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Abstract 1	
  

 2	
  
Images of iconic buildings, for example, the Empire State Building, instantly transport us to New York 3	
  
City. Despite the substantial impact of architectural design on people’s visual experience of built 4	
  
environments, we know little about its neural representation in the human brain. We have found patterns 5	
  
of neural activity associated with specific architectural styles in a network of several high-level visual 6	
  
brain regions including the scene-selective parahippocampal place area (PPA). Surprisingly, this network, 7	
  
which is characterized by correlated error patterns, includes the fusiform face area. Accuracy of decoding 8	
  
architectural styles from the PPA was negatively correlated with expertise in architecture, indicating a 9	
  
shift from purely visual cues to the use of domain knowledge with increasing expertise. Our study 10	
  
showcases that neural representations of architectural styles in the human brain are driven not only by 11	
  
perceptual features but also by semantic and cultural facets, such as expertise for architectural styles. 12	
  
 13	
  
149/150 words	
    14	
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As of 2014, more than half of the world’s population resided in urban environments [1]. Architectural 15	
  
design has profound impact on people’s preferences and productivity in such built environments [2]. 16	
  
Despite the ubiquity and importance of architecture for people’s lives, it is so far unknown where and 17	
  
how architectural styles are represented in people’s brains. Here we show that architectural styles are 18	
  
represented in distributed patterns of neural activity in several visually active brain regions in ventral 19	
  
temporal cortex but not in primary visual cortex.  20	
  
 21	
  
In a functional magnetic resonance imaging (fMRI) scanner, 23 students in their final year at The Ohio 22	
  
State University (11 majoring in architecture, 12 majoring in psychology or neuroscience, one psychology 23	
  
major excluded due to excessive head motion) passively viewed blocks of images. Each block comprised 24	
  
four images from one of the following sixteen categories; (1) representative buildings of four architectural 25	
  
styles (Byzantine, Renaissance, Modern, and Deconstructive); (2) representative buildings designed by 26	
  
four famous architects (Le Corbusier, Antoni Gaudi, Frank Gehry, and Frank Lloyd-Wright); (3) four 27	
  
entry-level scene categories (mountains, pastures, highways, and playgrounds); and (4) photographs of 28	
  
faces of four different non-famous men (Fig. 1). Brain activity was recorded in 35 coronal slices, which 29	
  
covered approximately the posterior 70% of the brain. For each participant, several visually active regions 30	
  
of interest (ROI) were functionally localized: the parahippocampal place area (PPA), the occipital place 31	
  
area (OPA), the retrosplenial cortex (RSC), the lateral occipital complex (LOC), and the fusiform face 32	
  
area (FFA). Primary visual cortex (V1) was delineated based on anatomical atlases.  33	
  
 34	
  
Following standard pre-processing, data from the image blocks were subjected to a multi-voxel pattern 35	
  
analysis (MVPA). For each of the four groups of stimuli, a linear support vector machine decoder was 36	
  
trained to discriminate between the activity patterns associated with each of the four sub-categories. The 37	
  
decoder was tested on independent data in a leave-one-run-out (LORO) cross validation. Separate 38	
  
decoders were trained and tested for each participant and each ROI. Accuracy was compared to chance 39	
  
(25%) at the group level using one-tailed t tests.  40	
  
 41	
  

 42	
  

Results 43	
  

 44	
  
Successful decoding of architectural categories from human visual cortex 45	
  
 46	
  
Consistent with previous results [3, 4, 5] we could decode entry-level scene categories from all visually 47	
  
active ROIs (Fig. 1A). Furthermore, we could decode architectural styles from all five high-level visual 48	
  
brain regions, but not from V1 (Fig. 1B). In addition, it was possible to decode buildings by famous 49	
  
architects from brain activity in the PPA, the OPA, and the LOC, but not from V1, the RSC, or the FFA 50	
  
(Fig. 1C). Decoding of facial identity succeeded only in V1 and was not possible in any of the high-level 51	
  
ROIs, including the FFA. We also found statistically significant differences in average activity levels 52	
  
between sub-categories for the categorization conditions in a subset of the ROIs. However, such 53	
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differences were not sufficient to allow for 4-way decoding. The discrimination between sub-categories 54	
  
was only possibly by considering the spatial pattern of brain activity within ROIs.  55	
  
 56	
  
Searchlight analysis of the scanned parts of the brain confirmed the ROI-based results. The searchlight 57	
  
map of decoding entry-level scene categories showed significant clusters at both occipital poles and 58	
  
calcarine gyri as well in bilateral lingual, fusiform, and parahippocampal gyri and bilateral transverse 59	
  
occipital sulci. On the other hand, the searchlight map of decoding architectural styles showed clusters 60	
  
encompassing bilateral fusiform gyri and transverse occipital sulci, but not the occipital poles and nearby 61	
  
areas. The searchlight map for decoding buildings by famous architects was similar to that of decoding 62	
  
architectural styles, with an additional small cluster on the right occipital pole. Table 1 provides a full list 63	
  
of significant clusters from each searchlight map. Analysis of the overlap of individual’s searchlight maps 64	
  
with their ROIs is shown in Table S1. 65	
  
 66	
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Figure 1.  Example images and category decoding accuracy rates for three image types across the ROIs: 
(A) entry-level scene categories, (B) architectural style, and (C) architects (for differences in mean 
activity levels see Fig S1).  Participants viewed 32 different examples per category in nine runs. 
Participants were asked to detect rare back-to-back repetitions of images to engage their attention. Four 
randomly chosen images from each category were repeated back-to-back. Here, we show one example 
per category for the three image types. Separate decoders were trained to discriminate between four 
categories per condition, separately for V1, PPA, OPA, RSC, LOC, and FFA. The decoders were tested 
on independent data from the same participants in a leave-one-run-out cross-validation procedure. We 
here report group-average decoding accuracy rates. Significance with respect to chance (25%) was 
assessed with one-sample t-tests (one-tailed). Error bars indicate SEM. *p < .05, **p < .01, ***p < .001.  
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Table 1.  Clusters identified in the searchlight analysis for the four categorization conditions (See Table 
S1 for the group average percent of overlap with the ROIs). 

Decoding 
Condition 

Peak 
Volume 

(µl) 
Description 

x y z 
Accuracy 

(%) 
Scenes 40.0 85.5 13.2 43.4 167542 Bilateral occipital poles, calcarine gyri, fusiform gyri. lingual 

gyri,  bilateral hippocampus, parahippocampal gyri, inferior 
occipital gyri and sulci, middle occipital gyri, superior occipital 
gyri,  transverse occipital sulci, inferior parieto-angular gyri, 
superior parieto-occiptial sulci, cerebella 

-7.5 63.0 48.2 32.3 688 Right precuneus  
-42.5 30.5 -6.8 31.2 281 White matter between right hippocampus and right superior 

temporal sulcus 
62.5 43.0 25.8 30.2 203 Left inferior parietosupramarginal gyrus 

Styles -47.5 63.0 -9.2 34.1 10360 Right inferior occipital gyrus and sulcus, right occipito-temporal 
(lateral fusiform) gyrus, right medial occipito-temporal sulcus, 
right middle temporal gyrus,  right inferior temporal gyrus, right 
middle temporal gyrus 

 
-30.0 85.5 20.8 33.6 8063 Right superior occipital sulcus, right transverse occipital sulcus, 

right middle occipital gurus, right occipito-temporal (lateral 
fusiform) gyrus, right lateral occipto-temporal sulcus 

 
47.5 63.0 -6.8 33.7 6672 Left inferior occipital gyrus and sulcus, left occipito-temporal 

(lateral fusiform) gyrus, left inferior temporal gyrus, left middle 
temporal gyrus. 

 
15.0 78.0 50.8 32.9 2813 Left superior occipital sulcus, left transverse occipital sulcus, left 

superior parietal gyrus, left precuneus 
 42.5 85.5 15.8 32.2 2235 Left middle occipital gyrus 
 7.5 90.5 8.2 33.9 1063 Left cuneus 
 -10.0 48.0 5.8 32.3 906 Right posterior ventral cingulate gyrus 
 -35.0 25.5 3.2 32.2 531 Right superior parietal gyrus 
 15.0 93.0 33.2 30.5 500 Left superior occipital gyrus 
 -12.5 93.0 18.2 31.1 391 Right superior occipital gyrus 
 20.0 85.5 8.2 30.9 375 White matter between left middle occipital gyrus and left cuneus 
 -50.0 55.5 40.8 31.7 266 Right inferior parieto-angular gyrus 

Architects 22.5 100.5 -9.2 33.4 10032 Left occipital pole,  left inferior occipital gyrus and sulcus, left 
middle occipital gyrus, left superior occipital gyrus 

 -47.5 68.0 -6.8 32.5 5672 Right inferior occipital gyrus and sulcus,  right middle occipital 
gyrus 

 -15.0 93.0 5.8 31.2 1938 Right occipital pole 

 
-30.0 40.5 -6.8 32.3 1047 Right lateral occipito-temporal (fusiform) gyrus, right medial 

occipito-temporal (lingual) gyrus, right hippocampus, right 
parahippocampal gyrus 

 
22.5 73.0 -6.8 32.1 453 White matter near the left medial occipito-temporal gyrus and 

sulcus 

 
30.0 63.0 -6.8 31.2 344 White matter between left medial occipito-temporal (lingual) 

gyrus and left lateral occipito-temporal (fusiform) gyrus 
 -20.0 25.5 58.2 31.2 344 White matter near the left precentral gyrus 

Face -2.5 93.0 8.2 41.0 27174 Bilateral occipital pole, calcarine gyri, cuneus, medial occipito-
temporal (lingual) gyri, superior occipital gyri 

 
-32.5 50.5 8.2 31.2 469 Right superior parietal gyrus, right intraparietal sulcus, right 

transverse occipital sulcus 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045245doi: bioRxiv preprint 

https://doi.org/10.1101/045245
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

6	
  
	
  

 67	
  
Analysis of error patterns 68	
  
 69	
  
To explore the nature of the representation of architectural styles in visual cortex in more detail, we 70	
  
analyzed patterns of decoding errors. Decoding errors were recorded in confusion matrices, whose rows 71	
  
(r) indicate the ground truth of the presented category, and whose columns (c) represent predictions by 72	
  
the decoder. Individual cells (r,c) contain the proportion of blocks with category r, which were decoded 73	
  
as category c. Diagonal elements contain correct predictions, summarized as decoding accuracy in Fig. 1. 74	
  
Off-diagonal elements represent decoding errors. The patterns of decoding errors serve as a proxy for the 75	
  
nature of the neural representation of categories in a particular brain region. We computed the correlations 76	
  
of error patterns as a measure of the similarity between these neural representations across ROIs. 77	
  
Significance of error correlations was established non-parametrically against the null distribution of 78	
  
correlations obtained by jointly permuting the rows and columns of one of the confusion matrices. Only 79	
  
error correlations with none of the 24 permutations resulting in higher correlation than the correct 80	
  
ordering (p < 0.0417) were deemed significant. 81	
  
 82	
  
In the case of entry-level scene categorization, we found significant correlations of error patterns between 83	
  
the three ROIs known to specialize in scene perception: the PPA, the RSC, and the OPA (Fig. 2A). We 84	
  
also found significant error correlation between the PPA and the LOC, which is likely due to the 85	
  
recruitment of LOC for the detection of diagnostic objects in scenes [6, 7]. Note that error patterns from 86	
  
the FFA did not correlate significantly with any of the other ROIs, even though we could decode entry-87	
  
level scene categories from the FFA. 88	
  

p <.0417
Significance established with permutation analysis

p =.0417p >.0417

(A) Entry-Level Scene Categories

FFA

PPA

LOC RSC

OPA

.71
.26

.74

.43

.63
.75

.78

.13

.65
.67

(B) Architectural Styles

FFA

PPA

LOC RSC

OPA

.78
.67

.69

.73

.61
.78

.78

.65

.58
.66

Figure 2.  Group-average error pattern correlations and their significance between the PPA, OPA, RSC, 
LOC, and FFA for (A) entry-level scene categories (in blue) and (B) architectural styles (in red). 
Significance of error correlations was established by permutation analysis. Thick vivid lines indicate 
significant error pattern correlations. Thick faint lines indicates marginal correlations (p = .047; one 
permutation resulted in a correlation higher than the correct ordering). Thin gray lines indicate correlations 
failing to reach significance.  See Figure S2 for the confusion matrices underlying this analysis.  
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 89	
  
For architectural styles, we found a different error correlation structure (Fig. 2B). For this more 90	
  
specialized, subordinate level categorization, we found statistically significant error correlations of the 91	
  
FFA with the LOC, the PPA, and the OPA, as well as between the PPA and the LOC. Note that the RSC 92	
  
no longer shows significant error correlations with any of the other ROIs. We here show for the first time 93	
  
that the FFA is recruited into the scene processing network for demanding subordinate-level scene 94	
  
categorization but not for simple entry-level categorization. This is consistent with the FFA’s role in 95	
  
visual expertise as shown for object categories as varied as birds, cars, motorcycles or artificial “Greeble” 96	
  
objects [8], even though those results were shown for mean activity levels, whereas ours appear in the 97	
  
interpretation of patterns of brain activity  98	
  
 99	
  
We did not find any statistically significant error correlations between ROIs for decoding architects, 100	
  
possibly due to the difficulty of decoding architects from brain activity in the first place. Given that facial 101	
  
identity could not be decoded from any of the high-level visual ROIs, we did not further pursue error 102	
  
correlations for the face identification condition. 103	
  
 104	
  
 105	
  
The effect of expertise 106	
  
 107	
  
The involvement of the FFA in the representation of categories for architectural styles suggests a role of 108	
  
expertise in the subordinate-level categorization of architectural styles, but not in entry-level scene 109	
  
categorization. However, unlike the typical scenario of subordinate-level visual categorization (i.e., 110	
  
Golden Retrievers vs. Chihuahua), accurate recognition of architectural styles or architects of the 111	
  
buildings is highly affected by non-visual factors. The distinction between architectural styles relies not 112	
  
only on visual consistency within a style but also on the historical, regional, and cultural context of 113	
  
buildings. Prior knowledge of a building's style may be an important factor in accurate classification, 114	
  
without requiring reference to the visual aspects of the building. How, then, does expertise for 115	
  
architecture affect the neural representation of architectural categories in visual cortex?  116	
  
 117	
  
We measured expertise for architectural styles in a post-scan behavioral experiment employing the 118	
  
Vanderbilt Expertise Test [9]. During the behavioral experiment, participants were asked to identify 119	
  
which of three displayed images belonged to a given set of six target categories. Behavioral accuracy 120	
  
ranged from 20.0% to 100.0% with a mean of 72.5% (chance: 33.3%). Architecture students were more 121	
  
accurate than non-architecture students at a statistically significant level for architectural styles, t(20) = 122	
  
3.963, p < .001 (architecture students: 77.1%, SD = 8.9%, psychology and neuroscience students: 59.5%, 123	
  
SD = 11.8%), and architects, t(20) = 3.960, p < .001 (architecture students: 72.5%, SD = 12.0%, 124	
  
psychology and neuroscience students: 44.2%, SD = 9.2%), but not for entry-level scene categories, t(20) 125	
  
= .869, p = .395 (architecture students: 98.2%, SD = 2.9%, psychology and neuroscience students: 96.1%, 126	
  
SD = 2.3%).  127	
  
 128	
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Comparison of decoding accuracy from neural data showed no between-group differences in any of the 129	
  
ROIs, except for a marginal effect for decoding architectural styles from the PPA, where architecture 130	
  
students showed lower decoding accuracy (30.1%) than did psychology and neuroscience students 131	
  
(34.3%), t(10) = 2.038, p = .069. To account for the full range of individual differences, we correlated 132	
  
each individual’s behavioral accuracy with their MVPA decoding accuracy for architectural styles in the 133	
  
PPA. We found significant negative correlation between behavior and decoding accuracy (r = -.56, p 134	
  
= .007; Fig 3). 135	
  

 136	
  
 137	
  

Discussion 138	
  

 139	
  
We have shown for the first time that subordinate categories of buildings, architectural styles, are 140	
  
represented in the neural activity patterns of several high-level visual areas in human temporal cortex. It 141	
  
was even possible to decode the architects of buildings from neural activity elicited by images of the 142	
  
buildings in the PPA, the OPA, and the LOC. Unlike entry-level scene categories, architectural style and 143	
  
architects could not be decoded from activity in V1, indicating that the simple visual properties encoded 144	
  
in V1 are insufficient to discriminate between architectural styles. These findings suggest that the neural 145	
  
representations of architectural features rely on complex visual structure beyond simple feature statistics. 146	
  
For instance, byzantine architecture is characterized by symmetry in the global shape of buildings and a 147	
  
dome roof, whereas deconstructive architecture is well-known for its non-collinearity and fragmented 148	
  
global shape. Complex visual properties associated with architectural design elements have previously 149	
  
been suggested to contribute to successful cross-decoding between interior and exterior views of 150	
  
landmark buildings [10].  151	
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 152	
  
When discriminating between architectural styles, the fusiform face area, previously implicated in the 153	
  
preferential processing of faces [11] as well as visual expertise [8], is recruited as part of a network of 154	
  
regions that share similar error patterns. The FFA could be involved in the encoding of configural 155	
  
characteristics of buildings, such as Lloyd-Wright’s signature horizontally elongated proportions. By 156	
  
contrast, entry-level categorization of scenes does not include the FFA in the same way, instead relying 157	
  
on a tight network of three scene-selective areas, the PPA, the RSC, and the OPA, as well as the LOC.  158	
  
 159	
  
Categorizing a building by its architectural style or its designer involves not only detecting characteristic 160	
  
visual features, but also recruitment of semantic knowledge. Indeed, domain knowledge of architecture is 161	
  
likely to contribute to the neural representations of architectural styles. This was shown clearly by the 162	
  
negative correlation between behavioral expertise scores and individual decoding accuracy for 163	
  
architectural styles in the PPA. We presume that participants with more expertise in architecture relied 164	
  
more on their domain knowledge and less on the high-level visual features represented in the PPA when 165	
  
making judgments about architectural styles.  166	
  
 167	
  
In summary, several high-level visual regions, but not the V1, contain decodable neural representations of 168	
  
architectural styles and architects of buildings. The FFA participates in a network of high-level visual 169	
  
areas characterized by similar error patterns, but only in the subordinate categorization of architectural 170	
  
styles and not in entry-level categorization of scenes. Furthermore, accuracy of decoding architectural 171	
  
styles from the PPA is negatively correlated with expertise in architecture, indicating a shift from purely 172	
  
visual cues to domain knowledge with increasing expertise. Our study showcases that neural correlates of 173	
  
human classification of visual categories are driven not only by perceptual features but also by semantic 174	
  
and cultural facets, such as expertise of architectural styles and architects of buildings. Most importantly, 175	
  
we have identified in the human visual system a neural representation of architecture, one of the 176	
  
predominant and longest-lasting artefacts of human culture. 177	
  
 178	
  
 179	
  

Methods 180	
  

 181	
  
Participants:    Twenty-three healthy undergraduate students in their final year at The Ohio State 182	
  
University participated in the study for monetary compensation. We recruited eleven students from the 183	
  
Department of Architecture (2 females; l left-handed; age range = 21–27, M = 22.4, SD = 3.0), and twelve 184	
  
senior students majoring in psychology or neuroscience (3 females; 2 left-handed, age range = 21– 24, M 185	
  
= 21.8, SD = 0.9). Data from one psychology student were not included in the analysis due to excessive 186	
  
head motion during the scan. 187	
  

 188	
  
fMRI Experiment: MRI images were recorded on a 3T Siemens MAGETOM Trio with a 12-channel head 189	
  
coil at the Center for Cognitive and Behavioral Brain Imaging at The Ohio State University. High-190	
  
resolution anatomical images were obtained with a 3D-MPRAGE sequence with coronal slices covering 191	
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the whole brain; inversion time = 930 ms, repetition time (TR) = 1900 ms, echo time (TE) = 4.44 ms, flip 192	
  
angle = 9°, voxel size = 1 x 1 x 1 mm, matrix size = 224 x 256 x 160.  Functional images were obtained 193	
  
with T2*-weighted echo-planar sequences with coronal slices covering approximately the posterior 70% 194	
  
of the brain: TR = 2000ms, TE = 28ms, flip angle = 72°, voxel size = 2.5 x 2.5 x 2.5 mm, matrix size = 90 195	
  
x 100 x 35.   196	
  

 197	
  
Participants viewed 512 grayscale photographs of four image types: (1) 32 images of representative 198	
  
buildings of each of four architectural styles: Byzantine, Renaissance, Modern, and Deconstructive; (2) 32 199	
  
images of buildings designed by each of four well-known architects: Le Corbusier, Antoni Gaudi, Frank 200	
  
Gehry, and Frank Lloyd-Wright; (3) 32 scene images per each of four entry-level scene categories: 201	
  
mountains, pastures, highways, and playgrounds; (4) 32 face images per each of four different individuals 202	
  
[12]. Brightness and contrast were equalized across all images. Images were back-projected with a DLP 203	
  
projector (Christie DS+6K-M 3-chip SXGA+) onto a screen mounted in the back of the scanner bore and 204	
  
viewed through a mirror attached to the head coil. Images subtended approximately 12º x 12 º of visual 205	
  
angle. A fixation cross measuring 0.5º x 0.5º of visual angle was displayed at the center of the screen. 206	
  

 207	
  
During each of nine runs, participants saw sixteen 8-second blocks of images. In each block, four 208	
  
photographs from a single category were each shown for 1800 ms, followed by a 200 ms gap. The order 209	
  
of images within a block and the order of blocks within a run were randomized in such a way that the four 210	
  
blocks belonging to the same stimulus type (entry-level scenes, styles, architects, faces) were shown back 211	
  
to back. A 12-sec fixation period was placed between blocks as well as at the beginning and the end of 212	
  
each run, resulting in a duration of 5 min 32sec per run. Occasionally, (approximately one out of eight 213	
  
blocks), an image was repeated back-to-back within a block. Participants were asked to press a button 214	
  
when they detected image repetitions.  215	
  

 216	
  
FMRI data were motion corrected, spatially smoothed (2 mm full width at half maximum), and converted 217	
  
to percent signal change. We used a general linear model with only nuisance regressors to regress out 218	
  
effects of motion and scanner drift. Residuals corresponding to image blocks were extracted with a 4 s 219	
  
hemodynamic lag and averaged over the duration of each block. Block-average activity patterns within 220	
  
pre-defined ROIs was used for MVPA. 221	
  

 222	
  
 223	
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1 
 

Supplemental Experimental Procedures 1 
 2 
 3 
Regions of interest 4 
 5 
High-level visual regions of interest (ROI) were defined functionally using separate localizer scans. Participants saw 6 
one to three runs (7 minutes and 12 seconds each) of blocks of images of faces, scenes, objects, and grid-scrambled 7 
objects while responding to image repetitions with a button press. Following motion correction, spatial smoothing (4 8 
mm full width at half maximum Gaussian kernel) and normalization to percent signal change, localizer data were 9 
analyzed using a general linear model (3dDeconvolve in AFNI). ROIs were defined as contiguous clusters of voxels 10 
with significant  contrasts (q < 0.05; corrected for multiple comparisons using false discovery rate) in the following 11 
comparisons: scenes > (faces, objects) for the parahippocampal place are (PPA), retrosplenial cortex (RSC), and the 12 
occipital place area (OPA) [1, 2]; faces > (scenes, objects) for the fusiform face area (FFA) [3]; and objects > 13 
scrambled objects for the lateral occipital complex (LOC) [4]. The PPA and RSC were successfully identified in all 14 
twenty-two participants. We could not find significant clusters corresponding to the OPA in five participants, the 15 
FFA in one participant, and the LOC in two participants. Group statistics of ROI-based results was performed only 16 
for the participants for whom we could identify the ROIs.   17 
 18 
Primary visual cortex (V1) was defined on each participant’s original cortical surface map using the automatic 19 
cortical parcellation provided by Freesurfer [5]. Surface-defined V1 was registered back to the volumetric brain 20 
separately for each hemisphere using AFNI. 21 
 22 
 23 
Univariate analysis 24 
 25 
We tested whether the four types of visual categories elicited different levels of mean activity in each of the ROIs. 26 
We conducted a mixed-effects analysis of variances (ANOVA) for each ROI separately, using participant group 27 
(Architecture vs. Psychology and Neuroscience students) as a between-subjects factor, and visual category (entry-28 
level scene categories vs. architectural styles vs. architects vs. faces) as within-subjects factors. Since there was 29 
neither a main effect for group nor an interaction between group and visual category, we collapsed the data for the 30 
two groups. Results are show in Fig. S1A. Differences in mean activity between the three scene-type categories and 31 
faces were assessed using planned paired t-tests, separately for each ROI. Differences in mean activity among the 32 
subordinate categories for each of the four main categories were evaluated with one-way ANOVAs. Results are 33 
shown in Fig. S1B.  34 
 35 
 36 
Searchlight analysis 37 
 38 
We explored representations of image categories outside of the pre-defined ROIs with a searchlight analysis using 39 
the Searchmight Toolbox [6]. The size of the searchlight region was chosen as a 5x5x5 =125 voxel cube to 40 
approximate the average size of a unilateral PPA of the participants (159 voxels). The searchlight was centered on 41 
each voxel in turn [7], and decoding analysis with leave-one-run-out cross-validation was performed using the 42 
voxels within the searchlight regions. Decoding accuracies for the searchlight locations were recorded in a brain 43 
map, thresholded at p < 0.01 (one-tailed analytical p value), and corrected for multiple comparisons at the cluster 44 
level with a minimum cluster size determined separately for each participant, ranging from 4 to 8 voxels (M = 4.8, 45 
SD = 0.9). We evaluated the agreement between the searchlight analysis and the pre-defined ROIs as the fraction of 46 
voxels within each ROI that was found to be significantly above chance in the searchlight analysis (Table S1).   47 
 48 
For group analysis, anatomical brain volumes of each of the participants were registered to the Montreal 49 
Neurological Institute (MNI) 152 template [8]. Searchlight accuracy maps were registered to MNI space using the 50 
parameters from the anatomical registration, followed by smoothing with a 2 mm full width at half maximum 51 
Gaussian filter.  Significance of group-average decoding accuracy versus chance (25%) was assessed with a one-52 
sample one-tailed t-test (p < 0.01), followed by cluster-level correction for multiple comparisons (minimum cluster 53 
size of 13 voxels, determined by α probability simulation).  54 
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2 
 

 55 
 56 
Post-scan behavioral experiment     57 
 58 
We measured participants’ visual domain knowledge in a post-scan behavioral experiment similar to the Vanderbilt 59 
Expertise Test [9]. Domain knowledge for each image type was tested in four separate blocks. Each block consisted 60 
of three components: study, practice, and testing. During study, participants were introduced to six target categories. 61 
Example images for each of the six target categories were displayed on the screen with correct category labels: (1) 62 
entry-level scene categories: fountains, highways, mountains, pastures, skylines, and waterfalls; (2) architectural 63 
styles: Byzantine, Gothic, Renaissance, Modern, Postmodern, and Deconstructive; (3) buildings by famous 64 
architects: Peter Eisenman, Antoni Gaudi, Frank Gehry, Michael Graves, Le Corbusier, and Frank Lloyd-Wright; (4) 65 
faces: six non-famous individuals varied in gender and race. Following the study phase, participants experienced 66 
twelve practice trials. In these trials, three images (12° x 12° of visual angle each) were presented side by side. 67 
Participants were asked to indicate which of the three images belonged to a given target category by pressing one of 68 
the keys, “1,” “2,” or “3.” During practice, one of the three images was always drawn from the set of studied 69 
examples. The images were presented until the participant made a response, and feedback was provided by 70 
displaying the word “CORRECT” or “INCORRECT.” Study exemplars were shown again halfway through practice 71 
and at the beginning of the subsequent test phase. For the 35 test trials, 24 new grayscale images from the target 72 
categories and 48 new grayscale foil images from different categories were used. Structure of the test trials was the 73 
same as practice, except that participants no longer received feedback. The entire experiment lasted approximately 74 
30 min.  75 
 76 
We confirmed that architecture students had higher expertise for architectural styles and buildings by famous 77 
architects in an analysis of variance (ANOVA) of average accuracy rates, using participant group as a between-78 
subjects factor, and visual category (entry-level scene categories vs. architectural styles vs. architects vs. faces) as a 79 
within-subjects factor. Furthermore, planned comparisons between the two groups were conducted for each of the 80 
four visual categories. We also conducted the same analyses on average reaction times (RT). Results are shown in 81 
Fig. S4. 82 
 83 
 84 
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Supplemental Data 115 
 116 
 117 

 
Figure S1. The effects of four visual categories and their sub-categories on group average neural activity levels: 
entry-level scene categories (blue), architectural styles (red), architects (green), and faces (gray). Error bars indicate 
standard error of the mean (SEM). (A) Average neural activation for the four visual categories. As expected, the 
PPA, OPA, and RSC showed higher mean activation for scenes, architectural styles, and architects than faces. By 
contrast, the FFA showed higher activation for faces than for the other visual categories. We found no main effect of 
visual category in the LOC. (B) Average neural activation for subordinate categories: (M)ountains, (Pa)strues, 
(H)ighways, and (Pl)ayground for entry-level scene categories; (B)yzantine, (R)enaissance, (M)odern, and 
(D)econstructive for architectural styles; Le (C)orbusier, (Ga)udi, (Ge)hry, and (L)loyde-Wright for architects; and 
(A, B, C, and D) for faces of non-famous individuals.  *p < .05, **p < .01, ***p < .001. Related to Figure 1. 
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5 
 

Table S1. Percent of ROI-voxels with significant decoding accuracy in the searchlight analysis. Numbers shown are 
averages over participants with SEMs shown in parentheses. The searchlight map for decoding entry-level scene 
categories showed the largest amount of overlap with all ROIs. Overlap was smaller for styles, architects and faces. 
The searchlight map for decoding face identity showed the largest overlap with V1.  Related to Table 1. 
 

ROI N Entry-level Scenes Styles Architects Faces 

V1 22 13.0 (3.4) 2.9 (0.8) 3.7 (1.4) 9.4 (1.9) 

PPA 22 32.9 (5.6) 12.5 (2.8) 7.3 (1.8) 5.8 (2.2) 

OPA 17 33.4 (7.6) 15.4 (5.6) 7.7 (2.0) 4.2 (2.2) 

RSC 22 20.2 (4.7) 6.6 (2.2) 9.2 (3.1) 5.3 (2.2) 

LOC 20 27.1 (4.7) 11.3 (2.7) 8.2 (2.7) 2.2 (0.9) 

FFA 21 12.5 (2.1) 6.9 (2.1) 6.4 (1,9) 4.9 (1,4) 
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Figure S2.  Group-average confusion matrices for decoding from the PPA, OPA, RSC, LOC, and FFA for 
the four visual categories: entry-level scene categories (blue panel), architectural styles (red panel), 
architects (Green panel), and faces (gray panel). For each confusion matrix, rows (r) indicate the ground 
truth of the presented category, and columns (c) represent predictions by the decoder. Individual cells 
(r,c) contain the proportion of blocks with category r, which were decoded as category c. Labels of 
subordinate categories (from top to bottom and left to right) are: entry-level scene categories: mountains, 
pastures, highways, and playgrounds; architectural styles: Byzantine, Renaissance, Modern, and 
Deconstructive; architects: Le Corbusier, Antoni Gaudi, Frank Gehry, and Frank Lloyd-Wright; and faces 
of four non-famous men, A, B, C, and D. Related to Figure 2.  
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Figure S3. Group-average accuracy rates and reaction times for the four categorization tasks. Dark-
colored bars indicate behavioral performances of the eleven architecture students, and bright-colored bars 
indicate performances of the eleven psychology and neuroscience students. Different hues indicate the 
four visual categories: entry-level scene categories in blue, architectural styles in red, architects in green, 
and face identities in gray. Error bars show SEMs. (A) The ANOVA for accuracy showed significant 
main effects of group and visual category, as well as significant interaction between the two factors, 
showing that the architecture students were more accurate at categorizing architectural styles and 
architects than psychology and neuroscience students. As expected, such group differences were not 
found for categorizing entry-level scene categories and face identities. (B) The same ANOVA for reaction 
times showed significant main effects of group and visual category, but no significant interaction between 
them, suggesting that architecture students were slower for all types of categorization tasks. Participants 
showed the fasted reaction times for entry-level scene categorization compared to the other subordinate-
level categorization tasks. Planned comparisons between the two groups per visual category confirmed 
these findings, as their significance is shown above the bar graphs separately for each visual category. *p 
< .05, **p < .01, ***p < .001. Related to Figure 3. 
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