
Signatures of archaic adaptive introgression in present-day human populations

Fernando Racimoa, Davide Marnettob, Emilia Huerta-Sánchezc

aDepartment of Integrative Biology, University of California Berkeley, CA, USA
bDepartment of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy

cSchool of Natural Sciences, University of California Merced, CA, USA

Abstract

Comparisons of DNA from archaic andmodern humans show that these groups interbred, and in some cases received an evolutionary

advantage from doing so. This process - adaptive introgression - may lead to a faster rate of adaptation than is predicted from models

with mutation and selection alone. Within the last couple of years, a series of studies have identified regions of the genome that are

likely examples of adaptive introgression. In many cases, once a region was ascertained as being introgressed, commonly used

statistics based on both haplotype as well as allele frequency information were employed to test for positive selection. Introgression

by itself, however, changes both the haplotype structure and the distribution of allele frequencies, thus confounding traditional tests for

detecting positive selection. Therefore, patterns generated by introgression alone may lead to false inferences of positive selection.

Here we explore models involving both introgression and positive selection to investigate the behavior of various statistics under

adaptive introgression. In particular, we find that the number and allelic frequencies of sites that are uniquely shared between

archaic humans and specific present-day populations are particularly useful for detecting adaptive introgression. We then examine

the 1000 Genomes dataset to characterize the landscape of uniquely shared archaic alleles in human populations. Finally, we identify

regions that were likely subject to adaptive introgression and discuss some of the most promising candidate genes located in these

regions.
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1. Introduction1

There is now a large body of evidence supporting the idea that certain modern human populations admixed with archaic groups2

of humans after expanding out of Africa. In particular, non-African populations have 1 − 2% Neanderthal ancestry [1, 2], while3

Melanesians and East Asians have 3% and 0.2% ancestry, respectively, from Denisovans [3, 4, 2].4

Recently, it has become possible to identify the fragments of the human genome that were introgressed and survive in present-5

day individuals [5, 6, 2, 7, 8, 7]. Researchers have also detected which of these introgressed regions are present at high frequencies6

in certain present-day non-African populations. Some of these regions are likely to have undergone positive selection in those7

populations after they were introgressed, a phenomenon known as adaptive introgression (AI). One particularly striking example of8

AI is the gene EPAS1 [9] which confers a selective advantage in Tibetans by making them less prone to hypoxia at high altitudes9

[10, 11, 12, 13, 14, 15, 16, 17]. The selected Tibetan haplotype is likely to have been introduced in the human gene pool by Denisovans10

or a population closely related to them [18, 19].11

In this study, we first use simulations to assess the power to detect AI using different exploratory summary statistics that do not12

require the introgressed fragments to be identified a priori. Some of these are inspired by the signatures observed in EPAS1, which13

contains an elevated number of sites with alleles uniquely shared between the Denisovan genome and Tibetans. We then apply these14

statistics to real human genomic data from phase 3 of the 1000 Genomes Project [20], to detect AI in human populations, and find15

candidate genes. While these statistics are sensitive to adaptive introgression, they may also be sensitive to other phenomena that16

generate genomic patterns similar to those generated by AI, like ancestral population structure and incomplete lineage sorting. These17

processes, however, should not generate long regions of the genome where haplotypes from the source and the recipient population18
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are highly similar. As additional confirmation that the candidates we found with our statistics are generated by AI, we explored the19

haplotype structure of some of the most promising candidates, and used a probabilistic method [21] that infers introgressed segments20

along the genome by looking at the spatial arrangement of SNPs that are consistent with introgression. This allows us to verify that21

the candidate regions contain introgressed haplotypes at high frequencies: a hallmark of AI.22

2. Results23

2.1. Statistics for detecting AI24

We began by evaluating the performance of various statistics at detecting AI. In addition to testing statistics that have already25

been previously defined in the literature (D, fD, D′, r2, π), we define three new types of statistics that we find are particularly26

powerful at detecting AI (Table 1). We briefly describe the new statistics here, but more extensive descriptions of all tested statistics27

can be found in the Methods section below.28

First, in a region under AI, one would expect the sequence divergence between an individual from the source population and an29

admixed individual to be smaller than the sequence divergence between an individual from the source population and a non-admixed30

individual. Thus, we defineRD as the average ratio of the sequence divergence between a panel from the source population and a31

panel from the admixed population, over the sequence divergence between the source panel and a non-admixed panel, computed32

in a genomic window of the genome.33

Second, under AI we would expect a large number of sites containing archaic alleles at high frequency in the admixed population,34

but absent or at low frequency in a non-admixed population. Therefore, we define the statistic UA,B,C(w, x, y) to be equal to the35

number of sites within a genomic window where a sample C from an archaic source population has a particular allele at frequency y,36

and that allele is at a frequency smaller than w in a panel A of a non-admixed population but larger than x in a panel B of an admixed37

population (Figure 1). Throughout the text, we denote panels A, B and C as the “outgroup”, “target” and “bait” panels, respectively.38

If we have samples from two different archaic populations (for example, a Neanderthal genome and a Denisova genome), we can39

defineUA,B,C,D(w, x, y, z) as the number of sites where the archaic sample C has a particular allele at frequency y and the archaic40

sample D has that allele at frequency z, while the same allele is at a frequency smaller than w in an outgroup panel A and larger than41

x in a target panel B (Figure S1).42

Finally, if we do not want to set a hard cutoff for what we consider ”high-frequency” archaic alleles, we can just take a summary43

statistic of the site-frequency spectrum in the target panel, conditional on the archaic allele being at low frequency in the outgroup.44

This statistic should be high when a region contains many alleles at especially high frequencies in the target. We therefore define45

Q95A,B,C(w, y) to be equal to the 95th percentile of derived frequencies in a target panel B of all SNPs that have a derived allele46

frequency y in the bait (archaic) panel C, but where the derived allele is at a frequency smaller than w in an outgroup panel A from a47

non-admixed population (Figure 1).48

2.2. Simulations under AI49

We use simulations to assess the performance of the statistics mentioned above at detecting AI. Figures S3, S4 and S5 show50

the distribution of statistics that rely on patterns of shared allele configurations between source and introgressed populations (π,D,51

fD, UA,B,C ,Q95A,B,C andRD), for different choices of the selection coefficient s, and under 2%, 10% and 25% admixture rates,52

respectively. ForQ95A,B,C(w, 100%) and UA,B,C(w, x, 100%), we tested different choices of the outgroup cutoff w (1%, 10%)53

and the target cutoff x (0%, 20%, 50% and 80%).54

Some statistics, likeQ95A,B,C(1%, 100%) and fD show strong separation between the selection regimes. For example, with55

an admixture rate of 2%, Q95A,B,C(1%, 100%) has 100% sensitivity at a specificity of 99%, for both s=0.1 and s=0.01. Some56

parameterizations of the U statistic are not as effective, however. For example, UA,B,C(1%, 0%, 100%) shows some power when57

the admixture rate is low (2%), but almost no power when the admixture rate is high (25%). This is because setting the minimum58
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frequency of the archaic allele in the test population at x = 0% means that any site with some archaic allele in the test panel will be59

counted, regardless of the allele frequency, so long as the archaic allele is at low frequency in the outgroup panel. At high admixture60

rates, low- and medium-frequency archaic alleles would naturally occur under neutrality, so they would not be informative about AI.61

We also evaluated the effectiveness of LD-based statistics at detecting AI (Figure S6). We tested the performance of D′ and62

r2 by either computing each of these in the admixed panel only (D′[intro], r2[intro]) or in the combination of the admixed and63

non-admixed panels (D′[comb], r2[comb]). While D′[intro], D′[comb] and r2[comb] are modestly increased by AI, this is not64

the case with r2[intro] under strong selection and admixture regimes. This is because r2 will tend to decrease if the minor allele65

frequency is very small, which will occur if this frequency is only measured in the population undergoing AI. In general, these statistics66

are not as powerful for detecting AI as allele configuration statistics like U orQ95.67

To jointly explore the power and specificity of all these statistics, we generated receiving operating characteristic (ROC) curves68

under various selection and admixture regimes (Figures 3 and S7). In general, Q95A,B,C(1%, 100%), Q95A,B,C(10%, 100%)69

and fD are very powerful statistics for detecting AI under strong (s=0.1) and intermediate (s=0.01) selection pressures. The number70

of uniquely shared sites UA,B,C(w, x, y) is also powerful, so long as the population in the target panel (B) is large. Additionally,71

for different choices of x, using w = 1% yields a more powerful statistic than using w = 10%. We also tested AI scenarios with72

weak selection (s=0.001), in which all statistics performed rather poorly, withQ95 and fD performing comparably better than the rest73

(Figure S8). However, under these conditions, it is very unlikely that the selected allele will reach appreciable frequencies (Figure74

S2), so the lack of sensitivity of all statistics here is largely a reflection of the fact that in most simulations the selected allele is75

not successful, especially when the probability of admixture is low. Conditioning on survival of the allele should therefore increase76

sensitivity.77

Wewere also interested in the joint distribution of pairs of these statistics. Figure S9 shows the joint distribution ofQ95A,B,C(1%, 100%)78

in the y-axis and four other statistics (RD, π,D and fD) in the x-axis, under different admixture and selection regimes. One can ob-79

serve, for example, that whileQ95A,B,C(1%, 100%) increases with increasing selection intensity and admixture rates, π increases80

with increasing admixture rates, but decreases with increasing selection intensity. Thus, under AI the two forces cancel each other81

out, and we obtain a similar value of π as under neutrality. Furthermore, the joint distributions ofQ95A,B,C(1%, 100%) and fD or82

RD show particularly good separation among the different AI scenarios.83

Another joint distribution that is especially good at separating different AI regimes is the combination of Q95A,B,C(w, 100%)84

andUA,B,C(w, x, 100%). In Figure 4, we show this joint distribution, for different choices of w (1%, 10%) and x (20%, 50%). Here,85

with increasing intensity of selection and admixture, the number of uniquely shared sites and the quantile statistic increase, but the86

quantile statistic tends to only reach high values when selection is strong, even if admixture rates are low.87

2.3. Alternative demographic scenarios88

We evaluated the performance of our statistics under various alternative demographic scenarios. First, we simulated a 5X89

bottleneck occurring in population B 1,600 generations before the admixture event, and lasting 200 generations, to observe its90

effects on the power of the statistics for detecting AI (Figure 2.B). Though we observe a reduction in power - most evident in the91

heterozygosity statistics - none of the statistics are very strongly affected by this event (Figure S10). We also simulated a bottleneck92

of equal size but occurring after the admixture event - starting 1,400 generations ago, and lasting 200 generations (Figure 2.C). In this93

case, the sensitivity of all the statistics is strongly reduced when the admixture rate is low (Figure S11). For example, when looking94

at the raw values of the UA,B,C and Q95A,B,C statistics, we observe that for low admixture rates the distribution under selection95

has a larger overlap with the distribution under neutrality, which explains the low power (Figures S12, S13). Additionally, UA,B,C96

(but not Q95) seems to display more elevated values under neutrality in the bottleneck model than in the constant population size97

model. However, the relative performance of each statistic with respect to all the others does not appear to change substantially98

(Figure S11).99

We next explored a model where the introgressed haplotype was not immediately adaptive in the Eurasian population, but instead100
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underwent an intermediate period of neutral drift, before it becomes advantageous (Figure 2.D). In such a situation, our power to101

detect AI is reduced, for all statistics (Figure S14). This is particularly an issue when the admixture rate is low, as in those cases the102

starting frequency of the selected allele in the Eurasian population is low, so it is more likely to drift to extinction during the neutral103

period, before it can become advantageous.104

We also evaluated the performance of our statistics under selective scenarios that did not involve adaptive introgression, to check105

which of them were sensitive to these models and which were not. Under a model of selection from de novo mutation (SDN, Figure106

2.E) - in which a single mutation appears in the receiving population after the split time between it and the non-admixed population -107

the heterozygosity (π) and linkage disequilbrium statistics (r2[intro] andD′[intro]) are the most sensitive ones (Figure S15). This108

is expected, given that classical selective sweeps are known to strongly affect patterns of heterozygosity and linkage disequilibrium109

in the neighborhood of the selected site [22, 23, 24]. Since all other statistics have very poor sensitivity to detect SDN, we expect to110

be able to distinguish signatures generated from SDN and AI. One caveat to this is the scenario in which a de novo selected mutation111

occurs on an introgressed haplotype immediately after an introgression event - before the haplotype has a chance to expand and112

recombine in the population - in which case our statistics will not be able to distinguish SDN from AI.113

We also simulated a model of selection from standing variation (Figure 2.F), by randomly selecting 20% of haplotypes within the114

introgressed population to be advantageous, after the split time between it and the non-introgressed population. In this case, all statis-115

tics perform poorly, especially when admixture is low. Interestingly, when admixture is high (Figure S16), Q95A,B,C(1%, 100%)116

and UA,B,C(1%, 0%, 100%) are the best performing statistics. This is likely because some of the haplotypes that are randomly117

chosen to be selected also happen to be ancestrally polymorphic and present in the archaic humans.118

When we set ancestral structure to be our null model, we observe different behaviors depending on the strength of the migration119

rates. When the migration rates are strong (Figure S17), we have excellent power to detect AI with several statistics, including120

Q95A,B,C(1%, 100%), D, fD, RD and UA,B,C(1%, 50%, 100%). When the rates are of medium strength (Figure S18), the121

power is slightly reduced, but the same statistics are the ones that perform best. When the migration rates are weak - meaning122

ancestral structure is very strong - Q95A,B,C(1%, 100%) loses power, and the best-performing statistics are RD, D and fD123

(Figure S19). We note, though, that the genome-wide D observed under this last ancestral structure model (D = 0.24) is much124

more extreme than the genome-wide D observed empirically between any Eurasian population and Neanderthals or Denisovans,125

suggesting that if there was ancestral structure between archaic and modern humans, it was likely not of this magnitude.126

2.4. Global features of uniquely shared archaic alleles127

Before identifying candidate genes for adaptive introgression, we investigated the frequency and number of uniquely shared128

sites at the genome-wide level. Specifically, we wanted to know whether human populations varied in the number of sites with129

uniquely shared archaic alleles, and whether they also varied in the frequency distribution of these alleles. Therefore, we computed130

UA,B,Nea,Den(1%,x,y,z) andQ95A,B,Nea,Den(1%,y,z) for different choices of x, y and z. We used different cutoffs for the frequency131

of the archaic allele (x) in the target population B: 0%, 20% and 50%. To look for alleles uniquely shared with the Altai Neanderthal132

genome only, we set y = 100% and z = 0%. To look for alleles uniquely shared with the Denisovan genome only, we set y = 0%133

and z = 100%. Finally, to look for uniquely shared alleles matching both of the archaic genomes, we set y = 100%and z = 100%.134

We used each of the non-African panels in the 1000 Genomes Project phase 3 data [20] as the “target” panel (B), and chose135

the outgroup panel (A) to be the combination of all African populations (YRI, LWK, GWD, MSL, ESN), excluding admixed African-136

Americans. We note that this is a conservative reference panel, as some of the African panels - like LWK - are from populations with137

a substantial amount of Eurasian ancestry [20], likely preventing the detection of introgressed segments at some loci.138

When setting x = 0% (i.e. not imposing a frequency cutoff in the target panel B), South Asians as a target population show139

the largest number of archaic alleles (Figure 5.A). However, East Asians have a larger number of high-frequency uniquely shared140

archaic alleles than Europeans and South Asians, for both x = 20% and x = 50% (Figure 5.B-C). Population-specific D-statistics141

(using YRI as the non-admixed population) also follow this trend (Figure S20) and we observe this pattern when looking only at the X142
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chromosome as well (Figure S21). These results hold in comparisons with both archaic human genomes, but we observe a stronger143

signal when looking at Neanderthal-specific shared alleles. To correct for the fact that some panels have more segregating sites144

than others (and may therefore have more archaic-like segregating sites), we also scaled the number of uniquely shared sites by the145

total number of segregating sites per population panel (Figure 5.D-F), and we see in general the same patterns, with the exception of146

a Peruvian panel, which we discuss further below. We also observe similar patterns when calculating Q95A,B,Nea,Den(1%, y, z)147

genome-wide (Figure S22). The elevation in UA,B,Nea,Den and Q95A,B,Nea,Den in East Asians may possibly result from higher148

levels of archaic ancestry in East Asians than in Europeans [25], which some studies argue could be due to additional admixture149

events occurring in East Asians [26, 27].150

Surprisingly, the Peruvians (PEL) harbor the largest amount of high frequency mutations of archaic origin than any other single151

population, especially when using Neanderthals as bait (Figures 5.B-C,S21). It is unclear whether this signal is due to increased152

drift or selection in this population. Skoglund et al. [28] argue via simulations that if one analyzes a population with high amounts of153

recent genetic drift and excludes SNPs where the minor allele is at low frequency, some statistics that are meant to detect archaic154

ancestry - like D - may be artificially inflated. Our filtering procedure to select uniquely shared archaic alleles necessarily excludes155

sites where the archaic allele is at low frequency in the target panel, and the PEL panel comes from a population with a history of156

low effective population sizes (high drift) relative to other Non-Africans [20], which could explain this pattern. This could also explain157

why the effect is not seen when x = 0% (Figure 5.A), or when computing D-statistics (Figure S20), both of which include sites with158

low-frequency alleles in their computation. Additionally, scaling the uniquely shared sites by the total number of segregating sites159

per population panel mitigates (but does not completely erase) this pattern. After scaling, PEL shows levels of archaic allele sharing160

within the range of the East Asian populations at x = 20% (Figure 5.E), but is still the panel with the largest number of archaic sites161

at x = 50% (Figure 5.F).162

Furthermore, we plotted the values of UAFR,X,Nea,Den(1%, x, y, z) andQ95AFR,X,Nea,Den(1%, y, z) jointly for each pop-163

ulation X, under different frequency cutoffs x. When x = 0%, there is a generally inversely proportional relationship between the164

two scores (Figure S23), but this becomes a directly proportional relationship when x = 20% (Figure 6) or x = 50% (Figure S27).165

Here, we also clearly observe that PEL is an extreme panel with respect to both the number and frequency of archaic shared derived166

alleles, and that East Asian and American populations have more high-frequency archaic shared alleles than Europeans.167

We checked via simulations if the observed excess of high frequency archaic derived mutations in Americans and especially168

Peruvians could be caused by genetic drift, as a consequence of the bottleneck that occurred in the ancestors of Native Americans169

as they crossed Beringia. We observe that if the introgressed population B undergoes a bottleneck, this can lead to a larger number170

of UA,B,C(w, x, y, z) for large values of x (Figures S12,S13,S24). Indeed, population structure analyses of the 1000 Genomes171

samples suggest that Peruvians have the largest amount of Native American ancestry [20] and show a bottleneck with a lack of172

recent population growth, which could explain this pattern. We also observe an increase in the variance of the distribution of U and173

Q95 in the presence of a bottleneck, especially when long and severe (Figures S25, S26).174

2.5. Candidate regions for adaptive introgression175

To identify adaptively introgressed regions of the genome, we computed UA,B,C,D(w, x, y, z) and Q95A,B,C,D(w, y, z) in176

40 kb non-overlapping windows along the genome, using the low-coverage sequencing data from phase 3 of the 1000 Genomes177

Project [20]. We used this window size because the mean length of introgressed haplotypes in ref. [2] was 44,078 bp (Supplementary178

Information 13). Our motivation was to find regions under AI in a particular panel B, using panel A as a non-introgressed outgroup179

(generally Africans, unless otherwise stated). We used the high-coverage Altai Neanderthal genome [2] as bait panel C and the180

high-coverage Denisova genome [4] as bait panel D. We deployed these statistics in three ways: a) to look for Neanderthal-specific181

AI, we set y = 100% and z = 0%; b) to look for Denisova-specific AI, we set y = 0% and z = 100%; c) to look for AI matching182

both of the archaic genomes, we set y = 100% and z = 100% (Figure S1, Table S3). To try to determine the adaptive pressure183

behind the putative AI event, we obtained all the CCDS-verified genes located inside each window [29].184
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For guidance as to how high a value of U and Q95 we would expect under neutrality, we used the simulations from Figure185

2 to obtain 95% empirical quantiles of the distribution of these scores under neutrality. Tables S1 and S2 show the 95% quan-186

tiles for these two statistics under various models of adaptive introgression and ancestral structure, for different choices of pa-187

rameter values (see Methods Section). When examining our candidates for AI below, we focused on windows whose values for188

UA,B,Nea,Den(w, x, y, z) and Q95A,B,Nea,Den(w, y, z) were both in the 99.9% quantile of their respective genome-wide distri-189

butions. We verified via simulations that, under a simple model of neutral admixture at a genome-wide rate of 2%, the estimated190

probability of obtaining values as high as these (or the false positive rate, FPR) was between 10.6% and 0%, depending on the191

target population chosen. The highest rates correspond to the African-American (ASW) admixed panel, as this panel contains high192

proportions of ancestry from the outgroup panel (unadmixed Africans) and are therefore not well-suited for our statistics. Excluding193

ASW, the highest estimated FPR was 5.5%.194

We also calculatedD and fD along the samewindows (using Africans as the non-admixed population), and saw good agreement195

with the new statistics presented here (Table S3). Finally, we further validated the regions most likely to have been adaptively196

introgressed by searching for archaic tracts of introgression within them that were at high frequency, using a Hidden Markov Model197

(see below).198

2.5.1. Continental populations199

When focusing on adaptive introgression in continental populations, we first looked for uniquely shared archaic alleles specific to200

Europeans that were absent or almost absent (< 1% frequency) in Africans and East Asians. Conversely, we also looked for uniquely201

shared archaic alleles in East Asians, which were absent or almost absent in Africans and Europeans. In this continental survey, we202

ignored Latin American populations as they have high amounts of European and African ancestry, which could confound our analyses.203

Figure 7 shows the number of sites with uniquely shared alleles for increasing frequency cutoffs in the introgressed population, and204

for different types of archaic alleles (Neanderthal-specific, Denisova-specific or common to both archaic humans). In other words, we205

calculated UAFR,EUR,Nea,Den(1%, x, y, z) and UAFR,EAS,Nea,Den(1%, x, y, z) for different values of x (0%, 20%, 50% and206

80%) and different choices of y and z, depending on which type of archaic alleles we were looking for. We observe that the regions207

in the extreme of the distributions for x = 50% corresponded very well to genes that had been previously found to be candidates for208

adaptive introgression from archaic humans in these populations, using more complex probabilistic methods [6, 5] or gene-centric209

approaches [30]. These include BNC2 (involved in skin pigmentation [31, 32]), POU2F3 (involved in skin keratinocyte differentiation210

[33, 34]), HYAL2 (involved in the response to UV radiation on human keratinocytes [35]), SIPA1L2 (involved in neuronal signaling211

[36]) and CHMP1A (a regulator of cerebellar development [37]). To be more rigorous in our search for adaptive introgression, we212

looked at the joint distribution of theU statistic and theQ95 statistic for the same choices of w, y and z, and then selected the regions213

that were in the 99.9% quantiles of the distributions of both statistics (Figures 8, S28, S29). We find that the strongest candidates214

here are BNC2, POU2F3, SIPA1L2 and the HYAL2 region.215

We also scanned for regions of the genome where South Asians (SAS) had uniquely shared archaic alleles at high frequency,216

which were absent or almost absent in Europeans, East Asians and Africans. In this case, we focused on x = 20% because we217

found that x = 50% left us with no candidate regions. Among the candidate regions sharing a large number of high-frequency218

Neanderthal alleles in South Asians, we find genes ASTN2, SFMBT1, MUSTN1 and MAML2 (Figure S30). ASTN2 is involved in219

neuronal migration [38] and is associated with schizophrenia [39, 40]. SFMBT1 is involved in myogenesis [41] and is associated220

with hydrocephalus [42]. MUSTN1 plays a role in the regeneration of the muscoskeletal system [43]. Finally, MAML2 codes for a221

signaling protein [44, 45], and is associated with cutaneous carcinoma [46] and lacrimal gland cancer [47].222

2.5.2. Eurasia223

We then looked for AI in all Eurasians (EUA=EUR+SAS+EAS, ignoring American populations) using Africans as the non-admixed224

population (AFR, ignoring admixed African-Americans). Figure 8 shows the extreme outlier regions that are in the 99.9% quantiles for225
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both UEUA,AFR,Nea,Den(1%, 20%, y, z) and Q95EUA,AFR,Nea,Den(1%, y, z), while Figure S31 shows the entire distribution.226

We focused on x = 20% because we found that x = 50% left us with almost no candidate regions. In this case, the region with by227

far the largest number of uniquely shared archaic alleles is the one containing genes OAS1 and OAS3, involved in innate immunity228

[48, 49, 50, 51]. This region was previously identified as a candidate for AI from Neanderthals in non-Africans [52]. Another region229

that we recover and was previously identified as a candidate for AI is the one containing genes TLR1 and TLR6 [53, 54]. These230

genes are also involved in innate immunity and have been shown to be under positive selection in some non-African populations231

[55, 56].232

Interestingly, we find that a very strong candidate region in Eurasia contains genes TBX15 and WARS2. This region has been233

associated with a variety of traits, including adipose tissue differentiation [57], body fat distribution [58, 59, 60, 61], hair pigmentation234

[62], facial morphology [63, 64], ear morphology [65], stature [64] and skeletal development [66, 64]. It was previously identified235

as being under positive selection in Greenlanders [67], and it shows particularly striking signatures of adaptive introgression, so we236

devote a separate study to its analysis [68].237

2.5.3. Population-specific signals of adaptive introgression238

To identify population-specific signals of AI, we looked for archaic alleles at high frequency in a particular non-African panel X,239

which were also at less than 1% frequency in all other non-African and African panels, excluding X (Table S3). This is a very restrictive240

requirement, and indeed, we only find a few windows in a single panel (PEL) with archaic alleles at more than 20% frequency. One241

of the regions with the largest number of uniquely shared Neanderthal sites in PEL contains gene CHD2, which codes for a DNA242

helicase [69] involved in myogenesis (UniProtKB by similarity), and that is associated with epilepsy [70, 71]. We note, however,243

that the presence of these extreme regions could be due to the global elevation in the U statistic caused by higher levels of drift in244

Peruvians, as explained above.245

2.5.4. Shared signals among populations246

In the previous section, we focused on regions where archaic alleles were uniquely at high frequencies in particular populations,247

but at low frequencies in all other populations. This precludes us from detecting AI regions that are shared across more than one248

non-African population. To address this, we conditioned on observing the archaic allele at less than 1% frequency in a non-admixed249

outgroup panel composed of all the African panels (YRI, LWK, GWD, MSL, ESN), excluding African-Americans, and then looked250

for archaic alleles at high frequency in particular non-African populations. Unlike the previous section, we did not condition on the251

archaic allele being at low frequency in other non-African populations as well. The whole joint distributions of U and Q95 for this252

choice of parameters for each non-African panel are shown in figs. S32 to S50, while regions in the 99.9% quantile for both statistics253

are shown in Figure 8.254

Here, we recapitulate many of the findings from our Eurasian and continental-specific analyses above, like TLR1/TLR6, BNC2,255

OAS1/OAS3, POU2F3, LIPA and TBX15/WARS2 (Figure 8). For example, just as we found that POU2F3 was an extreme region256

in the East Asian (EAS) continental panel, we separately find that almost all populations composing that panel (CHB, KHV, CHS,257

CDX, JPT) have archaic alleles in that region at disproportionately high frequency, relative to their frequency in Africans. Additionally258

though, we can learn things we would not have detected at the continental level. For example, the Bengali from Bangladesh (BEB)259

- a South Asian population - also have archaic alleles at very high frequencies in this region.260

We detected several genes that appear to show signatures of AI across various populations (Figure 8). One of the most extreme261

examples is a 120 kb region containing the LARS gene, with 76 uniquely shared Neanderthal alleles at < 1% frequency in Africans262

and > 50% frequency in Peruvians, which are also at > 20% frequency in Mexicans. LARS codes for a leucin-tRNA synthetase263

[72], and is associated with liver failure syndrome [73]. Additionally, a region containing gene ZFHX3 displays an elevated number264

of uniquely shared Neanderthal sites in PEL, and we also observe this when looking more broadly at East Asians (EAS) and - based265

on the patterns of inferred introgressed tracts (see below) - in various American (AMR) populations as well. ZFHX3 is involved in the266

inhibition of estrogen receptor-mediated transcription [74] and has been associated with prostate cancer [75].267
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We also find several Neanderthal-specific uniquely shared sites in American panels (PEL, CLM, MXL) in a region previously268

identified as harboring a risk haplotype for type 2 diabetes (chr17:6880001-6960000) [76]. This is consistent with previous findings269

suggesting the risk haplotype was introgressed from Neanderthals and is specifically present at high frequencies in Latin Americans270

[76]. The region contains gene SLC16A11, whose expression is known to alter lipid metabolism [76]. We also find that the genes271

FAP/IFIH1 have signals consistent with AI, particularly in PEL. This region has been previously associated with type 1 diabetes272

[77, 78]. A previous analysis of this region has suggested that the divergent haplotypes in it resulted from ancestral structure or273

balancing selection in Africa, followed by local episodes of positive selection in Europe, Asia and the Americas [79]. A more recent274

analysis has found this as a region of archaic AI in Melanesians as well [7].275

Another interesting candidate region contains two genes involved in lipid metabolism: LIPA and CH25H. We find a 40 kb region276

with 11 uniquely shared Denisovan alleles that are at low (< 1%) frequency in Africans and at very high (> 50%) frequency in277

various South and East Asian populations (JPT, KHV, CHB, CHS, CDX and BEB). The Q95 and D statistics in this region are also278

high across all of these populations, and we also find this region to have extreme values of these statistics in our broader Eurasian279

scan. The LIPA gene codes for a lipase [80] and is associated with cholesterol ester storage disease [81] and Wolman disease280

[82]. In turn, the CH25H gene codes for a membrane hydroxylase involved in the metabolism of cholesterol [83] and associated with281

Alzheimer’s disease [84] and antiviral activity [85].282

Finally, we find a region harboring between 3 and 10 uniquely shared Neanderthal alleles (depending on the panel used) in283

various non-African populations. This region was identified earlier by ref. [5] and contains genes PPDPF, PTK6 and HELZ2. PPDPF284

codes for a probable regulator of pancreas development (UniProtKB by similarity). PTK6 codes for an epithelial signal transducer285

[86] and HELZ2 codes for a helicase that works as a transcriptional coactivator for nuclear receptors [87, 88].286

2.6. The X chromosome287

Previous studies have observed lower levels of archaic introgression in the X chromosome relative to the autosomes [5, 6] . Here,288

we observe a similar trend: compared to the autosomes, the X chromosome contains a smaller number of windows with sites that289

are uniquely shared with archaic humans (Figure 7). For example, forw = 1% and x = 20%, we observe that, in Europeans, 0.4%290

of all windows in the autosomes have at least one uniquely shared site with Neanderthals or Denisovans, while only 0.05% of all291

windows in the X chromosome have at least one uniquely shared site (P = 4.985× 10−4, chi-squared test assuming independence292

between windows). The same pattern is observed in East Asians (P = 1.852× 10−8).293

Nevertheless, we do identify some regions in the X chromosome exhibiting high values for both UA,B,C,D(w, x, y, z) and294

Q95A,B,C,D(w, y, z). For example, a region containing gene DHRSX contains a uniquely shared site where a Neanderthal allele295

is at< 1% frequency in Africans, but at> 50% frequency in a British panel (GBR). The site is also at high frequency (29%−47%) in296

the other European panels, but never as high as in GBR (55%). It is also surrounded by 5 neighboring SNPs that have intermediate297

Neanderthal allele frequencies (24%−41%) in GBR. Another region contains gene DMD and harbors two uniquely shared sites where298

two archaic (Denisovan/Neanderthal) alleles are also at low (< 1%) frequency in Africans but at > 50% frequency in Peruvians.299

DHRSX codes for an oxidoreductase enzyme [89], while DMD is a well-known gene becausemutations in it causemuscular dystrophy300

[90], and was also previously identified as having signatures of archaic introgression in non-Africans [91]. We note, however, that301

our simulations do not account for the particular inheritance and recombination patterns of the X chromosome, so caution should be302

taking when calling these regions as under AI.303

2.7. Introgressed haplotypes in candidate loci304

We inspected the haplotype patterns of candidate loci with support in favor of AI. We displayed the haplotypes for selected305

populations at seven regions: POU2F3 (Figure 9.A), BNC2 (Figure 9.B), LARS (Figure 9.C), FAP/IFIH1 (Figure 9.D), OAS1 (Figure306

9.E), LIPA (Figure 9.F) and SLC16A11 (Figure S51.C). We included continental populations that show a large number of uniquely307

shared archaic alleles, and included YRI as a representative African population. We then clustered and ordered the haplotypes by308
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similarity to the closest archaic genome (Altai Neanderthal or Denisova) (Figure 9). As can be observed, all these regions tend to309

show sharp distinctions between the putatively introgressed haplotypes and the non-introgressed ones. This is also evident when310

looking at the cumulative number of differences of each haplotype to the closest archaic haplotype, where we see a sharp rise in the311

number of differences, indicating strong differentiation between the two sets of haplotypes. Additionally, the YRI haplotypes tend to312

predominantly belong to the non-introgressed group, as expected.313

2.7.1. Consequences of relaxing the outgroup frequency cutoff314

When using a more lenient cutoff for the outgroup panel (10% maximum frequency, rather than 1%), we find a few genes that315

display values of the U statistic that are suggestive of AI, and that have been previously found to be under strong positive selection316

in particular human populations [92, 93]. The most striking examples are TYRP1 in EUR (using EAS+AFR as outgroup) and OCA2317

in EAS (using EUR+AFR as outgroup)(Table S3). Both of these genes are involved in pigmentation. We caution, however, that the318

reason why they carry archaic alleles at high frequency may simply be because their respective selective sweeps pushed an allele319

that was segregating in both archaic and modern humans to high frequency in modern humans, but not necessarily via introgression.320

In fact, TYRP1 only stands out as an extreme region for the number of archaic shared alleles in EUR when using the lenient 10%321

cutoff, but not when using the more stringent 1% cutoff. When looking at these SNPs in more detail, we find that their allele frequency322

in Africans (∼ 20%) is even higher than in East Asians (∼ 1%), largely reflecting population differentiation across Eurasia due to323

positive selection [93], rather than adaptive introgression. When exploring the haplotype structure of this gene (Figure S51.B), we324

find one haplotype that shows similarities to archaic humans but is at low frequency. In the combined YRI+EUR panel, just 6.37% of325

all haplotypes have 36 or less differences to the Neanderthal genome, and this number is roughly the point of transition between the326

archaic-like and the non-archaic-like haplotypes (Figures S51.B). There is a second - more frequent - haplotype that is more distinct327

from archaic humans but present at high frequency in Europeans. The uniquely shared sites obtained using the lenient (< 10%)328

allele frequency outgroup cutoff are tagging both haplotypes together, rather than just the highly differentiated archaic-like haplotype.329

OCA2 has several sites with uniquely shared alleles in EAS (AFR+EUR as outgroup) when using the lenient 10% cutoff, but330

only a few (2) shared archaic sites when using the < 1% outgroup frequency cutoff. When exploring the haplotype structure of this331

gene, we fail to find a clear-cut differentiation between putatively introgressed and non-introgressed haplotypes, so the evidence for332

adaptive introgression in this region is also weak. A close inspection of its haplotype structure shows that OCA2 does not show a333

large number of differences between the haplotype classes that are closer and those that are distant from the archaic humans (Figure334

S51.A).335

Finally, using the lenient outgroup cutoff of < 10% and a target cutoff of > 20%, we find the gene with the highest number336

of uniquely shared sites among all the populations and cutoffs we tested: MUC19. This region is rather impressive in containing337

115 sites where the archaic alleles are shared between the Mexican panel (MXL) and the Denisovan genome at more than 20%338

frequency, when using all populations that are not MXL as the outgroup. However, the actual proportion of individuals that contain339

a Denisova-like haplotype (though highly differentiated from the rest of present-day human haplotypes) is very small. Only 11.86%340

of haplotypes in the combined YRI+AMR panel show 69 differences or less to the closest archaic genome (Denisova), and the next341

closest haplotype has 134 differences (Figure S51.D).342

Overall, a finer investigation of these three cases suggests that using a lenient outgroup frequency cutoff may lead to misleading343

inferences. Nevertheless, the haplotype structure of these genes and their relationship to their archaic human counterparts are quite344

unusual. It remains to be determined whether these patterns could be caused by either positive selection or introgression alone, or345

whether a combination of these or other demographic forces is required to explain them.346

2.8. Inferred introgressed tracts347

We used an HMM [21] to verify that the strongest candidate regions effectively contained archaic segments of a length that would348

be consistent with introgression after the population divergence between archaic and modern humans. For each region, we used349
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the closest archaic genome (Altai Neanderthal or Denisova) as the putative source of introgression. We then plotted the inferred350

segments in non-African continental populations for genes with strong evidence for AI. Among these, genes with Neanderthal as the351

closest source (figs. S52 to S59) include: POU2F3 (EAS,SAS), BNC2 (EUR), OAS1 (Eurasians), LARS (AMR), FAP/IFIH1 (PEL),352

CHD2 (PEL), TLR1-6 (EAS) and ZFHX3 (PEL). Genes with Denisova as the closest source (figs. S60 and S61) include: LIPA (EAS,353

SAS, AMR) and MUSTN1 (SAS).354

2.9. Testing for enrichment in genic regions355

We aimed to test whether uniquely shared archaic alleles at high frequencies were enriched in genic regions of the genome. We356

looked at archaic alleles at high frequency in any of the Non-African panels that were also at low frequency (< 1%) in Africans. As357

background, we used all archaic alleles that were at any frequency larger than 0 in the same Non-African populations, and that were358

also at low frequency in Africans. We then tested whether the high-frequency archaic alleles tended to occur in genic regions more359

often than expected.360

SNPs in introgressed blocks will tend to cluster together and have similar allele frequencies, which could cause a spurious en-361

richment signal. To correct for the fact that SNPs at similar allele frequencies will cluster together (as they will tend to co-occur in the362

same haplotypes), we performed linkage disequilibrium (LD) pruning using two methods. In one (called “LD-1”), we downloaded the363

approximately independent European LD blocks published in ref. [94]. For each set of high frequency derived sites, we randomly364

sampled one SNP from each block. In a different approach (called “LD-2”), for each set of high frequency derived sites, we sub-365

sampled SNPs such that each SNP was at least 200 kb apart from each other. We then tested these two types of LD-pruned SNP366

sets against 1000 SNP sets of equal length that were also LD-pruned and that were obtained randomizing frequencies and collecting367

SNPs in the same ways as described above.368

Regardless of which LD method we used, we find no significant enrichment in genic regions for high-frequency (> 50%) Nean-369

derthal alleles (LD-1 P=352, LD-2 P=0.161) or Denisovan alleles (LD-1 P=0.348, LD-2 P=0.192). Similarly, we find no enrichment for370

medium-to-high-frequency (> 20%) Neanderthal alleles (LD-1 P=0.553, LD-2 P=0.874) or Denisovan alleles (LD-1 P=0.838, LD-2371

P=0.44).372

3. Discussion373

Here, we carried out one of the first investigations into the joint dynamics of archaic introgression and positive selection, to374

develop statistics that are informative of AI. We find that one of the most powerful ways to detect AI is to look at both the number and375

allele frequency of mutations that are uniquely shared between the introgressed and the archaic populations. Such mutations should376

be abundant and at high-frequencies in the introgressed population if AI occurred. In particular, we identified two novel summaries377

of the data that capture this pattern quite well: the statistics Q95 and U . These statistics can recover loci under AI and are easy to378

compute from genomic data, as they do not require phasing.379

We have also studied the general landscape of archaic alleles and their frequencies in present-day human populations. While380

scanning the present-day human genomes from phase 3 of the 1000 Genomes Project [20] using these and other summary statistics,381

we were able to recapitulate previous AI findings (like the TLR [53, 54] andOAS regions [52]) as well as identify new candidate regions382

for AI in Eurasia (like the LIPA gene and the FAP/IFIH1 region). Thesemostly include genes involved in lipid metabolism, pigmentation383

and innate immunity, as observed in previous studies [5, 6, 95]. Phenotypic changes in these systems may have allowed archaic384

humans to survive in Eurasia during the Pleistocene, and may have been passed on to present-day human populations during their385

expansion out of Africa.386

When using more lenient definitions of what we consider to be “uniquely shared archaic alleles” we find sites containing these387

alleles in genes that have been previously found to be under positive selection (like OCA2 and TYRP1) but not necessarily under388

adaptive introgression. While these do not show as strong signatures of adaptive introgression as genes like BNC2 and POU2F3,389

their curious haplotype patterns and their relationship to archaic genomes warrants further exploration.390
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We tested whether uniquely shared archaic alleles at high frequencies in non-Africans were significantly more likely to be found in391

genic regions, relative to all shared archaic alleles, but did not find a significant enrichment. Though this suggests archaic haplotypes392

subject to AI may not be preferentially found near or inside genes, it may also be a product of a lack of power, or of the fact that393

not all uniquely shared archaic alleles may be truly introgressed. As mentioned before, some of these alleles may be present due394

to incomplete lineage sorting, which could add noise to the test signal. A more rigorous - and possibly more powerful - test could395

involve testing whether HMM-inferred introgressed archaic segments at high frequency tend to be found in genic regions, relative to396

all inferred introgressed archaic segments, while controlling for features like the length of introgressed segments and the sensitivity397

of the HMM to different regions of the genome. However, in this study, we did not pursue this line of research further.398

In this study, we have mostly focused on positive selection for archaic alleles. One should remember, though, that a larger399

proportion of introgressed genetic material was likely maladaptive to modern humans, and therefore selected against. Indeed, two400

recent studies have shown that negative selection on archaic haplotypes may have reduced the initial proportion of archaic material401

present in modern humans immediately after the hybridization event(s) [96, 97].402

Another caveat is that some regions of the genome display patterns that could be consistent with multiple introgression events,403

followed by positive selection on one or more distinct archaic haplotypes [53]. In this study, we have simply focused on models404

with a single pulse of admixture - followed immediately by selection or with an intermediate neutrality period in the introgressed405

population. We have not considered complex scenarios with multiple sources of introgression. Additionally, the currently limited406

availability of high-coverage archaic human genomes may prevent us from detecting AI events for which the source may not have407

been closely related to the sequenced Denisovan or Altai Neanderthal genomes. This may include other Neanderthal or Denisovan408

subpopulations, or other (as yet unsampled) archaic groups that may have lived in Africa and Eurasia.409

It is also worth noting that positive selection for archaic haplotypes may be due to heterosis, rather than adaptation to particu-410

lar environments [96]. That is, archaic alleles may not have been intrinsically beneficial, but simply protective against deleterious411

recessive modern human alleles, and therefore selected after their introduction into the modern human gene pool. The degree of412

dominance of deleterious alleles in humans remains elusive, so it is unclear how applicable this model would be to archaic admixture413

in humans.414

Many of the statistics we introduced in this study have their drawbacks: notably, they depend on simulations to assess significance415

and some - like U - may be sensitive to local variation in mutation rates across the genome. Nevertheless they serve as useful416

exploratory tools, as they highlight a characteristic signature left by AI in present-day human genomes. Future avenues of research417

could involve developing ways to incorporate uniquely shared sites into a robust test of selection that specifically targets regions418

under AI. For example, one could think about modifying statistics based on local between-population population differentiation, like419

PBS [10], so that they are only sensitive to allele frequency differences at sites that show signatures of archaic introgression.420

Finally, while this study has largely focused on human AI, several other species also show suggestive signatures of AI [98].421

Assessing the extent and prevalence of AI and uniquely shared sites in other biological systems could provide new insights into their422

biology and evolutionary history. This may also serve to better understand how populations of organisms respond to introgression423

events, and to derive general principles about the interplay between admixture and natural selection.424

4. Methods425

4.1. Summary statistics sensitive to adaptive introgression426

Several statistics have been previously deployed to detect AI events (reviewed in Racimo et al. [99]). We briefly describe these427

below, as well as three new statistics tailored specifically to find this signal (Table 1). One of the simplest approaches consists of428

applying theD statistic [1, 100] locally over windows of the genome. The D statistic was originally applied to compare a single human429

genome against another human genome, so as to detect excess shared ancestry between one of the genomes and a genome from430

an outgroup population. Application of this statistic comparing non-Africans and Africans served as one of the pieces of evidence431
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in support of Neanderthal admixture into non-Africans. However, it can also be computed from large panels of multiple individuals432

instead of single genomes. This form of the D statistic has been applied locally over windows of the genome to detect regions of433

excess shared ancestry between an admixed population and a source population [101, 102].434

The D statistic, however, can be confounded by local patterns of diversity, as regions of low diversity may artificially inflate the435

statistic even when a region was not adaptively introgressed. To correct for this, Martin et al. [103] developed a similar statistic436

called fD which is less sensitive to differences in diversity along the genome. Both of these patterns exploit the excess relatedness437

between the admixed and the source population.438

AI is also expected to increase linkage disequilibrium (LD), as an introgressed fragment that rises in frequency in the population439

will have several closely linked loci that together will be segregating at different frequencies than they were in the recipient population440

before admixture. Thus, two well-known statistics that are informative about the amount of LD in a region - D′ and r2 - could also441

be informative about adaptive introgression. To apply them over regions of the genome, we can take the average of each of the two442

statistics over all SNP pairs in a window. In the section below, we calculate these statistics in two ways: a) using the introgressed443

panel only (D′[intro] and r2[intro]), and b) using the combination of the introgressed and the non-introgressed panels (D′[comb]444

and r2[comb]). The first way (intro) should capture patterns of within-population LD in the introgressed population under AI, while445

the second way (comb) should capture patterns of global LD across both populations. If the introgressed population has a particular446

set of archaic haplotypes at high frequency that are highly differentiated from the non-archaic haplotypes in the non-introgressed447

panel, we expect the second way to be more powerful at distinguishing AI from neutrality.448

We also introduce three new statistics that one would expect, a priori, to be particularly effective at identifying windows of the449

genome that are likely to have undergone adaptive introgression: RD, U andQ95. RD is computed by calculating - in a window of450

the genome - the ratio of the sequence divergence between an individual from the source population and an admixed individual, and451

the sequence divergence between an individual from the source population and a non-admixed individual. One can then take the452

average of this ratio over all individuals in the admixed and non-admixed panels. This average should be larger if the introgressed453

haplotype is present in a large number of individuals of the admixed population. We call this statistic RD.454

Second, for a window of arbitrary size, letUA,B,C(w, x, y) be defined as the number of sites where a sample C (the “bait”) from455

an archaic source population (which could be as small as a single diploid individual) has a particular allele at frequency y, and that allele456

is at a frequency smaller than w in a sample A (the “outgroup”) of a population but larger than x in a sample B (the “target”) of another457

population (Figure 1). In other words, we are looking for sites that contain alleles shared between an archaic human genome and a458

test population, but absent or at very low frequencies in an outgroup (usually non-admixed) population. For example, suppose we459

are looking for Neanderthal adaptive introgression in the Han Chinese (CHB). In that case, we can consider CHB as our target panel,460

and use Africans as the outgroup panel and a single Neanderthal genome as the bait. If UAFR,CHB,Nea(1%, 20%, 100%) = 4 in461

a window of the genome, that means there are 4 sites in that window where the Neanderthal genome is homozygous for a particular462

allele and that allele is present at a frequency smaller than 1% in Africans but larger than 20% in Han Chinese. In other words, there463

are 4 sites that are uniquely shared at more than 20% frequency between Han Chinese and Neanderthal, but not with Africans.464

This statistic can be further parametrized if we have samples from two different archaic populations (for example, a Neanderthal465

genome and a Denisova genome). In that case, we can define UA,B,C,D(w, x, y, z) as the number of sites where the archaic466

sample C has a particular allele at frequency y and the archaic sample D has that allele at frequency z, while the same allele is at a467

frequency smaller than w in an outgroup panel A and larger than x in a target panel B (Figure S1). For example, if we were interested468

in looking for Neanderthal-specific AI, we could set y = 100% and z = 0%, to find alleles uniquely shared with Neanderthal, but469

not Denisova. If we were interested in archaic alleles shared with both Neanderthal and Denisova, we could set y = 100% and470

z = 100%.471

Another statistic that we found to be useful for finding AI events is Q95A,B,C(w, y), and is here defined as the 95th per-472

centile of derived frequencies in an admixed sample B of all SNPs that have a derived allele frequency y in the archaic sample C,473

but where the derived allele is at a frequency smaller than w in a sample A of a non-admixed population (Figure 1). For example,474
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Q95AFR,CHB,Nea(1%, 100%) = 0.65 means that if one computes the 95% quantile of all the Han Chinese derived allele fre-475

quencies of SNPs where the Neanderthal genome is homozygous derived and the derived allele has frequency smaller than 1% in476

Africans, that quantile will be equal to 0.65. The motivation for this statistic is that AI will produce archaic SNPs at high frequen-477

cies in the introgressed population. The 95th percentile should be an effective way of summarizing the frequencies of these SNPs478

while downweighting other SNPs that may also share the same allelic state as the archaic genomes, but that are segregating at low479

frequencies in the target panel and are therefore not informative about AI. In other words, it is a summary of the allele frequency480

spectrum in the introgressed population, conditional on only looking at alleles uniquely shared with the source population and at low481

frequency in the non-admixed population. As before, we can generalize this statistic if we have a sample D from a second archaic482

population. Then,Q95A,B,C,D(w, y, z) is the 95th percentile of derived frequencies in the sample B of all SNPs that have a derived483

allele frequency y in the archaic sample C and derived allele frequency z in the archaic sample D, but where the derived allele is at484

a frequency smaller than w in the sample A (Figure S1).485

A common statistic that is indicative of population variation - expected heterozygosity (π) was previously found to be affected by486

archaic introgression in a serial founder model of human history [104]. We measured π as the average of 2*p*(1-p) over all sites in487

a window, where p is the sample derived allele frequency in the introgressed population.488

4.2. Simulations489

None of these statistics have been explicitly vetted under scenarios of AI so far, though the performance of D and fD has490

been previously evaluated for detecting local introgression [103]. Therefore, we aimed to test how each of the statistics described491

above performed in detecting AI in a 40 kb window. We chose this window size because the mean length of introgressed haplotypes492

in ref. [2] was 44,078 bp (Supplementary Information 13) and because 40kb is well above the length needed to reject incomplete493

lineage sorting for regions with moderate recombination rates [18]. We began by simulating a three population tree in Slim [105]494

with constant Ne = 10, 000, mutation rate equal to 1.5 ∗ 10−8 per bp per generation, recombination rate equal to 10−8 per495

bp per generation, and split times emulating the African-Eurasian and Neanderthal-modern human split times (4,000 and 16,000496

generations ago, respectively). We allowed for admixture between the most distantly diverged population and one of the closely497

related sister populations, at different rates: 2%, 10%and 25% (Figure 2.A). We use the lower (2%) rate to represent the Neanderthal498

genome-wide admixture into Eurasians, with Africans as the non-admixed population. The higher (10% and 25%) rates are meant to499

represent cases when a researcher is focusing on a particular region of the genome that has some a priori evidence for having been500

introgressed, thus pushing the local probability of introgression to high values, even though the genome-wide rate may be lower.501

Under each of the three admixture rate scenarios, we simulated regions that were evolving neutrally, regions where the central SNP502

was under weak positive additive selection (s = 0.01) and regions with a central SNP under strong selection (s = 0.1). We required503

the selected allele to be fixed in the archaic population prior to introgression, but allowed the allele to rise or decrease in frequency504

in the introgressed population, as determined by the strength of selection, its probability of entering the introgressed population and505

its starting frequency after introgression. Figure S2 shows the distributions of frequencies of the selected alleles in the introgressed506

population in the present.507

We also tested how the statistics perform at detecting adaptive introgression when the alternative model is not a neutral intro-508

gression model, but a neutral model with ancestral structure (Figure 2.G). We followed a model described in Huerta-Sanchez et al509

(2014) and simulated a population in which an African population splits from archaic humans before Eurasians, but is allowed to510

exchange migrants with them. Afterwards, we split Eurasians and archaic humans. At that point, we stop the previous migration and511

only allow for migration between the Eurasian and African populations until the present, at double the previous rate. This is meant to512

generate loci where Eurasians and archaic humans share a more recent common ancestor with each other than with Africans, but513

because of ancient shared ancestry, not recent introgression. We simulated 3 scenarios, in which we set the per-generation ancient514

migration rate to be 0.01, 0.001 and 0.0001, respectively, and the recent migration rate to be 0.02, 0.002 and 0.0002, respectively.515

We call these the strong-, medium-, and weak-migration scenarios, respectively. The stronger the migration, the weaker the ancestral516

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/045237doi: bioRxiv preprint 

https://doi.org/10.1101/045237
http://creativecommons.org/licenses/by-nc-nd/4.0/


structure, as archaic-shared segments in Eurasians will tend to be removed by migration with Africans.517

4.3. Plotting haplotype structure518

The Haplostrips software (Marnetto et al. in prep.) was used to produce plots of haplotypes at candidate regions for AI. This519

software displays each SNP within a predefined region as a column, while each row represents a phased haplotype: the result is a520

heatmap. Each haplotype is labeled with a color that corresponds to the 1000 Genomes panel of its carrier individual. The haplotypes521

were first hierarchically clustered via the single agglomerative method based on Manhattan distances, using the stats library in R.522

The resulting dendrogram of haplotypes was then re-ordered by decreasing similarity to a reference sequence constructed so that it523

contains all the derived alleles found in the archaic genome (Altai Neanderthal or Denisova). The reordering is performed using the524

mininum distance method, so that haplotypes with more derived alleles shared with the archaic population are at the top of the plot.525

Derived alleles are represented as black spots and ancestral alleles are represented as white spots. Variant positions were filtered526

out when the site in the archaic genome had mapping quality less than 30 or genotype quality less than 40, or if the minor allele had527

a population frequency smaller than 5% in each of the present-day human populations included in the plot.528

4.4. Hidden Markov Model529

As haplotypes could look archaic simply because of ancestral structure or incomplete lineage sorting, we used a Hidden Markov530

Model (HMM) described in ref. [21] (which assumes an exponential distribution of admixture tract lengths [106, 107]), in order to531

verify that our candidate regions truly had archaic introgressed segments. This procedure also allowed us to confirm which of the532

archaic genomes was closest to the original source of introgression, as using a distant archaic source as input (for example, the533

Denisova genome when the true source is closest to the Neanderthal genome) produced shorter or less frequent inferred segments534

in the HMM output than when using the closer source genome.535

The HMM we used requires us to specify a prior for the admixture rate. We tried two priors: 2% and 50%. The first was chosen536

because it is consistent with the genome-wide admixture rate for Neanderthals into Eurasians. The second, larger, value was chosen537

because each candidate region should a priori have a larger probability of being admixed, as they were found using statistics that538

are indicative of admixture in the first place. We observe almost no differences in the number of haplotypes inferred using either539

value. For example, for BNC2 - a well known candidate for AI [5, 6] - the frequency of sequences in EUR with inferred introgressed540

haplotypes under the 2% prior is 92.5%, while it is 93.1% under the 50% prior. However, the larger prior leads to longer and less541

fragmented introgressed chunks, as the HMM is less likely to transition into a non-introgressed state between two introgressed states.542

Therefore, all figures we show below were obtained using a 50% admixture prior. The admixture time was set to 1,900 generations543

ago and the recombination rate parameter was set to the local recombination rate in each region, following the recombination rate544

map in ref. [108]. A tract was called as introgressed if the posterior probability for introgression was higher than 90%. Under these545

parameters, the HMM has a specificity of 99.56%, a sensitivity of 36.07% and a false discovery rate of 1.15%.546
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7. Tables803

Table 1: Summary statistics mentioned in the main text.

Statistic Explanation Reference
D D-statistic: measures excess allele sharing between a test population and an outgroup using a

sister population that is more closely related to the test than the ougroup
[1][100]

fD Similar to the D-statistic, but serves to better control for local variation in diversity patterns if one
is interested in finding loci with excess ancestry from an admixing population.

[103]

RD Average ratio of the sequence divergence between an individual from the source population and
an individual from the admixed population, and the sequence divergence between an individual
from the source population and an individual from the non-admixed population. This is computed
by taking the average over all pairs of admixed and non-admixed individuals.

This study

UA,B,C(w, x, y) Number of sites in which any allele is at a frequency lower than w in panel A, higher than x in
panelB and equal to y in panel C .

This study

UA,B,C,D(w, x, y, z) Number of sites in which any allele is at a frequency lower than w in panel A, higher than x in
panelB, equal toy in panel C and equal to z in panelD.

This study

Q95A,B,C(w, y) 95%quantile of the distribution of derived allele frequencies in panelB, for sites where the derived
allele is at a frequency lower than w in panelA and equal to y in panel C .

This study

Q95A,B,C,D(w, y, z) 95%quantile of the distribution of derived allele frequencies in panelB, for sites where the derived
allele is at a frequency lower thanw in panelA, equal to y in panelC and equal to z in panelD.

This study

π Expected heterozygosity, measured as the average of 2p(1−p) over all sites in a window, where
p is the frequency of an arbitrarily chosen allele.

[109]

D′[intro] A measure of linkage disequilibrium. Computed as D/Dmax where D = pXY − pXpY ,
pXY is the frequency of haplotypeXY , pX is the frequency of alleleX , pY is the frequency of
allele Y , andDmax is the maximum theoretical value that D can take. D′[intro] is computed
only using frequencies from the introgressed panel. When we compute this in a window, the value
is obtained by taking the average over all pairs of SNPs.

[110]

D′[comb] D′ computed using haplotype and allele frequencies from the combination of the introgressed and
non-introgressed panels.

[110]

r2[intro] Ameasure of linkage disequilibrium. Computed asD2/(pX(1−pX)pY (1−pY )). r2[intro]
is computed only using frequencies from the introgressed panel. When we compute this in a
window, the value is obtained by taking the average over all pairs of SNPs.

[111]

r2[comb] r2 computed using haplotype and allele frequencies from the combination of the introgressed and
non-introgressed panels.

[111]
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8. Figures804

Figure 1: Schematic illustration of the way the UA,B,C andQ95A,B,C statistics are calculated.
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Figure 2: Demographic models described in the main text.
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Figure 3: Receiver operating characteristic curves for a scenario of adaptive introgression (s=0.1) compared to a scenario of neutrality (s=0), using 1,000
simulations for each case. Populations A and B split from each other 4,000 generations ago, and their ancestral population split from population C 16,000
generations ago. Population sizes were constant and set at 2N = 20, 000. The admixture event occurred 1,600 generations ago from population C to
population B, at rate 2% (top panels) or 25% (bottom panels). The right panels are zoomed-in versions of the left panels.
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Figure 4: Joint distribution ofQ95A,B,C(w, y) and UA,B,C(w, x, y) for different choices of w (1%, 10%) and x (20%, 50%). We set y to 100% in all cases.
100 individuals were sampled from panel A, 100 from panel B and 2 from panel C. The demographic parameters were the same as in Figure 3.
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Figure 5: We computed the number of uniquely shared sites in the autosomes and the X chromosome between particular archaic humans and different choices
of present-day non-African panels X (x-axis) from phase 3 of the 1000 Genomes Project. We used a shared frequency cutoff of 0% (A), 20% (B) and 50%
(C). Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 20%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 20%, 100%).
Den-all = UAfr,X,Den(1%, 20%, 100%). Both = UAfr,X,Nea,Den(1%, 20%, 100%, 100%). Finally, we scaled each of the statistics from panels A-C by the
number of segregating sites in each 1000 Genomes population panel, yielding panels D-F.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/045237doi: bioRxiv preprint 

https://doi.org/10.1101/045237
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: For each population panel from the 1000 Genomes Project, we jointly plotted the U and Q95 statistics with
an archaic frequency cutoff of > 20% within each population. Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%) and
Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 20%, 0%, 100%) and Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all =
UAfr,X,Nea(1%, 20%, 100%) and Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 20%, 100%) and Q95Afr,X,Den(1%, 100%). Both =
UAfr,X,Nea,Den(1%, 20%, 100%, 100%) andQ95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure 7: We partitioned the genome into non-overlapping windows of 40kb. Within each window, we computed UEUR,Out,Nea,Den(1%, x, y, z) and
UEAS,Out,Nea,Den(1%, x, y, z), where Out=EAS+AFR for EUR as the target introgressed population, and Out=EUR+AFR for EAS as the target introgressed
population. We searched for Neanderthal-specific alleles (y = 100%, z = 0%), Denisovan-specific alleles (y = 0%, z = 100%) and alleles present in both
archaic genomes (y = 100%, z = 100%) that were uniquely shared with either EUR or EAS at frequencies above different cutoffs (x=0%, x=20%, x=50%
and x=80%). Windows that fall within the upper tail of the distribution for each modern-archaic population pair are colored in red (P < 0.001 / number of pairs
tested) and those that do not are colored in blue, except for those in the X chromosome, which are in green. Ovals drawn around multiple points contain multiple
windows with uniquely shared alleles that are contiguous. For comparison, the number of high frequency uniquely shared sites between Denisova and Tibetans
is also shown [18], although Tibetans are not included in the 1000 Genomes data and the region is 32 kb long, so this may be an underestimate.
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Figure 8: We plotted the 40kb regions in the 99.9% highest quantiles of both the Q95Out,Pop,Nea,Den(1%, y, z) and UOut,Pop,Nea,Den(1%, x, y, z)
statistics for different choices of target introgressed population (Pop) and outgroup non-introgressed population (Out), and different archaic allele frequency
cutoffs within the target population (x). A) We plotted the extreme regions for continental populations EUR (Out=EAS+AFR), EAS (Out=EUR+AFR) and
Eurasians (EUA, Out=AFR), using a target population archaic allele frequency cutoff x of 20%. B) We plotted the extreme regions from the same statistics
as in panel A, but with a more stringent target population archaic allele frequency cutoff x of 50%. C) We plotted the extreme regions for individual non-
African populations within the 1000 Genomes data, using all African populations (excluding African-Americans) as the outgroup, and a cutoff x of 20%. D)
We plotted the extreme regions from the same statistics as in panel C, but with a more stringent target population archaic allele frequency cutoff x of 50%.
Nea-only = UOut,Pop,Nea,Den(1%, x, 100%, 0%) and Q95Out,Pop,Nea,Den(1%, 100%, 0%). Den-only = UOut,Pop,Nea,Den(1%, x, 0%, 100%) and
Q95Out,Pop,Nea,Den(1%, 0%, 100%). Both = UOut,Pop,Nea,Den(1%, x, 100%, 100%) andQ95Out,Pop,Nea,Den(1%, 100%, 100%).
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Figure 9: We explored the haplotype structure of six candidate regions with strong evidence for AI. For each region, we applied a clustering algorithm to the
haplotypes of particular human populations and then ordered the clusters by decreasing similarity to the archaic human genome with the larger number of
uniquely shared sites (see Methods Section). We also plotted the number of differences to the archaic genome for each human haplotype and sorted them simply
by decreasing similarity. In the latter case, no clustering was performed, so the rows in the cumulative difference plots do not necessarily correspond to the
rows in the adjacent haplotype structure plots. POU2F3: chr11:120120001-120200000. BNC2: chr9:16720001-16760000. LARS: chr5:145480001-145520000.
FAP/IFIH1: chr2:163040001-163120000. OAS1: chr12:113360001-113400000. LIPA: chr10:90920001-90980000.
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Supplementary Tables

Table S1: 95% quantiles of the UA,B,C statistic in a 40 kb window, under different demographic scenarios and archaic allele frequency cutoffs in the outgroup
(A) and target (B) population panels. The demographic scenarios correspond to scenarios A, B, C and G from Figure 2. The bottlenecks were 5X and lasted 200
generations.

Max. outgroup freq. Min. target freq. Scenario 95% quantile under neutrality

0.01 0.8 Admixture (2%) 0

0.01 0.8 Admixture (10%) 0

0.01 0.8 Admixture (25%) 0

0.01 0.8 Ancestral Structure (strong mig.) 0

0.01 0.8 Ancestral Structure (medium mig.) 1

0.01 0.8 Ancestral Structure (weak mig.) 18

0.01 0.8 Admixture (2%), then bottleneck 0

0.01 0.8 Admixture (10%), then bottleneck 0

0.01 0.8 Admixture (25%), then bottleneck 0.05

0.01 0.8 Bottleneck, then admixture (2%) 0

0.01 0.8 Bottleneck, then admixture (10%) 0

0.01 0.8 Bottleneck, then admixture (25%) 0

0.01 0.5 Admixture (2%) 2

0.01 0.5 Admixture (10%) 2

0.01 0.5 Admixture (25%) 5

0.01 0.5 Ancestral Structure (strong mig.) 0

0.01 0.5 Ancestral Structure (medium mig.) 5

0.01 0.5 Ancestral Structure (weak mig.) 22

0.01 0.5 Admixture (2%), then bottleneck 2

0.01 0.5 Admixture (10%), then bottleneck 2

0.01 0.5 Admixture (25%), then bottleneck 8

0.01 0.5 Bottleneck, then admixture (2%) 2

0.01 0.5 Bottleneck, then admixture (10%) 2

0.01 0.5 Bottleneck, then admixture (25%) 6

0.01 0.2 Admixture (2%) 6

0.01 0.2 Admixture (10%) 13

0.01 0.2 Admixture (25%) 29.05

0.01 0.2 Ancestral Structure (strong mig.) 0

0.01 0.2 Ancestral Structure (medium mig.) 9.05

0.01 0.2 Ancestral Structure (weak mig.) 25

0.01 0.2 Admixture (2%), then bottleneck 6

0.01 0.2 Admixture (10%), then bottleneck 17

0.01 0.2 Admixture (25%), then bottleneck 30

0.01 0.2 Bottleneck, then admixture (2%) 8

0.01 0.2 Bottleneck, then admixture (10%) 13.05

0.01 0.2 Bottleneck, then admixture (25%) 29

0.01 0 Admixture (2%) 24

0.01 0 Admixture (10%) 37

0.01 0 Admixture (25%) 39

0.01 0 Ancestral Structure (strong mig.) 3

0.01 0 Ancestral Structure (medium mig.) 12.05

0.01 0 Ancestral Structure (weak mig.) 27

0.01 0 Admixture (2%), then bottleneck 21

0.01 0 Admixture (10%), then bottleneck 34

0.01 0 Admixture (25%), then bottleneck 38

0.01 0 Bottleneck, then admixture (2%) 28

0.01 0 Bottleneck, then admixture (10%) 34.05

0.01 0 Bottleneck, then admixture (25%) 37.05

0.1 0.8 Admixture (2%) 0

0.1 0.8 Admixture (10%) 2

0.1 0.8 Admixture (25%) 2

0.1 0.8 Ancestral Structure (strong mig.) 0

0.1 0.8 Ancestral Structure (medium mig.) 11

0.1 0.8 Ancestral Structure (weak mig.) 23.05
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0.1 0.8 Admixture (2%), then bottleneck 0

0.1 0.8 Admixture (10%), then bottleneck 2

0.1 0.8 Admixture (25%), then bottleneck 2

0.1 0.8 Bottleneck, then admixture (2%) 1

0.1 0.8 Bottleneck, then admixture (10%) 2

0.1 0.8 Bottleneck, then admixture (25%) 2

0.1 0.5 Admixture (2%) 5

0.1 0.5 Admixture (10%) 6

0.1 0.5 Admixture (25%) 12

0.1 0.5 Ancestral Structure (strong mig.) 0

0.1 0.5 Ancestral Structure (medium mig.) 17

0.1 0.5 Ancestral Structure (weak mig.) 29

0.1 0.5 Admixture (2%), then bottleneck 6

0.1 0.5 Admixture (10%), then bottleneck 7

0.1 0.5 Admixture (25%), then bottleneck 12

0.1 0.5 Bottleneck, then admixture (2%) 6

0.1 0.5 Bottleneck, then admixture (10%) 6.05

0.1 0.5 Bottleneck, then admixture (25%) 12

0.1 0.2 Admixture (2%) 12

0.1 0.2 Admixture (10%) 18.05

0.1 0.2 Admixture (25%) 35

0.1 0.2 Ancestral Structure (strong mig.) 4

0.1 0.2 Ancestral Structure (medium mig.) 21

0.1 0.2 Ancestral Structure (weak mig.) 32.05

0.1 0.2 Admixture (2%), then bottleneck 14

0.1 0.2 Admixture (10%), then bottleneck 22

0.1 0.2 Admixture (25%), then bottleneck 37

0.1 0.2 Bottleneck, then admixture (2%) 14

0.1 0.2 Bottleneck, then admixture (10%) 20

0.1 0.2 Bottleneck, then admixture (25%) 37

0.1 0 Admixture (2%) 29

0.1 0 Admixture (10%) 44

0.1 0 Admixture (25%) 45

0.1 0 Ancestral Structure (strong mig.) 11

0.1 0 Ancestral Structure (medium mig.) 25

0.1 0 Ancestral Structure (weak mig.) 34

0.1 0 Admixture (2%), then bottleneck 28

0.1 0 Admixture (10%), then bottleneck 40

0.1 0 Admixture (25%), then bottleneck 44

0.1 0 Bottleneck, then admixture (2%) 35

0.1 0 Bottleneck, then admixture (10%) 41

0.1 0 Bottleneck, then admixture (25%) 45
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Table S2: 95% quantiles of theQ95A,B,C statistic in a 40 kb window, under different demographic scenarios and archaic allele frequency cutoffs in the outgroup
(A) population panel. The demographic scenarios correspond to scenarios A, B, C and G from Figure 2.

Max. outgroup freq. Scenario 95% quantile under neutrality

0.01 Admixture (2%) 0.28

0.01 Admixture (10%) 0.37

0.01 Admixture (25%) 0.54

0.01 Ancestral Structure (strong mig.) 0.04

0.01 Ancestral Structure (medium mig.) 0.67

0.01 Ancestral Structure (weak mig.) 1

0.01 Admixture (2%), then bottleneck 0.31

0.01 Admixture (10%), then bottleneck 0.44

0.01 Admixture (25%), then bottleneck 0.6

0.01 Bottleneck, then admixture (2%) 0.28

0.01 Bottleneck, then admixture (10%) 0.42

0.01 Bottleneck, then admixture (25%) 0.55

0.1 Admixture (2%) 0.47

0.1 Admixture (10%) 0.51

0.1 Admixture (25%) 0.63

0.1 Ancestral Structure (strong mig.) 0.25

0.1 Ancestral Structure (medium mig.) 0.91

0.1 Ancestral Structure (weak mig.) 1

0.1 Admixture (2%), then bottleneck 0.53

0.1 Admixture (10%), then bottleneck 0.58

0.1 Admixture (25%), then bottleneck 0.67

0.1 Bottleneck, then admixture (2%) 0.47

0.1 Bottleneck, then admixture (10%) 0.53

0.1 Bottleneck, then admixture (25%) 0.66
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Table S3: 40 kb windows that lie in the highest 99.9% quantile of bothUA,B,Nea,Den andQ95A,B,Nea,Den for various outgroup panels A and target panels B,
using an outgroup maximum frequency cutoff of 1%, and using different target allele frequency cutoffs (20%, 50%). For each region, we also show other statistics
indicative of AI for reference. We partitioned the 1000 Genomes panels into outgroup panel A and target panel B in different ways (column “Mode”), depending
on the signals we were looking for. These modes of partitioning are as follows. “Populations” = outgroup panel was the combination of all the populations that
were not the target panel. “PopulationsB” = outgroup panel was the combination of all African panels (excluding admixed African-Americans), while target panel
was one of the non-African panels. “Continents” = target panel was either the EUR continental panel (in which case the outgroup was AFR+EAS) or the EAS
continental panel (in which case the outgroup was AFR+EUR). “ContinentsB” = target panel was the EUR continental panel (in which case the outgroup was
AFR+EAS+SAS) or the EAS continental panel (in which case the outgroup was AFR+EUR+SAS) or the SAS continental panel (in which case the outgroup was
AFR+EUR+EAS). “Eurasia” = target panel was EUR+EAS, while outgroup panel was AFR.

https://www.dropbox.com/s/p9k94i2c50rincq/Extreme_gene_table.xlsx?dl=0
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Supplementary Figures

Figure S1: Schematic illustration of the way the UA,B,C,D andQ95A,B,C,D statistics are calculated.
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Figure S2: Histograms of the frequencies of the selected allele in the introgressed population in the present, for each AI scenario under constant population sizes.
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Figure S3: Density of various statistics meant to detect genetic patterns left by adaptive introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive
introgression (s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was the same as in Figure 3 and the admixture rate was set
at 2%. See Table 1 for a definition of the statistics shown.
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Figure S4: Density of various statistics meant to detect genetic patterns left by adaptive introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive
introgression (s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was the same as in Figure 3 and the admixture rate was set
at 10%. See Table 1 for a definition of the statistics shown.
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Figure S5: Density of various statistics meant to detect genetic patterns left by adaptive introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive
introgression (s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was the same as in Figure 3 and the admixture rate was set
at 25%. See Table 1 for a definition of the statistics shown.
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Figure S6: Density of statistics that detect patterns of linkage disequilibrium for various neutral and adaptive introgression scenarios. See Table 1 for a definition
of the statistics shown.
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Figure S7: Receiver operating characteristic curves for adaptive introgression with constant population size, using 1,000 simulations of adaptive introgression,
under various selection (s=0.1, s=0.01) and admixture rate (2%, 10%, 25%) regimes. Populations A and B split from each other 4,000 generations ago, and
their ancestral population split from population C 16,000 generations ago. Population sizes were set at 2N = 20, 000. The admixture event occurred 1,600
generations ago from population C into population B,
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Figure S8: Receiver operating characteristic curves for adaptive introgression with constant population size, using 1,000 simulations of adaptive introgression,
under weak selection (s=0.001) and different admixture rate (2%, 10%, 25%) regimes. Populations A and B split from each other 4,000 generations ago, and
their ancestral population split from population C 16,000 generations ago. Population sizes were set at 2N = 20, 000. The admixture event occurred 1,600
generations ago from population C into population B,
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Figure S9: Joint distribution of Q95A,B,C(1%,100%) and other statistics (RD , π, D and fD). 100 individuals were sampled from panel A, 100 from panel B
and 2 from panel C. The demographic parameters were the same as in Figure 3.
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Figure S10: Receiver operating characteristic curves for adaptive introgression with a pre-admixture bottleneck, using 1,000 simulations under adaptive intro-
gression . We simulated the same demography as in Figure 3, but also included a 5X bottleneck in population B before the introgression event, starting 3,000
generations ago and finishing 2,800 generations ago.
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Figure S11: Receiver operating characteristic curves for adaptive introgression with a post-admixture bottleneck, using 1,000 simulations under adaptive intro-
gression . We simulated the same demography as in Figure 3, but also included a 5X bottleneck in population B after the introgression event, starting 1,400
generations ago and finishing 1,200 generations ago.
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Figure S12: Joint distribution of Q95A,B,C(w, y) and UA,B,C(w, x, y) for different choices of w (1%, 10%) and x (20%, 50%). We set y to 100% in all
cases. 100 individuals were sampled from panel A, 100 from panel B and 2 from panel C. In this case, we included a 5X bottleneck in population B after the
introgression event, starting 1,400 generations ago and finishing 1,200 generations ago.
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Figure S13: Joint distribution ofQ95A,B,C(1%,100%) and other statistics (RD , π,D and fD). 100 individuals were sampled from panel A, 100 from panel B
and 2 from panel C. In this case, we included a 5X bottleneck in population B after the introgression event, starting 1,400 generations ago and finishing 1,200
generations ago.
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Figure S14: Receiver operating characteristic curves for adaptive introgression with an intermediate neutrality period. We simulated the same demography as
in Figure 3, but changed the selection coefficient of the beneficial variant to be 0 right after the introgression event (1,600 generations ago). If still present in
populationB, the variant regained its original coefficient 800 generations ago.
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Figure S15: Receiver operating characteristic curves for a selective sweep from de novo mutation. We simulated the same demography as in Figure 3, but rather
than introducing the beneficial variant in the introgressed population via admixture from an archaic population, we introduced it by mutation in the introgressed
population (B) 3,900 generations ago.
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Figure S16: Receiver operating characteristic curves for selection from standing variation. We simulated the same demography as in Figure 3, but rather than
introducing the beneficial variant in the introgressed population via admixture from an archaic population, we introduced it with a starting frequency of 20% in the
introgressed population (B) 3,900 generations ago.
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Figure S17: Receiving operating characteristic curves for adaptive introgression against a neutral ancestral structure model with strong migration rates. The
demographic scenario for adaptive introgression was the same as in Figure 3. For a description of the ancestral structure model, see main text.
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Figure S18: Receiving operating characteristic curves for adaptive introgression against a neutral ancestral structure model with intermediate migration rates.
The demographic scenario for adaptive introgression was the same as in Figure 3. For a description of the ancestral structure model, see main text.
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Figure S19: Receiving operating characteristic curves for adaptive introgression against a neutral ancestral structure model with weak migration rates. The
demographic scenario for adaptive introgression was the same as in Figure 3. For a description of the ancestral structure model, see main text.
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Figure S20: We computed D(X,YRI,Y,Chimpanzee) for different choices of present-day human panels X (x-axis) from phase 3 of the 1000 Genomes Project, and
for two high-coverage archaic human genomes Y: Altai Neanderthal (blue) and Denisova (red). The low value of the right-most panel is due to that panel being
composed of African-Americans, which have a higher proportion of African ancestry than the other panels.
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Figure S21: We computed the number of uniquely shared sites in the X chromosome between particular archaic humans genomes and different choices of
present-day non-African human panels X (x-axis) from phase 3 of the 1000 Genomes Project, using a shared frequency cutoff of 0% (top-left panel), 20% (top-
right panel) and 50% (bottom-left panel). Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 20%, 0%, 100%). Nea-all
= UAfr,X,Nea(1%, 20%, 100%). Den-all = UAfr,X,Den(1%, 20%, 100%). Both = UAfr,X,Nea,Den(1%, 20%, 100%, 100%). We also computed the
quantile statistics Q95 for different choices of present-day non-African human panels (x-axis) from phase 3 of the 1000 Genomes Project (bottom-right panel).
Nea-only = Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = Q95Afr,X,Nea(1%, 100%). Den-all =
Q95Afr,X,Den(1%, 50%, 100%). Both =Q95Afr,X,Nea,Den(1%, 100%, 100%).

Figure S22: We computed the quantile statisticsQ95 for different choices of present-day non-African human panels (x-axis) from phase 3 of the 1000 Genomes
Project (D). Nea-only = Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = Q95Afr,X,Nea(1%, 100%).
Den-all =Q95Afr,X,Den(1%, 100%). Both =Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure S23: For each population panel from the 1000 Genomes Project, we jointly plotted the U and Q95 statistics with an archaic fre-
quency cutoff of > 0% within each population. Nea-only = UAfr,X,Nea,Den(1%, 0%, 100%, 0%) and Q95Afr,X,Nea,Den(1%, 100%, 0%).
Den-only = UAfr,X,Nea,Den(1%, 0%, 0%, 100%) and Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 0%, 100%) and
Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 0%, 100%) andQ95Afr,X,Den(1%, 100%). Both = UAfr,X,Nea,Den(1%, 0%, 100%, 100%)
andQ95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure S24: Effect of bottlenecks after the admixture event on the distribution of various statistics under introgression and neutrality.
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Figure S25: Boxplots showing the effect of different types of bottlenecks on the distribution of U and Q95 under neutrality. We performed 1,000 simulations
for each of 6 different 3-population scenarios with 25% admixture from population C into population B, following the models described in Figure 2. Scenario 1:
Constant population size (Figure 2.A). Scenario 2: Pre-admixture 5X bottleneck for 200 generations (Figure 2.B). Scenario 3: Post-admixture 5X bottleneck for
200 generations (Figure 2.C). Scenario 4: Post-admixture 5X bottleneck for 400 generations. Scenario 5: Post-admixture 10X bottleneck for 200 generations.
Scenario 6: Post-admixture 10X bottleneck for 400 generations.
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Figure S26: Violin plots showing the effect of different types of bottlenecks on the distribution ofU andQ95 under neutrality (this is the same data as Figure S25).
We performed 1,000 simulations for each of 6 different 3-population scenarios with 25% admixture from population C into population B, following the models
described in Figure 2. Scenario 1: Constant population size (Figure 2.A). Scenario 2: Pre-admixture 5X bottleneck for 200 generations (Figure 2.B). Scenario 3:
Post-admixture 5X bottleneck for 200 generations (Figure 2.C). Scenario 4: Post-admixture 5X bottleneck for 400 generations. Scenario 5: Post-admixture 10X
bottleneck for 200 generations. Scenario 6: Post-admixture 10X bottleneck for 400 generations.
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Figure S27: For each population panel from the 1000 Genomes Project, we jointly plotted the U and Q95 statistics with
an archaic frequency cutoff of > 50% within each population. Nea-only = UAfr,X,Nea,Den(1%, 50%, 100%, 0%) and
Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 50%, 0%, 100%) and Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all =
UAfr,X,Nea(1%, 50%, 100%) and Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 50%, 100%) and Q95Afr,X,Den(1%, 100%). Both =
UAfr,X,Nea,Den(1%, 50%, 100%, 100%) andQ95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure S28: Uniquely shared archaic alleles in an East Asian (EAS) panel. Joint distribution of Q95EUR+AFR,EAS,Nea,Den(1%, y, z) and
UEUR+AFR,EAS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S29: Uniquely shared archaic alleles in an European (EUR) panel. Joint distribution of Q95EAS+AFR,EUR,Nea,Den(1%, y, z) and
UEAS+AFR,EUR,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S30: Uniquely shared archaic alleles in a South Asian (SAS) panel. Joint distribution of Q95EAS+EUR+AFR,SAS,Nea,Den(1%, y, z) and
UEAS+EUR+AFR,SAS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50%
in right column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the
top panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the
bottom panels.
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Figure S31: Uniquely shared archaic alleles in a Eurasian (EUA=EUR+SAS+EAS) panel. Joint distribution of Q95AFR,EUR+SAS+EAS,Nea,Den(1%, y, z)
and UAFR,EUR+SAS+EAS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50%
in right column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the
top panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the
bottom panels.
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Figure S32: Uniquely shared archaic alleles in a Bengali (BEB) panel. Joint distribution of Q95AFR,BEB,Nea,Den(1%, y, z) and
UAFR,BEB,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S33: Uniquely shared archaic alleles in a Chinese Dai (CDX) panel. Joint distribution of Q95AFR,CDX,Nea,Den(1%, y, z) and
UAFR,CDX,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S34: Uniquely shared archaic alleles in a Central European (CEU) panel. Joint distribution of Q95AFR,CEU,Nea,Den(1%, y, z) and
UAFR,CEU,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S35: Uniquely shared archaic alleles in a Han Chinese (CHB) panel. Joint distribution of Q95AFR,CHB,Nea,Den(1%, y, z) and
UAFR,CHB,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S36: Uniquely shared archaic alleles in a Southern Han Chinese (CHS) panel. Joint distribution of Q95AFR,BEB,Nea,Den(1%, y, z) and
UAFR,CHS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S37: Uniquely shared archaic alleles in a Colombian (CLM) panel. Joint distribution of Q95AFR,CLM,Nea,Den(1%, y, z) and
UAFR,CLM,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S38: Uniquely shared archaic alleles in a Finnish (FIN) panel. Joint distribution of Q95AFR,FIN,Nea,Den(1%, y, z) and
UAFR,FIN,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S39: Uniquely shared archaic alleles in a British (GBR) panel. Joint distribution of Q95AFR,GBR,Nea,Den(1%, y, z) and
UAFR,GBR,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S40: Uniquely shared archaic alleles in a Gujarati Indian (GIH) panel. Joint distribution of Q95AFR,GIH,Nea,Den(1%, y, z) and
UAFR,GIH,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S41: Uniquely shared archaic alleles in an Iberian (IBS) panel. Joint distribution of Q95AFR,IBS,Nea,Den(1%, y, z) and
UAFR,IBS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S42: Uniquely shared archaic alleles in an Indian Telugu (ITU) panel. Joint distribution of Q95AFR,ITU,Nea,Den(1%, y, z) and
UAFR,ITU,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right column
panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S43: Uniquely shared archaic alleles in a Japanese (JPT) panel. Joint distribution of Q95AFR,JPT,Nea,Den(1%, y, z) and
UAFR,JPT,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S44: Uniquely shared archaic alleles in a Kinh (KHV) panel. Joint distribution of Q95AFR,KHV,Nea,Den(1%, y, z) and
UAFR,KHV,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S45: Uniquely shared archaic alleles in a Mexican (MXL) panel. Joint distribution of Q95AFR,MXL,Nea,Den(1%, y, z) and
UAFR,MXL,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S46: Uniquely shared archaic alleles in a Peruvian (PEL) panel. Joint distribution of Q95AFR,PEL,Nea,Den(1%, y, z) and
UAFR,PEL,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S47: Uniquely shared archaic alleles in a Punjabi (PJL) panel. Joint distribution of Q95AFR,PJL,Nea,Den(1%, y, z) and
UAFR,PJL,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S48: Uniquely shared archaic alleles in a Puerto Rican (PUR) panel. Joint distribution of Q95AFR,PUR,Nea,Den(1%, y, z) and
UAFR,PUR,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.
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Figure S49: Uniquely shared archaic alleles in a Sri Lankan Tamil (STU) panel. Joint distribution of Q95AFR,STU,Nea,Den(1%, y, z) and
UAFR,STU,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right col-
umn panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom panels.

48

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/045237doi: bioRxiv preprint 

https://doi.org/10.1101/045237
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S50: Uniquely shared archaic alleles in a Toscani (TSI) panel. Joint distribution of Q95AFR,TSI,Nea,Den(1%, y, z) and
UAFR,TSI,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared with both archaic human genome are displayed in the bottom
panels.
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Figure S51: We explored the haplotype structure of OCA2, TYRP1, SLC16A11 and MUC19. We applied a clustering algorithm to the haplotypes of particular
human populations and then ordered the clusters by decreasing similarity to the archaic human genome with the larger number of uniquely shared sites. We also
plotted the number of differences to the closest archaic haplotype for each human haplotype and sorted them simply by decreasing similarity. Note that, in the latter
case, no clustering was performed, so the rows in the cumulative difference plots do not necessarily correspond to the rows in the adjacent haplotype structure
plots. OCA2: chr15:28160001-28200000. TYRP1: chr9:12680001-12720000. SLC16A11: chr17:6880001-6960000. MUC19: chr12:40800001-40840000.

Figure S52: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the POU2F3 region, using the Altai
Neanderthal genome as the archaic source.
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Figure S53: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the BNC2 region, using the Altai Neanderthal
genome as the archaic source.
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Figure S54: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the OAS region, using the Altai Neanderthal
genome as the archaic source.
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Figure S55: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the LARS region, using the Altai Neanderthal
genome as the archaic source.
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Figure S56: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the FAP/IFIH1 region, using the Altai
Neanderthal as the archaic source.
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Figure S57: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in theCHD2 region, using the Altai Neanderthal
genome as the archaic source.
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Figure S58: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the TLR1-6 region, using the Altai Nean-
derthal genome as the archaic source.
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Figure S59: Introgressed tracks inferred in the four Non-African 1000Genomes continental panels by an HMM [21] in the ZFHX3 region, using the Altai Neanderthal
genome as the archaic source.
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Figure S60: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the LIPA region, using the Denisova genome
as the archaic source.
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Figure S61: Introgressed tracks inferred in the four Non-African 1000 Genomes continental panels by an HMM [21] in the MUSTN1 region, using the Denisova
genome as the archaic source.
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