000 Genomes Project [44] as an approximation. We also used the 554 

1000 Genomes genotype data as reference panel for SMR. 555 
Next we ran COLOC [19] over the same set of GWAMA and eQTL studies. We used the R package available 556 

from CRAN. We used the Approximate Bayes Factor colocalization analysis, with the option that estimates the 557 

phenotype variance from the variances and frequencies in each association study. When the frequency 558 

information was missing from the GWAS, we filled in with data from the 1000 Genomes 559 

Project. 560 

For both the cases of SMR and COLOC, we discarded those SNPS where the allele sets in the GWAMA and 561 

the eQTL studies differed. After obtaining these results, we uploaded the results to the relational databases and 562 

linked to the appropriate S-PrediXcan result. 563 

For comparison purposes, we have also included the results of the application of Summary-TWAS to 30 564 

traits [26]. We linked each TWAS result to a matching S-PrediXcan result with the same GWAS Study, gene and 565 

transcriptome data source (i.e. GTEx tissue study). 566 
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Comparison with TWAS 567 

Formal similarity with TWAS can be made more explicit by rewriting S-PrediXcan formula in matrix form. With 568 

the following notation and definitions: 569 

෩௚܅ = ൫ߪଵݓଵ௚, … , ௌே௉௦܈ ௣௚൯ᇱݓ௣ߪ = ൫ܼଵ, … , ܼ௣൯ᇱ 
= ቆ (መଵߚ)݁ݏመଵߚ , … , ቇ(መ௣ߚ)݁ݏመ௣ߚ ′ 

and correlation matrix of SNPs in the model for gene g 570 

Σ௚ = diag ቆ ොଵߪ1 , … , ො௣ ቇߪ1 ∙ Γ௚ ∙ diag ቆ ොଵߪ1 , … ,  ො௣ ቇߪ1

it is quite straightforward to write the numerator in (1) and (11) as 571 

෩௚܅  ∙  ௚܈

and the denominator, the variance of the predicted expression level of gene g as 572 

∙ ෩௚ᇱ܅ Σ௚ ∙  ෩௚܅

, thus 573 

௚ܼ = ෩௚܅ ∙ ∙ ෩௚ᇱ܅ௌே௉௦܈ Σ௚ ∙  ෩௚܅

This equation has the same form as the TWAS expression if we use the scaled weight vector ܅෩௚  instead of Wg. 574 

Summary-TWAS imputes the Z-score for the gene-level result assuming that under the null hypothesis, the Z-575 

scores are normally distributed with the same correlation structure as the SNPs; whereas in S-PrediXcan we 576 

compute the results of PrediXcan using summary statistics. Thus, S-TWAS and S-PrediXcan yield equivalent 577 

mathematical expressions (after setting the factor ට(ଵିோ೗మ)(ଵିோ೒మ) ≈ 1 578 

 579 
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Summary-PrediXcan with only top eQTL as predictor 580 

The S-PrediXcan formula when only the top eQTL is used to predict the expression level of a gene can be 581 

expressed as 582 

ௌܼି௉௥௘ௗ௜௑௖௔௡ = ෍ ௟௚ݓ ො௚ߪො௟ߪ ௟ ∈ ெ௢ௗ௘௟೒(௟ߚ)መ௟seߚ  
= ଵ௚ݓ ଵ௚ଶݓොଵටߪ ොଵଶߪ ܼଵ 
= ܼଵ 

where Z1 is the GWAS Z-score of the top eQTL in the model for gene. Thus 583 

 ܼ୲୭୮ ୣ୯୲୪ ୗି୔୰ୣୢ୧ଡ଼ୡୟ୬ଶ = ܼୋ୛୅ୗଶ  (12)

Comparison with SMR 584 

SMR quantifies the strength of the association between expression levels of a gene and complex traits with 585 

TSMR using the following function of the eQTL and GWAS Z-score statistics: 586 

 ௌܶெோ = ܼୣ୕୘୐ଶ ܼୋ୛୅ୗଶܼୣ୕୘୐ଶ + ܼୋ୛୅ୗଶ  
(13)

 587 

Here ܼୣ୕୘୐ is the Z-score (= effect size/standard error) of the association between SNP and gene expression, 588 

and ܼୋ୛୅ୗ is the Z-score of the association between SNP and trait. 589 

This SMR statistic is quite different from a χ1-square random variable as assumed in [16]. A quick simulation 590 

shows that the mean of TSMR is 1/4 of the mean of a χ1-square random variable. Only in two extreme cases, the 591 

chi-square approximation holds: when ܼୣ୕୘୐ ≫ ܼୋ୛୅ୗ  or ܼୣ୕୘୐ ≪ ܼୋ୛୅ୗ. In these extremes, we can apply 592 

Taylor expansions to find an interpretable form of the SMR statistic. 593 

If ܼୣ୕୘୐ ≫ ܼୋ୛୅ୗ, i.e. the eQTL association is much more significant than the GWAS association, 594 

 ௌܶெோ = ܼୋ୛୅ୗଶ1 + ܼୋ୛୅ୗଶܼୣ୕୘୐ଶ ≈ ܼୋ୛୅ୗଶ ቆ1 − ܼୋ୛୅ୗଶܼ
ୣ୕୘୐ଶ ቇ 

(14)
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 595 

, so that for large enough ܼୣ୕୘୐ଶ  relative to  ܼୋ୛୅ୗଶ , 596 

 ௌܶெோ ≈ ܼୋ୛୅ୗଶ = ܼ୲୭୮ ୣ୕୘୐ ୗି୔୰ୣୢ୧ଡ଼ୡୟ୬ଶ  (15)

 597 

using equation 12. Thus, in this case, the SMR statistic is slightly smaller than the (top eQTL based) S-PrediXcan 598 

χ1-square. This reduced significance is accounting for the uncertainty in the eQTL association. As the evidence 599 

for eQTL association grows, the denominator ܼ௘ொ்௅ଶ  increases and the difference tends to 0. 600 

On the other extreme when the GWAS association is much stronger than the eQTLs, ܼୣ୕୘୐ ≪ ܼୋ୛୅ୗ, 601 

 ௌܶெோ = ܼୣ୕୘୐ଶ1 + ܼୣ୕୘୐ଶܼୋ୛୅ୗଶ ≈ ܼୣ୕୘୐ଶ ቆ1 − ܼୣ୕୘୐ଶܼୋ୛୅ୗଶ ቇ 
(16)

 602 

, so that analogously: 603 

 ௌܶெோ ≈ ܼୣ୕୘୐ଶ  (17)

 604 

In both extremes, the SMR statistic significance is approximately equal to the less significant of the two 605 

statistics GWAS or eQTL, albeit strictly smaller. 606 

In between the two extremes, the right distribution must be computed using numerical methods. When we 607 

look at the empirical distribution of the SMR statistic’s p-value against the GWAS and eQTL (top eQTL for the 608 

gene) p-values, we find the ceiling of the SMR statistic is maintained as shown in Figure 4-D/E. Given the rate of 609 

growth of sample sizes of GWAS studies compared to eQTL studies, the power of eQTL studies will cap the 610 

significance attainable by SMR. This approach seems unnecessarily conservative. In our framework, we use a 611 

minimum prediction performance threshold and estimates of colocalization to filter out unreliable associations. 612 

GERA imputation 613 

Genotype files were obtained from dbGaP, and updated to release 35 of the probe annotations published by 614 

Affymetrix via PLINK [45]. Probes were filtered out that had a minor allele frequency of <0.01, were missing in 615 

>10% of subjects, or did not fit Hardy-Weinberg equilibrium. Subjects were dropped that had an unexpected 616 

level of heterozygosity (F >0.05). Finally the HRC-1000G-check-bim.pl script (from http://www.well.ox.ac.uk/ 617 

wrayner/tools/) was used to perform some final filtering and split data by chromosome. Phasing (via eagle v2.3 618 

[46]) and imputation against the HRC r1.1 2016 panel [47] (via minimac3) were carried out by the Michigan 619 

Imputation Server [48]. 620 
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GERA GWAS and MetaXcan Application 621 

European samples had been split into ten groups during imputation to ease the computational burden on the 622 

Michigan server, so after obtaining the imputed .vcf files, we used the software PLINK [45] to convert the 623 

genotype files into the PLINK binary file format and merge the ten groups of samples together, while dropping 624 

any variants not found in all sample groups. For the association analysis, we performed a logistic regression 625 

using PLINK, and following QC practices from [14] we filtered out individuals with genotype missingness > 0.03 626 

and filtered out variants with minor allele frequency < 0.01, missingness > 0.05, out of Hardy-Weinberg 627 

equilibrium significant at 1E-6, or had imputation quality < 0.8. We used gender and the first ten genetic 628 

principal components as obtained from dbGaP as covariates. Following all filtering, our analysis included 61,444 629 

European samples with 7,120,064 variants. MetaXcan was then applied to these GWAS results, using the 45 630 

prediction models (GTEx and DGN). 631 
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Figure Captions 816 

Figure 1. Comparison between GWAS, PrediXcan, and Summary-PrediXcan. 817 
A) illustrates the Summary-PrediXcan method in relationship to GWAS and PrediXcan. Both GWAS and 818 
PrediXcan take genotype and phenotype data as input. GWAS computes the regression coefficients of Y on Xl 819 
using the model , where Y is the phenotype and Xl the individual SNP dosage. The output is 820 
the table of SNP-level results. PrediXcan, in contrast, starts first by predicting/imputing the transcriptome. 821 
Then it calculates the regression coefficients of the phenotype Y on each gene’s predicted expression Tg. The 822 
output is a table of gene-level results. Summary-PrediXcan directly computes the gene-level association results 823 
using the output from GWAS. 824 
Comparison of results for B) a simulated phenotype; and C) a Bipolar Disorder study and a Type 1 Diabetes 825 
study from Wellcome Trust Case Control Consortium (WTCCC). For the simulated phenotype, study sets and S-826 
PrediXcan population reference sets consisted of European, African, and Asian individuals from the 1000 827 
Genomes Project. For the WTCCC phenotypes, the study set consisted of British individuals, and the S-828 
PrediXcan population reference was the European subset of 1000 Genomes Project. Gene expression 829 
prediction models were based on the DGN cohort presented in [11]. 830 
 831 
Figure 2. MetaXcan Framework description and application. 832 
Panel A) shows the components of the MetaXcan framework for integrating GWAS and eQTL data.  833 
Panel B) displays our application of the MetaXcan framework. Using 44 RNA-seq data from GTEx we trained 834 
prediction models using elastic-net and deposited the weights and SNP covariance in the publicly available 835 
(PredictDB) resource. The weights and covariances were entered in the Summary-PrediXcan calculator, which 836 
when combined with 101 GWAS summary results, computed the gene/tissue pairs’ associations. Colocalization 837 
status was computed and the full set of results were deposited in gene2pheno.org 838 
 839 
 840 

Figure 3. A) ClinVar genes show significant S-PrediXcan associations. Genes implicated in ClinVar tended to be 841 
more significant in S-PrediXcan for most diseases tested, except for schizophrenia and autism. Blue circles 842 
correspond to the qq-plot of genes in ClinVar that were annotated with the phenotype and black circles 843 
correspond to all genes. B) S-PrediXcan association for PCSK9, SORT1, and C4A. R୮୰ୣୢଶ

 is a performance 844 
measure computed as the correlation squared between observed and predicted expression, cross validated in 845 
the training set. Darker points indicate larger genetic component and consequently more active regulation in 846 
the tissue. The size of the points represent the significance of the association between predicted expression 847 
and the traits indicated on the top labels. C4A associations with schizophrenia (SCZ) are found across all tissues. 848 
SORT1 associations with LDL-C, coronary artery disease (CAD), and myocardial infarction (MI) are most 849 
significant in liver. PCSK9 associations with LDL-C, coronary artery disease (CAD), and myocardial infarction (MI) 850 
are most significant in tibial nerve. 851 
Tissue abbreviation: Adipose - Subcutaneous (ADPSBQ), Adipose - Visceral (Omentum) (ADPVSC), Adrenal Gland (ADRNLG), Artery - Aorta 852 
(ARTAORT), Artery - Coronary (ARTCRN), Artery - Tibial (ARTTBL), Bladder (BLDDER), Brain - Amygdala (BRNAMY), Brain - Anterior cingulate 853 
cortex (BA24) (BRNACC), Brain - Caudate (basal ganglia) (BRNCDT), Brain - Cerebellar Hemisphere (BRNCHB), Brain - Cerebellum (BRNCHA), 854 
Brain - Cortex (BRNCTXA), Brain - Frontal Cortex (BA9) (BRNCTXB), Brain - Hippocampus (BRNHPP), Brain - Hypothalamus (BRNHPT), Brain - 855 
Nucleus accumbens (basal ganglia) (BRNNCC), Brain - Putamen (basal ganglia) (BRNPTM), Brain - Spinal cord (cervical c-1) (BRNSPC), Brain - 856 
Substantia nigra (BRNSNG), Breast - Mammary Tissue (BREAST), Cells - EBV-transformed lymphocytes (LCL), Cells - Transformed fibroblasts 857 
(FIBRBLS), Cervix - Ectocervix (CVXECT), Cervix - Endocervix (CVSEND), Colon - Sigmoid (CLNSGM), Colon - Transverse (CLNTRN), Esophagus 858 
- Gastroesophageal Junction (ESPGEJ), Esophagus - Mucosa (ESPMCS), Esophagus - Muscularis (ESPMSL), Fallopian Tube (FLLPNT), Heart - 859 
Atrial Appendage (HRTAA), Heart - Left Ventricle (HRTLV), Kidney - Cortex (KDNCTX), Liver (LIVER), Lung (LUNG), Minor Salivary Gland 860 
(SLVRYG), Muscle - Skeletal (MSCLSK), Nerve - Tibial (NERVET), Ovary (OVARY), Pancreas (PNCREAS), Pituitary (PTTARY), Prostate (PRSTTE), 861 
Skin - Not Sun Exposed (Suprapubic) (SKINNS), Skin - Sun Exposed (Lower leg) (SKINS), Small Intestine - Terminal Ileum (SNTTRM), Spleen 862 
(SPLEEN), Stomach (STMACH), Testis (TESTIS), Thyroid (THYROID), Uterus (UTERUS), Vagina (VAGINA), Whole Blood (WHLBLD). 863 
 864 
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Figure 4. Comparison Summary-PrediXcan with Summary-TWAS, and SMR.  865 
The height phenotype association results across 44 GTEx tissues are analyzed in this figure. Panel A) depicts the 866 
test of the mediating role of gene expression level Tg in PrediXcan/TWAS summary versions and SMR. 867 
Multiple SNPs are linked to the expression level of a gene via weights WX,Tg. 868 
Panel B) shows the significance of Summary-TWAS (BSLMM) vs. Summary-PrediXcan (elastic net). There is a 869 
small bias caused by using S-TWAS results available from [26], which only lists significant hits. 870 
Panel C) shows the significance of SMR vs Summary-PrediXcan. As expected, SMR associations tend to be 871 
smaller than S-PrediXcan’s and S-TWAS’. 872 
Panels D) and E) show that the SMR statistics significance is bounded by GWAS and eQTL p-values. The p-values 873 
(-log10) of the SMR statistics are plotted against the GWAS p-value of the top eQTL SNP (panel D), and the 874 
gene’s top eQTL p-value (panel E). 875 
Some of the GWAS and eQTL p-values were more significant than shown since they were thresholded at 1E-50 876 
to improve visualization. 877 
 878 

Figure 5. Colocalization status of S-PrediXcan results. 879 
Panel A) shows a triangle that contains the probabilities of all five COLOC configurations. This ternary plot 880 
constrains the values such that the sum of the probabilities is 1. All points in a horizontal line have the same 881 
probability of “colocalized” GWAS and eQTL signals (P4), points on a line parallel to the right side of the triangle 882 
(NW to SE) have the same probability of “Independent signals” (P3), and lines parallel to the left side of the 883 
triangle (NE to SW) correspond to constant P1+P2+P3. Top sub-triangle corresponds to high probability of 884 
colocalization (P4>0.5), lower left sub-triangle corresponds to probability of independent signals (P3>0.5), and 885 
lower right parallelogram corresponds to genes without enough power to determine or reject colocalization. 886 
The following panels present scatter plots of COLOC probabilities with a density overlay for S-PrediXcan results 887 
of the Height phenotype. 888 
Panel B) shows the scatter plot of colocalization probabilities for all gene-tissue pairs. Most results fall into the 889 
“undetermined” region. 890 
Panel C) shows that if we keep only significant results (ps-predixcan < 1 × 10−6), associations tend to cluster into 891 
three distinct regions: “independent signals”, “colocalized” and “undertermined”, with most results in the 892 
“undetermined” region. 893 
Panel D) shows that HEIDI significant genes (to be interpreted as high heterogeneity between GWAS and eQTL 894 
signals) mostly cluster in the “independent signal” region, in concordance with COLOC. A few genes fall in the 895 
“colocalized” region, in disagreement with COLOC classification. Unlike COLOC results, HEIDI does not partition 896 
the genes into distinct clusters and an arbitrary cutoff p-value has to be chosen. 897 
Panel E) shows genes with large HEIDI p-value (no evidence of heterogeneity) which fall in large part in the 898 
"colocalized" region but also substantial number fall in "independent signal" region, contradicting COLOC’s 899 
classification. 900 
 901 

Figure 6. Components of the S-PrediXcan formula. This plot shows the formula to infer 902 
PrediXcan gene-level association results using summary statistics. The different sets involved in input data are 903 
shown. The regression coefficient between the phenotype and the genotype is obtained from the study set. 904 
The training set is the reference transcriptome dataset where the prediction models of gene expression levels 905 
are trained. The reference set, the training set (preferable) or 1000 Genomes, is used to compute the variances 906 
and covariances (LD structure) of the markers used in the predicted expression levels. Both the reference set 907 
and training set values are pre-computed and provided to the user so that only the study set results need to be 908 
provided to the software. The crossed out term was set to 1 as an approximation, since its calculation depends 909 
on generally unavailable data. We found this approximation to have negligible impact on the results. 910 
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