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Abstract

To gain biological insight into the discoveries made by GWAS and meta-analysis studies, effective integra-

tion of functional data generated by large-scale efforts such as the GTEx Project is needed. PrediXcan

is a gene-level approach that addresses this need by estimating the genetically determined component

of gene expression. These predicted expression traits can then be tested for association with phenotype

in order to test for mediating role of gene expression levels. Furthermore, due to the polygenic nature

of many complex traits, efforts to aggregate multiple GWAS studies and conduct meta-analyses have

successfully increased our ability to identify variants of small effect sizes. To take advantage of the results

generated by these efforts and to avoid the problems associated with accessing and handling individual-

level data (e.g. consent limitations, large computational/storage costs) we have developed an extension

of PrediXcan. The new method, MetaXcan, infers the results of PrediXcan using only summary statistics

from large-scale GWAS or meta-analyses. Here we show that the concordance between PrediXcan and

MetaXcan is excellent when the right reference population is used (R2 > 0.95) and robust to population

mismatches (R2 > 0.85). We provide open source local and web-based software for easy implementation
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through https://github.com/hakyimlab/MetaXcan.

Introduction

Over the last decade, GWAS have been successful in identifying genetic loci that robustly associate with

multiple complex traits. However, the mechanistic understanding of these discoveries is still limited,

hampering the translation of this knowledge into actionable targets. Studies of enrichment of expression

quantitative trait loci (eQTLs) among trait-associated variants [1,2] show the importance of gene expres-

sion regulation. Direct quantification of the contribution of different functional classes of genetic variants

showed that 80% of phenotype variability (in 12 diseases) can be attributed to DNAase I hypersensitivity

sites, further highlighting the importance of transcript regulation in determining phenotypes [3].

Many transcriptome studies have been conducted where genotype and expression levels are assayed for

a large number of individuals [4–7]. The most comprehensive transcriptome dataset, in terms of tissues

covered, is the GTEx Project, a large-scale effort where DNA and RNA are collected from multiple tissue

samples from nearly 1000 deceased individuals and sequenced to high coverage [8]. This remarkable

resource provides a comprehensive cross-tissue survey of the functional consequences of genetic variation

at the transcript level.

To integrate knowledge generated from these large-scale transcriptome studies and shed light on

disease biology, we developed PrediXcan [9], a gene-level association approach that tests the mediating

effects of gene expression levels on phenotypes. This is implemented on GWAS/sequencing studies (i.e.

studies with genome-wide interrogation of DNA variation and phenotypes) where transcriptome levels

are imputed with models trained in measured transcriptome datasets (e.g. GTEx). These predicted

expression levels are then correlated with the phenotype and provides the basis for a gene-level association

test that addresses some of the key limitations of GWAS [9].

Other groups have also proposed methods based on similar ideas [10]. Comparison with our method

will be discussed.

On the other hand, meta-analysis efforts that aggregate results from multiple GWAS studies have

been able to identify an increasing number of phenotype associations that were not detected with smaller

sample sizes. In order to harness the power of these increased sample sizes while keeping the computational

burden manageable, we have extended the PrediXcan method so that only summary statistics from meta-
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analysis studies are needed rather than individual level genotype and phenotype data.

We will show here that our new method, termed MetaXcan, is a fast, accurate, and efficient way

to scale up implementation of PrediXcan and take advantage of the large sample sizes made available

through meta-analysis of GWAS.

Results

We have derived an analytic expression that allows us to compute the outcome of PrediXcan using only

summary statistics from genetic association studies. Details of the derivation are shown in the Methods

section. In Figure 1, we illustrate the mechanics of MetaXcan in relation to traditional GWAS and our

recently published PrediXcan method.

For both GWAS and PrediXcan, the input is the genotype matrix and phenotype vector. GWAS

computes the regression coefficient of the phenotype on each marker in the genotype matrix and gen-

erates SNP-level results. PrediXcan starts by estimating the genetically-regulated component of the

transcriptome (using weights from the publicly available PredictDB database) and then computes regres-

sion coefficients of the phenotype on each predicted gene expression level generating gene-level results.

MetaXcan, on the other hand, can be viewed as a shortcut that uses the output from a GWAS study to

generate the output from PrediXcan. Since MetaXcan only depends summary statistics, it can effectively

take advantage of large-scale meta analysis results, avoiding the computational and regulatory burden of

handling large amounts of protected individual level data.

MetaXcan formula

Figure 2 shows the main analytic expression used by MetaXcan for the Z-score (effect size divided by

its standard error) of the association between predicted gene expression and the phenotype. The input

variables are the weights used to predict the expression of a given gene wlg, the variance and covariances

of the markers included in the prediction of the expression level of the gene, and the GWAS coefficient

for each marker. The last factor in the formula can be computed exactly in principle, but we would need

some additional information that is unavailable in typical GWAS output. Fortunately, we have found

that this factor is very close to 1 and dropping it from the formula does not affect the accuracy of the
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Figure 1. This figure illustrates the MetaXcan method in relationship to GWAS and PrediXcan. Both
GWAS and PrediXcan take genotype and phenotype data as input. GWAS computes the regression
coefficients of Y ∼ Xl using the model Y = Xlb+ ε, where Y is the phenotype and Xl the individual
dosage. The output is the table of SNP-level results. PrediXcan, in contrast, starts first by
predicting/imputing the transcriptome. Then it calculates the regression coefficients of the phenotype
Y on each gene’s predicted expression Tg. The output is a table of gene-level results. MetaXcan
computes the gene-level association results using directly the output from GWAS.
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Figure 2. MetaXcan formula. This plot shows the formula to infer PrediXcan gene-level association
results using summary statistics. The different sets involved in input data are shown. The study set is
where the regression coefficient between the phenotype and the genotype is obtained from. The training
set is the reference transcriptome dataset where the prediction models of gene expression levels are
trained. The reference set, in general 1000 Genomes, is used to compute the variances and covariances
(LD structure) of the markers used in the predicted expression levels. Both the reference set and
training set values are pre-computed and provided to the user so that only the study set results need to
be provided to the software. The crossed out term was set to 1 as an approximation, since its
calculation depends on generally unavailable data. We found this approximation to have negligible
impact on the results.

results.

The approximate formula we will use is as follows:

Zg ≈
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l
se(βl)

(1)

where

• wlg is the weight of SNP l in the prediction of the expression of gene g,

• β̂l is the GWAS regression coefficients for SNP l,

• se(βl) is standard error of β̂l,

• σ̂l is the estimated variance of SNP l, and

• σ̂g is the estimated variance of the predicted expression of gene g.
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The inputs are based, in general, on data from three different sources:

• study set,

• training set,

• population reference set.

The study set is the main dataset of interest from which the genotype and phenotypes of interest are

gathered. The regression coefficients and standard errors are computed based on individual-level data

from the study set. Training sets are the reference transcriptome datasets used for the training of the

prediction models (GTEx, DGN, Framingham, etc.) thus the weights wlg are computed from this set.

Finally, the reference sets (e.g. 1000 Genomes) are used to derive variance and covariance (LD) properties

of genetic markers, which will usually be different from the study sets.

In the most common use scenario, the user will only need to provide GWAS results using his/her

study set. The remaining parameters are pre-computed, and download information can be found at the

https://github.com/hakyimlab/MetaXcan resource.

Next we will show the performance of the method, measured as the concordance (R2) between PrediX-

can and MetaXcan results.

Performance in simulated data

We first compared MetaXcan and PrediXcan using simulated phenotypes generated from a normal dis-

tribution, using a single transcriptome model trained on Depression Genes and Network’s (DGN) Whole

Blood data set [4] downloaded from PredictDB (http://predictdb.org). As genotypes we used three

ancestral subsets of the 1000 Genomes project: Africans (n=662), East Asians (n=504), and Europeans

(n=503). Each set was taken in turn as reference and study set yielding a total of 9 combinations as

shown in Figure 3. For each population combination, we computed PrediXcan association results for

the simulated phenotype and compared them with results generated from our MetaXcan approach in a

scatter plot. This allowed us to assess the effect of ancestral differences between study and reference sets.

As expected, when the study and reference sets are the same, the concordance between MetaXcan

and PrediXcan is 100% whereas for sets of different ancestral origin the R2 drops a few percentage points,

with the biggest loss (down to 85%) when the study set is African and the reference set is Asian. This
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Figure 3. Comparison of PrediXcan and MetaXcan results for a simulated phenotype. Study
populations and MetaXcan reference populations were built from European, African, and Asian
individuals from the 1000 Genomes Project. Gene Expression model was based on DGN’s Whole Blood
data.

confirmed that our formula works as expected and that the approach is robust to ethnic differences

between study and reference sets.

Performance in cellular growth phenotype from 1000 genomes cell lines

Next we tested with an actual cellular phenotype. Intrinsic growth, a cellular phenotype, was computed

based on multiple growth asays for over 500 cell lines from the 1000 Genomes project [11]. We used a

subset of values for Europeans (EUR), Africans (AFR), Asians (EAS) individuals.

We compared Z-scores for intrinsic growth generated by PrediXcan and MetaXcan for different com-

binations of reference and study sets, using whole blood prediction model trained in the DGN cohort.

The results are shown in Figure 4. Consistent with our simulation study, the MetaXcan results closely

match the PrediXcan results. Again, the best concordance occurs when reference and study sets share

similar continental ancestry while differences in population slightly reduce concordance. Compared to

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2016. ; https://doi.org/10.1101/045260doi: bioRxiv preprint 

https://doi.org/10.1101/045260
http://creativecommons.org/licenses/by/4.0/


8

Figure 4. Comparison of PrediXcan and MetaXcan results for a cellular phenotype, intrinsic growth.
Study sets and MetaXcan reference sets consisted of European, African, and Asian individuals from the
1000 Genomes Project. Gene Expression model was based on Depression Genes and Networks.

the plots for the simulated phenotypes, the diagonal concordance is slightly lower than 1. This is due to

the fact that more individuals were included in the reference set than in the study set, thus the study

and reference sets were not identical for MetaXcan.

Performance on disease phenotypes from WTCCC

We show the comparison of MetaXcan and PrediXcan results for two diseases: Bipolar Disorder (BD)

and Type 1 Diabetes (T1D) from the WTCCC in Figure 5. Other disease phenotypes exhibited similar

performance (data not shown). Concordance between MetaXcan and PrediXcan is over 95% in for both

diseases (BD R2 = 0.956 and T1D R2 = 0.958). The very small discrepancies are explained by differences

in allele frequencies and LD between the reference set (1000 Genomes) and the study set (WTCCC). Given

this high concordance, we do not expect much improvement when using a reference set that is more similar

to the study set. We verified this and, as expected, found that using control individuals from WTCCC

as reference set improved the concordance only marginally (0.1%).
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Figure 5. Comparison of PrediXcan results and MetaXcan results for a Type I Diabetes study, and a
Bipolar Disorder study. Study data was extracted from Wellcome Trust Case Control Consortium, and
MetaXcan reference population were the European individuals from Thousand Genomes Project (same
as in previous sections)
-

It is worth noting that the PrediXcan results for diseases were obtained using logistic regression

whereas MetaXcan formula is based on linear regression properties. As observed before [12], when the

number of cases and controls are relatively well balanced (roughly, at least 25% of cases and controls),

linear regression approximation yields very similar results to logistic regression.

This high concordance also shows that the approximation where we drop the term

√
1−R2

l

1−R2
g

does not

significantly affect the results.

Software

We make our software publicly available on a GitHub repository: https://github.com/hakyimlab/

MetaXcan. Instructions for obtaining the weights and covariances for different tissues can be found there.

A short working example can be found on the GitHub page; more extensive documentation can be found

on the project’s wiki page.
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Discussion

Here we present MetaXcan, a scalable, accurate, and efficient method for integrating reference transcrip-

tome studies to learn about the biology of complex traits and diseases. Our method extends PrediXcan,

which maps genes to phenotypes by testing the mediating effects of gene expression levels. This is imple-

mented by predicting gene expression levels and correlating these traits with phenotypes. MetaXcan is a

shortcut that uses SNP-level association results and combines them to reproduce the results of PrediXcan,

without the need to use individual level data.

MetaXcan shares most of the benefits of PrediXcan: a) it directly tests the regulatory mechanism

through which genetic variants affect phenotype; b) it provides gene-level results which are better func-

tionally characterized than genetic variants, easier to validate within model systems, and carry a smaller

multiple testing burden; c) the direction of the effects are known, facilitating identification of therapeu-

tic targets; d) reverse causality is largely avoided since predicted expression levels are based on germline

variation, which are not affected by onset of disease; e) it can be systematically applied to existing GWAS

studies; f) tissue-specific analysis can be performed using all the models we have made available through

PredictDB (http://predictdb.org).

The difference between the reference sets (used to estimate LD and allele frequencies) and study set

(used to compute GWAS/meta analysis summary statistics) is the main cause of the small differences

between MetaXcan and PrediXcan results. We have shown here that even when the populations are quite

different, the concordance is very high. Thus, MetaXcan is robust to ancestral differences between study

and reference sets.

Even though the method was derived with linear regression in mind, in case-control designs, the

approximation generates results that are in almost full concordance with exact results generated with

PrediXcan and logistic regression.

Methods similar in spirit to PrediXcan have been reported [10]. Gusev et al also propose a method

comparable to MetaXcan that is based only on summary statistics. Their method, called Transcriptome-

Wide Association Study (TWAS), imputes the SNP level z-scores into gene level z-scores using the method

Pasaniuc and others have published [13]. This approach is equivalent to predicting expression levels using

BLUP/Ridge Regression, which has been shown to be suboptimal for prediction. This is due to the fact

that the local architecture of gene expression traits is sparse so that highly polygenic models underperform
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more sparse prediction models such as LASSO or Elastic Net with mixing parameters 0.5 or greater [14].

In contrast, MetaXcan is not restricted to one imputation or prediction scheme. It infer the results

of PrediXcan using summary statistics through an analytic formula. Thus it can be applied to linear

models based on SNP data.

In summary, we present an accurate and computationally efficient gene-level association method that

integrates functional information from reference transcriptome dataset into GWAS and large scale meta-

analysis results to inform the biology of complex traits.

Methods

Derivation of MetaXcan Formula

The goal of MetaXcan is to infer the results of PrediXcan using only GWAS summary statistics. Individual

level data are not needed for this algorithm. We will define some notations for the derivation of the

analytic expressions of MetaXcan.

Notation and Preliminaries

Y is the n-dimensional vector of phenotype for individuals i = 1, n.

Xl is the allelic dosage for SNP l.

Tg is the predicted expression (or estimated GREx, genetically regulated expression).

We model the phenotype as linear functions of Xl and Tg

Y = Xlβl + η

Y = Tgγg + ε,

where γ̂g and β̂l are the estimated regression coefficients of Y regressed on Tg and Xl, respectively. γ̂g is

the result (effect size for gene g) we get from PrediXcan whereas β̂l is the result from a GWAS for SNP

l.

We will denote as Var and Cov the operators that computes the sample variance and covariances, i.e.

Var(Y ) =
∑
i=1,n(Yi − Ȳ )2/n with Ȳ =

∑
i=1,n Yi/n

σ̂2
l = Var(Xl)
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σ̂2
g = Var(Tg)

σ̂2
Y = Var(Y )

Γg = (X− X̄)′(X− X̄)/n,

where X′ is the n× p matrix of SNP data and X̄ is a n× p matrix where column l has the column mean

of Xl (p being the number of SNPS in the model for gene g).

With this notation, our goal is to infer PrediXcan results (γ̂g and its standard error) using only GWAS

results (βl and se), estimated variances of SNPs (σ̂2
l ), covariances between SNPs in each gene model (Γg),

and prediction model weights wlg.

Input: βl, se(βl), σ̂
2
l , Γg, wlg. Output: γ̂g, se(γ̂g).

Next we list the properties and definitions used in the derivation:

γ̂g =
Cov(Tg, Y )

Var(Tg)
=

Cov(Tg, Y )

σ̂2
g

(2)

and

β̂l =
Cov(Xl, Y )

Var(Xl)
=

Cov(Xl, Y )

σ̂2
l

(3)

The proportion of variance explained by the covariate (Tg or Xl) can be expressed as

R2
g = γ̂2g

σ̂2
g

σ̂2
Y

R2
l = γ̂2l

σ̂2
l

σ̂2
Y

By definition

Tg =
∑

l∈Modelg

wlgXl (4)
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Var(Tg) = σ̂2
g can be computed as

σ̂2
g = Var

 ∑
l∈Modelg

wlgXl


= Var(WgXg) where Wgis the vector of wlgfor SNPs in the model of g

= W′
gVar(Xg)Wg where Γg is theVar(Xg) = covariance matrix of Xg

= W′
gΓgWg (5)

Calculation of regression coefficient γg

γ̂g can be expressed as

γ̂g =
Cov(Tg, Y )

σ̂2
g

=
Cov(

∑
l∈Modelg

wlgXl, Y )

σ̂2
g

=
∑

l∈Modelg

wlgCov(Xl, Y )

σ̂2
g

by linearity of Cov

=
∑

l∈Modelg

wlgβ̂lσ
2
l

σ̂2
g

using Eq 3 (6)

Calculation of standard error of γg

Also from the properties of linear regression we know that

se(γ̂g) =
√

Var(γ̂g) =
σ̂ε√
nσ̂2

g

=
σ̂2
Y (1−R2

g)

nσ̂2
g

(7)

In this equation, σY /n is not necessarily known but can be estimated using the analogous equation (7)

for beta

se(β̂l) =
σ̂2
Y (1−R2

l )

nσ̂2
l

(8)

Thus

σ̂2
Y

n
=

se(β̂l)
2σ̂2
l

(1−R2
l )

(9)

Notice that the right hand side of (9) is dependent on the SNP l while the left hand side is not. This
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equality will hold only approximately in our implementation since we will be using approximate values

for σ̂2
l , i.e. from reference population, not the actual study population.

Calculation of Z score

To assess the significance of the association, we need to compute the ratio of the effect size γg and

standard error se(γg), or Z score,

Zg =
γ̂g

se(γ̂g)
(10)

with which we can compute the p value as

p = 2 pnorm(−|Zg|) (11)

Zg =
γ̂g

se(γ̂g)

=
∑

l∈Modelg

wlgβ̂lσ
2
l

σ̂2
g

√
n

σ̂2
Y

σ̂2
g

(1−R2
g)

using Eq. 6 and 7

=
∑

l∈Modelg

wlgβ̂lσ
2
l

σ̂g

√
(1−R2

l )

se(β̂l)2σ̂2
l

√
1

(1−R2
g)

=
∑

l∈Modelg

wlg
σl
σ̂g

β̂l

se(β̂l)

√
1−R2

l

1−R2
g

(12)

≈
∑

l∈Modelg

wlg
σl
σ̂g

β̂l

se(β̂l)
(13)

Based on results with actual and simulated data we have found that the last approximation does

reduce power since the deviation is only noticeable when the correlation between the SNP or the predicted

expression and the phenotype is large, i.e. large effect sizes. When the effects are large the loss of power

is compensated by the large effect size.
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