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Abstract

Comparisons of DNA from archaic and modern humans show that these
groups interbred, and in some cases received an evolutionary advantage from
doing so. This process - adaptive introgression - may lead to a faster rate of
adaptation than is predicted from models with mutation and selection alone.
Within the last couple of years, a series of studies have identified regions of
the genome that are likely examples of adaptive introgression. In many cases,
once a region was ascertained as being introgressed, commonly used statistics
based on both haplotype as well as allele frequency information were em-
ployed to test for positive selection. Introgression by itself, however, changes
both the haplotype structure and the distribution of allele frequencies, thus
confounding traditional tests for detecting positive selection. Therefore, pat-
terns generated by introgression alone may lead to false inferences of positive
selection. Here we explore models involving both introgression and positive
selection to investigate the behavior of various statistics under adaptive in-
trogression. In particular, we find that the number and allelic frequencies of
sites that are uniquely shared between archaic humans and specific present-
day populations are particularly useful for detecting adaptive introgression.
We then examine the 1000 Genomes dataset to identify regions that were
likely subject to adaptive introgression and discuss some of the most promis-
ing candidate genes located in these regions.
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1. Introduction1

There is a growing body of evidence supporting the idea that certain2

modern human populations admixed with archaic groups of humans after3

expanding out of Africa. In particular, non-African populations have 1− 2%4

Neanderthal ancestry [1, 2], while Melanesians and East Asians have 3% and5

0.2% ancestry, respectively, from Denisovans [3, 4, 2].6

Recently, it has become possible to identify the fragments of the human7

genome that were introgressed and survive in present-day individuals [5, 6,8

2, 7]. Researchers have also detected which of these introgressed regions9

are present at high frequencies in some present-day non-Africans but not10

others. Some of these regions are likely to have undergone positive selection11

in those populations after they were introgressed, a phenomenon known as12

adaptive introgression (AI). One particularly striking example of AI is the13

gene EPAS1 [8] which confers a selective advantage in Tibetans by making14

them less prone to hypoxia at high altitudes [9, 10, 11, 12, 13, 14, 15, 16]. The15

selected Tibetan haplotype is known to have been introduced in the human16

gene pool by Denisovans or a population closely related to them [17, 18].17

In this study, we use simulations to assess the power to detect AI using18

different summary statistics that do not require the introgressed fragments to19

be identified a priori. Some of these are inspired by the signatures observed20

in EPAS1, which contains an elevated number of sites with alleles uniquely21

shared between the Denisovan genome and Tibetans. We then apply these22

statistics to real human genomic data from phase 3 of the 1000 Genomes23

Project [19], to detect AI in human populations, and find candidate genes.24

While these statistics are sensitive to adaptive introgression, they may also25

be sensitive to other phenomena that generate genomic patterns similar to26

those generated by AI, like ancestral population structure and incomplete27

lineage sorting. These processes, however, should not generate long regions28

of the genome where haplotypes from the source and the recipient popula-29

tion are highly similar. To assess whether the candidates we found are truly30

generated by AI, we explored the haplotype structure of some of the most31

promising candidates, and used a probabilistic method [20] that infers intro-32

gressed segments along the genome by looking at the spatial arrangement of33

SNPs that are consistent with introgression. This allows us to verify that34

the candidate regions contain introgressed haplotypes at high frequencies: a35

hallmark of AI.36
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2. Methods37

2.1. Summary statistics sensitive to adaptive introgression38

Several statistics have been previously deployed to detect AI events (re-39

viewed in Racimo et al. [21]). We briefly describe these below, as well as40

three new statistics tailored specifically to find this signal (Table 1). One41

of the simplest approaches consists of applying the D statistic [1, 22] lo-42

cally over windows of the genome. The D statistic was originally applied43

to compare a single human genome against another human genome, so as44

to detect excess shared ancestry between one of the genomes and a genome45

from an outgroup population. Application of this statistic comparing non-46

Africans and Africans served as one of the pieces of evidence in support of47

Neanderthal admixture into non-Africans. However, it can also be computed48

from large panels of multiple individuals instead of single genomes. This49

form of the D statistic has been applied locally over windows of the genome50

to detect regions of excess shared ancestry between an admixed population51

and a source population [23, 24].52

The D statistic, however, can be confounded by local patterns of diversity,53

as regions of low diversity may artificially inflate the statistic even when a54

region was not adaptively introgressed. To correct for this, Martin et al. [25]55

developed a similar statistic called fD which is less sensitive to differences56

in diversity along the genome. Both of these patterns exploit the excess57

relatedness between the admixed and the source population.58

AI is also expected to increase linkage disequilibrium (LD), as an intro-59

gressed fragment that rises in frequency in the population will have several60

closely linked loci that together will be segregating at different frequencies61

than they were in the recipient population before admixture. Thus, two well-62

known statistics that are informative about the amount of LD in a region -63

D′ and r2 - could also be informative about adaptive introgression. To apply64

them over regions of the genome, we can take the average of each of the two65

statistics over all SNP pairs in a window. In the section below, we calcu-66

late these statistics in two ways: a) using the introgressed population only67

(D′[intro] and r2[intro]), and b) using the combination of the introgressed68

and the non-introgressed populations (D′[comb] and r2[comb]).69

We also introduce three new statistics that one would expect, a priori, to70

be particularly effective at identifying windows of the genome that are likely71

to have undergone adaptive introgression. First, in a region under adaptive72

introgression, one would expect the divergence between an individual from73
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the source population and an admixed individual to be smaller than the74

divergence between an individual from the source population and a non-75

admixed individual. Thus, one could take the ratio of these two divergences76

over windows of the genome. One can then take the average of this ratio77

over all individuals in the admixed and non-admixed panels. This average78

should be larger if the introgressed haplotype is present in a large number of79

individuals of the admixed population. We call this statistic RD.80

Second, for a window of arbitrary size, let UA,B,C(w, x, y) be defined as81

the number of sites where a sample C from an archaic source population82

(which could be as small as a single diploid individual) has a particular allele83

at frequency y, and that allele is at a frequency smaller than w in a sample A84

of a population but larger than x in a sample B of another population (Figure85

1). In other words, we are looking for sites that contain alleles shared between86

an archaic human genome and a test population, but absent or at very low87

frequencies in an outgroup (usually non-admixed) population. Below, we88

denote panels A, B and C as the “outgroup”, “target” and “bait” panels,89

respectively. For example, suppose we are looking for Neanderthal adaptive90

introgression in the Han Chinese (CHB). In that case, we can consider CHB91

as our target panel, and use Africans as the outgroup panel and a single92

Neanderthal genome as the bait. If UAFR,CHB,Nea(1%, 20%, 100%) = 4 in a93

window of the genome, that means there are 4 sites in that window where94

the Neanderthal genome is homozygous for a particular allele and that allele95

is present at a frequency smaller than 1% in Africans but larger than 20% in96

Han Chinese. In other words, there are 4 sites that are uniquely shared at97

more than 20% frequency between Han Chinese and Neanderthal, but not98

with Africans.99

This statistic can be further generalized if we have samples from two100

different archaic populations (for example, a Neanderthal genome and a101

Denisova genome). In that case, we can define UA,B,C,D(w, x, y, z) as the102

number of sites where the archaic sample C has a particular allele at fre-103

quency y and the archaic sample D has that allele at frequency z, while the104

same allele is at a frequency smaller than w in an outgroup panel A and larger105

than x in a target panel B (Figure S1). For example, if we were interested in106

looking for Neanderthal-specific AI, we could set y = 100% and z = 0%, to107

find alleles uniquely shared with Neanderthal, but not Denisova. If we were108

interested in archaic alleles shared with both Neanderthal and Denisova, we109

could set y = 100% and z = 100%.110

Another statistic that we found to be useful for finding AI events is111
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Q95A,B,C(w, y), and is here defined as the 95th percentile of derived frequen-112

cies in an admixed sample B of all SNPs that have a derived allele frequency113

y in the archaic sample C, but where the derived allele is at a frequency114

smaller than w in a sample A of a non-admixed population (Figure 1). For115

example, Q95AFR,CHB,Nea(1%, 100%) = 0.65 means that if one computes the116

95% quantile of all the Han Chinese derived allele frequencies of SNPs where117

the Neanderthal genome is homozygous derived and the derived allele has118

frequency smaller than 1% in Africans, that quantile will be equal to 0.65.119

As before, we can generalize this statistic if we have a sample D from a sec-120

ond archaic population. Then, Q95A,B,C,D(w, y, z) is the 95th percentile of121

derived frequencies in the sample B of all SNPs that have a derived allele122

frequency y in the archaic sample C and derived allele frequency z in the123

archaic sample D, but where the derived allele is at a frequency smaller than124

w in the sample A (Figure S1).125

In the section below, we evaluate the sensitivity and specificity of all126

these statistics using simulations. We also evaluate the effect of adaptive127

introgression on a common statistic that is indicative of population variation128

- expected heterozygosity (Het), as this statistic was previously found to be129

affected by archaic introgression in a serial founder model of human history130

[26]. We measured Het as the average of 2*p*(1-p) over all sites in a window,131

where p is the sample derived allele frequency in the introgressed population.132

2.2. Simulations133

None of these statistics have been explicitly vetted under scenarios of AI134

so far, though the performance of D and fD has been previously evaluated for135

detecting local introgression [25]. Therefore, we aimed to test how each of the136

statistics described above performed in detecting AI. We began by simulating137

a three population tree in Slim [27] with constant Ne = 10, 000, mutation rate138

equal to 1.5 ∗ 10−8 per bp per generation, recombination rate equal to 10−8
139

per bp per generation, and split times emulating the African-Eurasian and140

Neanderthal-modern human split times (4,000 and 16,000 generations ago,141

respectively). We allowed for admixture between the most distantly diverged142

population and one of the closely related sister populations, at different rates:143

2%, 10% and 25% (Figure 2.A). This is meant to represent Neanderthal ad-144

mixture into Eurasians, with Africans as the non-admixed population. Under145

each of the three admixture rate scenarios, we simulated regions that were146

evolving neutrally, regions where the central SNP was under weak positive147
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additive selection (s = 0.01) and regions with a central SNP under strong148

selection (s = 0.1).149

We also tested how the statistics perform at detecting adaptive introgres-150

sion when the alternative model is not a neutral introgression model, but a151

neutral model with ancestral structure (Figure 2.G). We followed a model152

described in Huerta-Sanchez et al (2014) and simulated a population in which153

an African population splits from archaic humans before Eurasians, but is154

allowed to exchange migrants with them. Afterwards, we split Eurasians155

and archaic humans. At that point, we stop the previous migration and156

only allow for migration between the Eurasian and African populations un-157

til the present, at double the previous rate. This is meant to generate loci158

where Eurasians and archaic humans share a more recent common ancestor159

with each other than with Africans, but because of ancient shared ances-160

try, not recent introgression. We simulated 3 scenarios, in which we set the161

per-generation ancient(recent) migration rate to be 0.01(0.02), 0.001(0.002)162

and 0.0001(0.0002). We call these the strong-, medium-, and weak-migration163

scenarios, respectively. The stronger the migration, the weaker the ancestral164

structure, as archaic-shared segments in Eurasians will tend to be removed165

by migration with Africans.166

2.3. Plotting haplotype structure167

The Haplostrips software (Marnetto et al. in prep.) was used to produce168

plots of haplotypes at candidate regions for AI. This software displays each169

SNP within a predefined region as a column, while each row represents a170

phased haplotype: the result is a heatmap. Each haplotype is labeled with171

a color that corresponds to the 1000 Genomes panel of its carrier individual.172

The haplotypes were first hierarchically clustered via the single agglomer-173

ative method based on Manhattan distances, using the stats library in R.174

The resulting dendrogram of haplotypes was then re-ordered by decreasing175

similarity to a reference sequence constructed so that it contains all the de-176

rived alleles found in the archaic genome (Altai Neanderthal or Denisova).177

The reordering is performed using the mininum distance method, so that178

haplotypes with more derived alleles shared with the archaic population are179

at the top of the plot. Derived alleles are represented as black spots and180

ancestral alleles are represented as white spots. Variant positions were fil-181

tered out when the site in the archaic genome had mapping quality less than182

30 or genotype quality less than 40, or if the minor allele had a population183
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frequency smaller than 5% in each of the present-day human populations184

included in the plot.185

2.4. Hidden Markov Model186

As haplotypes could look archaic simply because of ancestral structure187

or incomplete lineage sorting, we used a Hidden Markov Model (HMM) de-188

scribed in ref. [20] (which assumes an exponential distribution of admixture189

tract lengths [28, 29]), in order to verify that our candidate regions truly had190

archaic introgressed segments. This procedure also allowed us to confirm191

which of the archaic genomes was closest to the original source of introgres-192

sion, as using a distant archaic source as input (for example, the Denisova193

genome when the true source is closest to the Neanderthal genome) pro-194

duced shorter or less frequent inferred segments in the HMM output than195

when using the closer source genome.196

The HMM we used requires us to specify a prior for the admixture rate.197

We tried two priors: 2% and 50%. The first was chosen because it is consis-198

tent with the genome-wide admixture rate for Neanderthals into Eurasians.199

The second, larger, value was chosen because each candidate region should a200

priori have a larger probability of being admixed, as they were found using201

statistics that are indicative of admixture in the first place. We observe al-202

most no differences in the number of haplotypes inferred using either value.203

However, the larger prior leads to longer and less fragmented introgressed204

chunks, as the HMM is less likely to transition into a non-introgressed state205

between two introgressed states, so all figures we show below were obtained206

using a 50% admixture prior. The admixture time was set to 1,900 gen-207

erations ago and the recombination rate was set to 2.3 ∗ 10−8 per bp per208

generation. A tract was called as introgressed if the posterior probability for209

introgression was higher than 90%.210

2.5. Testing for enrichment in genic regions211

To test for whether uniquely shared archaic alleles at high frequencies were212

enriched in genic regions of the genome, we looked at archaic alleles at high213

frequency in any of the Non-African panels that were also at low frequency214

(< 1%) in Africans. As background, we used all archaic alleles that were at215

any frequency larger than 0 in the same Non-African populations, and that216

were also at low frequency in Africans. We then tested whether the high-217

frequency archaic alleles tended to occur in genic regions more often than218

expected.219
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SNPs in introgressed blocks will tend to cluster together and have similar220

allele frequencies, which could cause a spurious enrichment signal. To correct221

for the fact that SNPs at similar allele frequencies will cluster together (as222

they will tend to co-occur in the same haplotypes), we performed linkage223

disequilibrium (LD) pruning using two methods. In one (called “LD-1”), we224

downloaded the approximately independent European LD blocks published225

in ref. [30]. For each set of high frequency derived sites, we randomly sampled226

one SNP from each block. In a different approach (called “LD-2”), for each227

set of high frequency derived sites, we subsampled SNPs such that each SNP228

was at least 200 kb apart from each other. We then tested these two types229

of LD-pruned SNP sets against 1000 SNP sets of equal length that were also230

LD-pruned and that were obtained randomizing frequencies and collecting231

SNPs in the same ways as described above.232

3. Results233

3.1. Simulations234

3.1.1. Statistics based on shared allele configurations235

We tested the performance of the statistics described above under scenar-236

ios of adaptive introgression. Figures S2, S3 and S4 show the distribution of237

statistics that rely on patterns of shared allele configurations between source238

and introgressed populations (Het, D, fD, UA,B,C , Q95A,B,C and RD), for dif-239

ferent choices of the selection coefficient s, and under 2%, 10% and 25% ad-240

mixture rates, respectively. For Q95A,B,C(w, 100%) and UA,B,C(w, x, 100%),241

we tested different choices of w (1%, 10%) and x (0%, 20%, 50% and 80%).242

Some statistics, like Q95A,B,C(1%, 100%) and fD show strong separation be-243

tween the selection regimes. For example, with an admixture rate of 2%,244

Q95A,B,C(1%, 100%) has 100% sensitivity at a specificity of 99%, for both245

s=0.1 and s=0.01.246

Other statistics are not as effective, however. For example, UA,B,C(1%, 0%, 100%)247

shows some power when the admixture rate is low (2%), but almost no power248

when the admixture rate is high (25%). This is because setting the test pop-249

ulation archaic allele frequency minimum threshold at x = 0% means that250

any site with some archaic allele in the test panel will be counted, regardless251

of the allele frequency, so long as the archaic allele is at low frequency in252

the outgroup panel. At high admixture rates, low- and medium-frequency253

archaic alleles would naturally occur under neutrality, so they would not be254

informative about AI.255
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3.1.2. LD-based statistics256

In turn, Figure S5 shows the distribution of LD-based statistics under257

different selection and admixture rate regimes. Note that while D′[intro],258

D′[comb] and r2[comb] are generally increased by adaptive introgression, this259

is not the case with r2[intro] under strong selection and admixture regimes.260

This is because r2 will tend to decrease if the minor allele frequency is very261

small, which will occur if this frequency is only measured in the population262

undergoing adaptive introgression. In general, these statistics are not as263

powerful for detecting AI as allele configuration statistics like U or Q95.264

3.1.3. Receiving operator curves265

In Figures 3 and S6, we plot receiving operator curves (ROC) of all266

these statistics, for various selection and admixture regimes. In general,267

QA,B,C(1%, 100%), QA,B,C(10%, 100%) and fD are very powerful statistics268

for detecting AI. The number of uniquely shared sites UA,B,C(x, y, z) is also269

powerful, so long as the population in the target panel (y) is large. Addition-270

ally, for different choices of y, using w = 1% yields a more powerful statistic271

than using w = 10%.272

3.1.4. Joint distributions273

We were also interested in the joint distribution of pairs of these statis-274

tics. Figure S7 shows the joint distribution of Q95A,B,C(1%, 100%) in the275

y-axis and four other statistics (RD, Het, D and fD) in the x-axis, under dif-276

ferent admixture and selection regimes. One can observe, for example, that277

while QA,B,C(1%, 100%) increases with increasing selection intensity and ad-278

mixture rates, Het increases with increasing admixture rates, but decreases279

with increasing selection intensity. Thus, under AI the two forces cancel each280

other out, and we obtain a similar value of Het as under neutrality. Fur-281

thermore, the joint distributions of Q95A,B,C(1%, 100%) and fD or RD show282

particularly good separation among the different AI scenarios.283

Another joint distribution that is especially good at separating different284

AI regimes is the combination of Q95A,B,C(w, 100%) and UA,B,C(w, x, 100%).285

In Figure 4, we show this joint distribution, for different choices of w (1%,286

10%) and x (20%, 50%). Here, with increasing intensity of selection and287

admixture, the number of uniquely shared sites and the quantile statistic288

increase, but the quantile statistic tends to only reach high values when289

selection is strong, even if admixture rates are low.290
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3.1.5. Alternative demographic scenarios291

We evaluated the performance of our statistics under various alternative292

demographic scenarios. First, we simulated a 5X bottleneck occurring in293

population B 1,600 generations before the admixture event, and lasting 200294

generations, to observe its effects on the power of the statistics for detecting295

AI (Figure 2.B). Though we observe a reduction in power - most evident in296

the heterozygosity statistics - none of the statistics are very strongly affected297

by this event (Figure S8). We also simulated a bottleneck of equal size but298

occurring after the admixture event - starting 1,400 generations ago, and299

lasting 200 generations (Figure 2.C). In this case, the sensitivity of all the300

statistics is strongly reduced when the admixture rate is low (Figure S9). For301

example, when looking at the raw values of the UA,B,C andQ95A,B,C statistics,302

we observe that for low admixture rates the distribution under selection303

has more overlap with the distribution under neutrality, which explains the304

low power (Figures S10, S11). Additionally, UA,B,C seems to display more305

elevated values under neutrality than in the constant population size model.306

However, the relative performance of each statistic with respect to all the307

others does not appear to change much (Figure S9).308

We next explored a model where the introgressed haplotype was not im-309

mediately adaptive in the Eurasian population, but instead underwent an310

intermediate period of neutral drift, before it becomes advantageous (Figure311

2.D). In such a situation, our power to detect AI is reduced, for all statistics312

(Figure S12). This is particularly an issue when the admixture rate is low,313

as in those cases the starting frequency of the selected allele in the Eurasian314

population is low, so it is more likely to drift to extinction during the neutral315

period, before it can become advantageous.316

We also evaluated the performance of our statistics under selective sce-317

narios that did not involve adaptive introgression, to check which of them318

were sensitive to these models and which were not. Under a model of selec-319

tion from de novo mutation (SDN, Figure 2.E), in which a single mutation320

appears in the receiving population after the admixture event, the heterozy-321

gosity and linkage disequilbrium statistics (r2[intro] and D′[intro]) are the322

most sensitive ones (Figure S13). This is expected, given that classical se-323

lective sweeps are known to strongly affect patterns of heterozygosity and324

linkage disequilibrium in the neighborhood of the selected site [31, 32, 33].325

Since all other statistics have very poor sensitivity to detect SDN, we expect326

to be able to distinguish signatures generated from SDN and AI.327
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We also simulated a model of selection from standing variation (Figure328

2.F), by randomly selecting 20% of haplotypes within the introgressing popu-329

lation to be advantageous, after the introgression event had already occurred.330

In this case, all statistics perform poorly, especially when admixture is low.331

Interestingly, when admixture is high (Figure S14), Q95A,B,C(1%, 100%) and332

UA,B,C(1%, 0%, 100%) are the best performing statistics. This is likely be-333

cause some of the haplotypes that are randomly chosen to be selected also334

happen to be ancestrally polymorphic and present in the archaic humans.335

When we set ancestral structure to be our null model, we observe dif-336

ferent behaviors depending on the strength of the migration rates. When337

the migration rates are strong (Figure S15), we have excellent power to de-338

tect AI with several statistics, including Q95A,B,C(1%, 100%), D, fD, RD339

and UA,B,C(1%, 50%, 100%). When the rates are of medium strength (Fig-340

ure S16), the power is slightly reduced, but the same statistics are the ones341

that perform best. When the migration rates are weak - meaning ancestral342

structure is very strong - Q95A,B,C(1%, 100%) loses power, and the best-343

performing statistics are RD, D and fD (Figure S17). We note, though,344

that the genome-wide D observed under this last ancestral structure model345

(D = 0.24) is much more extreme than the genome-wide D observed em-346

pirically between any Eurasian population and Neanderthals or Denisovans,347

suggesting that if there was ancestral structure between archaic and modern348

humans, it was likely not of this magnitude.349

3.2. Global features of uniquely shared archaic alleles350

Before identifying candidate genes for adaptive introgression, we investi-351

gated the frequency and number of uniquely shared sites at the genome-wide352

level. Specifically, we wanted to know whether human populations varied353

in the number of sites with uniquely shared archaic alleles, and whether354

they also varied in the frequency distribution of these alleles. Therefore,355

we computed UA,B,Nea,Den(1%,x,y,z) and Q95A,B,Nea,Den(1%,y,z) for different356

choices of x, y and z. We used each of the non-African panels in the 1000357

Genomes Project phase 3 data [19] as the “test” panel (B), and chose the358

outgroup panel (A) to be the combination of all African populations (YRI,359

LWK, GWD, MSL, ESN), excluding admixed African-Americans. When set-360

ting x = 0% (i.e. not imposing a frequency cutoff in the target panel B),361

South Asians as a target population show the largest number of archaic alleles362

(Figure 5.A). However, East Asians have a larger number of high-frequency363

uniquely shared archaic alleles than Europeans and South Asians, for both364
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x = 20% and x = 50% (Figure 5.B-C). Population-specific D-statistics (us-365

ing YRI as the non-admixed population) also follow this trend (Figure S18)366

and we observe this pattern when looking only at the X chromosome as well367

(Figure S19). These results hold in comparisons with both archaic human368

genomes, but we observe a stronger signal when looking at Neanderthal-369

specific shared alleles. To correct for the fact that some panels have more370

segregating sites that others (and may therefore have more archaic-like seg-371

regating sites), we also scaled the number of uniquely shared sites by the372

total number of segregating sites per population panel (Figure 5.D-F), and373

we see in general the same patterns, with the exception of a Peruvian panel,374

which we discuss further below. We also observe similar patterns when calcu-375

lating Q95A,B,Nea,Den(1%, y, z) genome-wide (Figure S20). The elevation in376

UA,B,Nea,Den and Q95A,B,Nea,Den in East Asians may result from higher levels377

of archaic ancestry in East Asians than in Europeans [34], and agrees with378

studies indicating that more than one pulse of admixture likely occurred in379

East Asians [35, 36].380

Surprisingly, the Peruvians (PEL) harbor the largest amount of high fre-381

quency mutations of archaic origin than any other single population, espe-382

cially when using Neanderthals as bait (Figures 5.B-C,S19). It is unclear383

whether this signal is due to increased drift or selection in this population.384

Skoglund et al. [37] argue via simulations that if one analyzes a popula-385

tion with high amounts of recent genetic drift and excludes SNPs where the386

minor allele is at low frequency, some statistics that are meant to detect387

archaic ancestry - like D - may be artificially inflated. Our filtering proce-388

dure to select uniquely shared archaic alleles necessarily excludes sites where389

the archaic allele is at low frequency in the target panel, and the PEL panel390

comes from a population with a history of low effective population sizes (high391

drift) relative to other Non-Africans [19], which could explain this pattern.392

This could also explain why the effect is not seen when x = 0% (Figure 5.A),393

or when computing D-statistics (Figure S18), both of which include sites394

with low-frequency alleles in their computation. Additionally, scaling the395

uniquely shared sites by the total number of segregating sites per population396

panel mitigates (but does not completely erase) this pattern. After scaling,397

PEL shows levels of archaic allele sharing within the range of the East Asian398

populations at x = 20% (Figure 5.E), but is still the panel with the largest399

number of archaic sites at x = 50% (Figure 5.F).400

Additionally, we plotted the values of UAFR,X,Nea,Den(w,1%, y, z) andQ95AFR,X,Nea,Den(1%, y, z)401

jointly for each population X, under different frequency cutoffs w. When402
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w = 0%, there is a generally inversely proportional relationship between the403

two scores (Figure S21), but this becomes a directly proportional relation-404

ship when w = 20% (Figure 6) or w = 50% (Figure S25). Here, we also405

clearly observe that PEL is an extreme region with respect to both the num-406

ber and frequency of archaic shared derived alleles, and that East Asian and407

American populations have more high-frequency archaic shared alleles than408

Europeans.409

We checked via simulations if the observed excess of high frequency ar-410

chaic derived mutations in Americans and especially Peruvians could be411

caused by genetic drift, as a consequence of the bottleneck that occurred in412

the ancestors of Native Americans as they crossed Beringia. We observe that413

if the introgressed population B undergoes a bottleneck, this can lead to a414

larger number of UA,B,C(w, x, y, z) for large values of x (Figure S10,S11,S22).415

Indeed, population structure analyses of the 1000 Genomes samples suggest416

that Peruvians have the largest amount of Native American ancestry [19]417

and show a bottleneck with a lack of recent population growth, which could418

explain this pattern. We also observe an increase in the variance of the dis-419

tribution of U and Q95 in the presence of a bottleneck, especially when long420

and severe (Figures S23, S24).421

3.3. Candidate regions for adaptive introgression422

To identify adaptively introgressed regions of the genome, we computed423

UA,B,C,D(w, x, y, z) and Q95A,B,C,D(w, y, z) in 40kb non-overlapping windows424

along the genome, using the low-coverage sequencing data from phase 3 of425

the 1000 Genomes Project [19]. We used this window size because the mean426

length of introgressed haplotypes found in ref. [2] was 44,078 bp (Supple-427

mentary Information 13), and 40kb is well over the length needed to reject428

incomplete lineage sorting [17]. Our motivation was to find regions under429

AI in a particular panel B, using panel A as a non-introgressed out-group430

(generally Africans, unless otherwise stated). We used the high-coverage Al-431

tai Neanderthal genome [2] as bait panel C and the high-coverage Denisova432

genome [4] as bait panel D. We deployed these statistics in three ways: a)433

to look for Neanderthal-specific AI, we set y = 100% and z = 0%; b) to434

look for Denisova-specific AI, we set y = 0% and z = 100%; c) to look for435

AI matching both of the archaic genomes, we set y = 100% and z = 100%436

(Figure S1, Table S3). To try to determine the adaptive pressure behind the437

putative AI event, we obtained all the CCDS-verified genes located inside438

each window [38].439
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For guidance as to how high a value of U and Q95 we would expect440

under neutrality, we used the simulations from Figure 2 to obtain 95% em-441

pirical quantiles of the distribution of these scores under neutrality. Tables442

S1 and S2 show the 95% quantiles for these two statistics under various mod-443

els of adaptive introgression and ancestral structure, for different choices of444

parameter values (see Methods Section). When examining our candidates445

for AI below, we focused on windows whose values for UA,B,Nea,Den(w, y, z)446

and Q95A,B,Nea,Den(w, x, y, z) were both in the 99.9% quantile of their re-447

spective genome-wide distributions, and also verified that these values would448

be statistically significant at the 5% level under a simple model of neutral449

admixture.450

We also calculated D and fD along the same windows (using Africans as451

the non-admixed population), and saw good agreement with the new statis-452

tics presented here (Table S3). Finally, we validated the regions most likely453

to have been adaptively introgressed by searching for archaic tracts of intro-454

gression within them that were at high frequency, using a Hidden Markov455

Model (see below).456

3.3.1. Continental populations457

When focusing on adaptive introgression in continental populations, we458

first looked for uniquely shared archaic alleles specific to Europeans that459

were absent or almost absent (< 1% frequency) in Africans and East Asians.460

Conversely, we also looked for uniquely shared archaic alleles in East Asians,461

which were absent or almost absent in Africans and Europeans. In this con-462

tinental survey, we ignored Latin American populations as they have high463

amounts of European and African ancestry, which could confound our anal-464

yses. Figure 7 shows the number of sites with uniquely shared alleles for465

increasing frequency cutoffs in the introgressed population, and for different466

types of archaic alleles (Neanderthal-specific, Denisova-specific or common to467

both archaic humans). In other words, we calculated UAFR,EUR,Nea,Den(1%, x, y, z)468

and UAFR,EAS,Nea,Den(1%, x, y, z) for different values of x (0%, 20%, 50% and469

80%) and different choices of y and z, depending on which type of archaic470

alleles we were looking for. We observe that the regions in the extreme of471

the distributions for x = 50% corresponded very well to genes that had been472

previously found to be candidates for adaptive introgression from archaic hu-473

mans in these populations, using more complex probabilistic methods [6, 5]474

or gene-centric approaches [39]. These include BNC2 (involved in skin pig-475

mentation [40, 41]), POU2F3 (involved in skin keratinocyte differentiation476
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[42, 43]), HYAL2 (involved in the response to UV radiation on human ker-477

atinocytes [44]), SIPA1L2 (involved in neuronal signaling [45]) and CHMP1A478

(a regulator of cerebellar development [46]). To be more rigorous in our479

search for adaptive introgression, we looked at the joint distribution of the480

U statistic and the Q95 statistic for the same choices of w, y and z, and then481

selected the regions that were in the 99.9% quantiles of the distributions of482

both statistics (Figures 8, S26, S27). We find that the strongest candidates483

here are BNC2, POU2F3, SIPA1L2 and the HYAL2 region.484

We also scanned for regions of the genome where South Asians (SAS) had485

uniquely shared archaic alleles at high frequency, which were absent or almost486

absent in Europeans, East Asians and Africans. In this case, we focused on487

x = 20% because we found that x = 50% left us with no candidate regions.488

Among the candidate regions sharing a large number of high-frequency Ne-489

anderthal alleles in South Asians, we find genes ASTN2, SFMBT1, MUSTN1490

and MAML2 (Figure S28). ASTN2 is involved in neuronal migration [47]491

and is associated with schizophrenia [48, 49]. SFMBT1 is involved in myo-492

genesis [50] and is associated with hydrocephalus [51]. MUSTN1 plays a role493

in the regeneration of the muscoskeletal system [52]. Finally, MAML2 codes494

for a signaling protein [53, 54], and is associated with cutaneous carcinoma495

[55] and lacrimal gland cancer [56].496

3.3.2. Eurasia497

We then looked for AI in all Eurasians (EUA=EUR+SAS+EAS, ignoring498

American populations) using Africans as the non-admixed population (AFR,499

ignoring admixed African-Americans). Figure 8 shows the extreme outlier re-500

gions that are in the 99.9% quantiles for both UEUA,AFR,Nea,Den(1%, 20%, y, z)501

and Q95EUA,AFR,Nea,Den(1%, y, z), while Figure S29 shows the entire distri-502

bution. We focused on x = 20% because we found that x = 50% left us503

with almost no candidate regions. In this case, the region with by far the504

largest number of uniquely shared archaic alleles is the one containing genes505

OAS1 and OAS3, involved in innate immunity [57, 58, 59, 60]. This region506

was previously identified as a candidate for AI from Neanderthals in non-507

Africans [61]. Another region that we recover and was previously identified508

as a candidate for AI is the one containing genes TLR1 and TLR6 [62, 63].509

These genes are also involved in innate immunity and have been shown to510

be under positive selection in some non-African populations [64, 65].511

Interestingly, we find that a very strong candidate region in Eurasia con-512

tains genes TBX15 and WARS2. This region has been associated with a513
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variety of traits, including adipose tissue differentiation [66], body fat dis-514

tribution [67, 68, 69, 70], hair pigmentation [71], facial morphology [72, 73],515

ear morphology [74], stature [73] and skeletal development [75, 73]. It was516

previously identified as being under positive selection in Greenlanders [76],517

and it shows particularly striking signatures of adaptive introgression, so we518

devote a separate study to its analysis [77].519

3.3.3. Population-specific signals of adaptive introgression520

To identify population-specific signals of AI, we looked for archaic alleles521

at high frequency in a particular non-African panel X, which were also at less522

than 1% frequency in all other non-African and African panels, excluding X523

(Table S3). This is a very restrictive requirement, and indeed, we only find a524

few windows in a single panel (PEL) with archaic alleles at more than 20%525

frequency, at sites where the archaic alleles is at less than 1% frequency in526

all other panels. One of the regions with the largest number of uniquely527

shared Neanderthal sites in PEL contains gene CHD2, which codes for a528

DNA helicase [78] involved in myogenesis (UniProtKB by similarity), and529

that is associated with epilepsy [79, 80].530

3.3.4. Shared signals among populations531

In the previous section, we focused on regions where archaic alleles were532

uniquely at high frequencies in particular populations, but at low frequencies533

in all other populations. This precludes us from detecting AI regions that534

are shared across more than one non-African population. To address this,535

we conditioned on observing the archaic allele at less than 1% frequency536

in a non-admixed outgroup panel composed of all the African panels (YRI,537

LWK, GWD, MSL, ESN), excluding African-Americans, and then looked538

for archaic alleles at high frequency in particular non-African populations.539

Unlike the previous section, we did not condition on the archaic allele being540

at low frequency in other non-African populations as well. The whole joint541

distributions of U and Q95 for this choice of parameters for each non-African542

panel are shown in figs. S30 to S48, while regions in the 99.9% quantile for543

both statistics are shown in Figure 8.544

Here, we recapitulate many of the findings from our Eurasian and continental-545

specific analyses above, like TLR1/TLR6, BNC2, OAS1/OAS3, POU2F3,546

LIPA and TBX15/WARS2 (Figure 8). For example, just as we found that547

POU2F3 was an extreme region in the East Asian (EAS) continental panel,548

we separately find that almost all populations composing that panel (CHB,549
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KHV, CHS, CDX, JPT) have archaic alleles in that region at disproportion-550

ately high frequency, relative to their frequency in Africans. Additionally551

though, we can learn things we would not have detected at the continental552

level. For example, the Bengali from Bangladesh (BEB) - a South Asian553

population - also have archaic alleles at very high frequencies in this region.554

We detected several genes that appear to show signatures of AI across555

various populations (Figures 8). One of the most extreme examples is a 120556

kb region containing the LARS gene, with 76 uniquely shared Neanderthal557

alleles at < 1% frequency in Africans and > 50% frequency in Peruvians,558

which are also at > 20% frequency in Mexicans. LARS codes for a leucin-559

tRNA synthetase [81], and is associated with liver failure syndrome [82].560

Additionally, a region containing gene ZFHX3 displays an elevated number561

of uniquely shared Neanderthal sites in PEL, and we also observe this when562

looking more broadly at East Asians (EAS) and - based on the patterns of563

inferred introgressed tracts (see below) - in various American (AMR) pop-564

ulations as well. ZFHX3 is involved in the inhibition of estrogen receptor-565

mediated transcription [83] and has been associated with prostate cancer566

[84].567

We also find several Neanderthal-specific uniquely shared sites in Ameri-568

can panels (PEL, CLM, MXL) in a region previously identified as harboring569

a risk haplotype for type 2 diabetes (chr17:6880001-6960000) [85]. This is570

consistent with previous findings suggesting the risk haplotype was intro-571

gressed from Neanderthals and is specifically present at high frequencies in572

Latin Americans [85]. The region contains gene SLC16A11, whose expres-573

sion is known to alter lipid metabolism [85]. We also find that the genes574

FAP/IFIH1 have signals consistent with AI, particularly in PEL. This re-575

gion has been previously associated with type 1 diabetes [86, 87]. A previous576

analysis of this region has suggested that the divergent haplotypes in it re-577

sulted from ancestral structure or balancing selection in Africa, followed by578

local episodes of positive selection in Europe, Asia and the Americas [88]. A579

more recent analysis has found this as a region of archaic AI in Melanesians580

as well [7].581

Another interesting candidate region contains two genes involved in lipid582

metabolism: LIPA and CH25H. We find a 40 kb region with 11 uniquely583

shared Denisovan alleles that are at low (< 1%) frequency in Africans and at584

very high (> 50%) frequency in various South and East Asian populations585

(JPT, KHV, CHB, CHS, CDX and BEB). The Q95 and D statistics in this586

region are also high across all of these populations, and we also find this587
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region to have extreme values of these statistics in our broader Eurasian scan.588

The LIPA gene codes for a lipase [89] and is associated with cholesterol ester589

storage disease [90] and Wolman disease [91]. In turn, the CH25H gene codes590

for a membrane hydroxylase involved in the metabolism of cholesterol [92]591

and associated with Alzheimer’s disease [93] and antiviral activity [94].592

Finally, we find a region harboring between 3 and 10 uniquely shared593

Neanderthal alleles (depending on the panel used) in various non-African594

populations. This region was identified earlier by ref. [5] and contains genes595

PPDPF, PTK6 and HELZ2. PPDPF codes for a probable regulator of pan-596

creas development (UniProtKB by similarity). PTK6 codes for an epithelial597

signal transducer [95] and HELZ2 codes for a helicase that works as a tran-598

scriptional coactivator for nuclear receptors [96, 97].599

3.4. The X chromosome600

Previous studies have observed lower levels of archaic introgression in601

the X chromosome relative to the autosomes [5, 6] . Here, we observe a602

similar trend: compared to the autosomes, the X chromosome contains a603

smaller number of windows with sites that are uniquely shared with archaic604

humans (Figure 7). For example, for w = 1% and x = 20%, we observe605

that, in Europeans, 0.4% of all windows in the autosomes have at least one606

uniquely shared site with Neanderthals or Denisovans, while only 0.05% of607

all windows in the X chromosome have at least one uniquely shared site (P608

= 4.985 × 10−4, chi-squared test assuming independence between windows).609

The same pattern is observed in East Asians (P = 1.852 × 10−8).610

Nevertheless, we do identify some regions in the X chromosome exhibiting611

high values for both UA,B,C,D(w, x, y, z) andQ95A,B,C,D(w, y, z). For example,612

a region containing gene DHRSX contains a uniquely shared site where a613

Neanderthal allele is at < 1% frequency in Africans, but at > 50% frequency614

in a British panel (GBR). Another region contains gene DMD and harbors615

two uniquely shared sites where two archaic (Denisovan/Neanderthal) alleles616

are also at low (< 1%) frequency in Africans but at > 50% frequency in617

Peruvians. DHRSX codes for an oxidoreductase enzyme [98], while DMD is618

a well-known gene because mutations in it cause muscular dystrophy [99], and619

was also previously identified as having signatures of archaic introgression in620

non-Africans [100].621
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3.5. Introgressed haplotypes in candidate loci622

We inspected the haplotype patterns of candidate loci with support in623

favor of AI. We displayed the haplotypes for selected populations at seven624

regions: POU2F3 (Figure 9.A), BNC2 (Figure 9.B), OAS1 (Figure 9.C),625

LARS (Figure 9.D), FAP/IFIH1 (Figure 9.E), LIPA (Figure 9.F) and SLC16A11626

(Figure S49.C). We included continental populations that show a large num-627

ber of uniquely shared archaic alleles, and included YRI as a representative628

African population. We then ordered the haplotypes by similarity to the629

closest archaic genome (Altai Neanderthal or Denisova) (Figure 9). As can630

be observed, all these regions tend to show sharp distinctions between the631

putatively introgressed haplotypes and the non-introgressed ones. This is632

also evident when looking at the cumulative number of differences of each633

haplotype to the closest archaic haplotype, where we see a sharp rise in the634

number of differences, indicating strong differentiation between the two sets635

of haplotypes. Additionally, the YRI haplotypes tend to predominantly be-636

long to the non-introgressed group, as expected.637

3.5.1. Consequences of relaxing the outgroup frequency cutoff638

When using a more lenient cutoff for the outgroup panel (10% maximum639

frequency, rather than 1%), we find a few genes that display values of the640

U statistic that are suggestive of AI, and that have been previously found641

to be under strong positive selection in particular human populations [101,642

102]. The most striking examples are TYRP1 in EUR (using EAS+AFR643

as outgroup) and OCA2 in EAS (using EUR+AFR as outgroup)(Table S3).644

Both of these genes are involved in pigmentation. We caution, however, that645

the reason why they carry archaic alleles at high frequency may simply be646

because their respective selective sweeps pushed an allele that was segregating647

in both archaic and modern humans to high frequency in modern humans,648

but not necessarily via introgression.649

In fact, TYRP1 only stands out as an extreme region for the number of650

archaic shared alleles in EUR when using the lenient 10% cutoff, but not651

when using the more stringent 1% cutoff. When looking at these SNPs in652

more detail, we find that their allele frequency in Africans (∼ 20%) is even653

higher than in East Asians (∼ 1%), largely reflecting population differen-654

tiation across Eurasia due to positive selection [102], rather than adaptive655

introgression. When exploring the haplotype structure of this gene (Figure656

S49.B), we find one haplotype that shows similarities to archaic humans but657

is at low frequency. In the combined YRI+EUR panel, just 6.37% of all658
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haplotypes have 36 or less differences to the Neanderthal genome, and this659

number is roughly the point of transition between the archaic-like and the660

non-archaic-like haplotypes (Figures S49.B). There is a second - more fre-661

quent - haplotype that is more distinct from archaic humans but present at662

high frequency in Europeans. The uniquely shared sites obtained using the663

lenient (< 10%) allele frequency outgroup cutoff are tagging both haplotypes664

together, rather than just the highly differentiated archaic-like haplotype.665

OCA2 has several sites with uniquely shared alleles in EAS (AFR+EUR666

as outgroup) when using the lenient 10% cutoff, but only a few (2) shared ar-667

chaic sites when using the < 1% outgroup frequency cutoff. When exploring668

the haplotype structure of this gene, we fail to find a clear-cut differentiation669

between putatively introgressed and non-introgressed haplotypes, so the ev-670

idence for adaptive introgression in this region is also weak. OCA2 does not671

show a large number of differences between the haplotypes that are closer to672

the archaic humans (Figure S49.A). A close inspection of its haplotype struc-673

ture shows that OCA2 does not show a large number of differences between674

the haplotypes that are closer and those that are distant from the archaic675

humans (Figure S49.A).676

Finally, using the lenient outgroup cutoff of < 10% and a target cutoff677

of > 20%, we find the gene with the highest number of uniquely shared678

sites among all the populations and cutoffs we tested: MUC19. This re-679

gion is rather impressive in containing 115 sites where the archaic alleles680

are shared between the Mexican panel (MXL) and the Denisovan genome681

at more than 20% frequency, when using all populations that are not MXL682

as the outgroup. However, the actual proportion of individuals that con-683

tain a Denisova-like haplotype (though highly differentiated from the rest of684

present-day human haplotypes) is very small. Only 11.86% of haplotypes in685

the combined YRI+AMR panel show 69 differences or less to the closest ar-686

chaic genome (Denisova), and the next closest haplotype has 134 differences687

(Figure S49.D).688

Overall, a finer investigation of these three cases suggests that using a689

lenient outgroup frequency cutoff may lead to misleading inferences. Never-690

theless, the haplotype structure of these genes and their relationship to their691

archaic human counterparts are quite unusual. It remains to be determined692

whether these patterns could be caused by either positive selection or in-693

trogression alone, or whether a combination of these or other demographic694

forces is required to explain them.695
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3.6. Inferred introgressed tracts696

We used a HMM [20] to verify that the strongest candidate regions ef-697

fectively contained archaic segments of a length that would be consistent698

with introgression after the divergence between archaic and modern hu-699

mans. For each region, we used the closest archaic genome (Altai Nean-700

derthal or Denisova) as the putative source of introgression. We then plotted701

the inferred segments in non-African continental populations for genes with702

strong evidence for AI. Among these, genes with Neanderthal as the closest703

source (figs. S50 to S57) include: POU2F3 (EAS,SAS), BNC2 (EUR), OAS1704

(Eurasians), LARS (AMR), FAP/IFIH1 (PEL), CHD2 (PEL), TLR1-6 (EAS)705

and ZFHX3 (PEL). Genes with Denisova as the closest source (figs. S58706

and S59) include: LIPA (EAS, SAS, AMR) and MUSTN1 (SAS).707

3.7. Testing for enrichment in genic regions708

We aimed to test whether uniquely shared archaic alleles at high fre-709

quencies were enriched in genic regions of the genome. SNPs in introgressed710

blocks will tend to cluster together and have similar allele frequencies, which711

could cause a spurious enrichment signal. Therefore, we performed two types712

of LD pruning, which we described in the Methods section.713

Regardless of which LD method we used, we find no significant enrich-714

ment in genic regions for high-frequency (> 50%) Neanderthal alleles (LD-1715

P=352, LD-2 P=0.161) or Denisovan alleles (LD-1 P=0.348, LD-2 P=0.192).716

Similarly, we find no enrichment for medium-to-high-frequency (> 20%) Ne-717

anderthal alleles (LD-1 P=0.553, LD-2 P=0.874) or Denisovan alleles (LD-1718

P=0.838, LD-2 P=0.44).719

4. Discussion720

Here, we carried out one of the first investigations into the joint dynamics721

of archaic introgression and positive selection, to develop statistics that are722

informative of AI. We find that one of the most powerful ways to detect AI723

is to look at both the number and allele frequency of mutations that are724

uniquely shared between the introgressed and the archaic populations. Such725

mutations should be abundant and at high-frequencies in the introgressed726

population if AI occurred. In particular, we identified two novel summaries727

of the data that capture this pattern quite well: the statistics Q95 and U .728

These statistics can recover loci under AI and are easy to compute from729

genomic data, as they do not require phasing.730
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We have also studied the general landscape of archaic alleles and their731

frequencies in present-day human populations. While scanning the present-732

day human genomes from phase 3 of the 1000 Genomes Project [19] using733

these and other summary statistics, we were able to recapitulate previous AI734

findings (like the TLR [62, 63] and OAS regions [61]) as well as identify new735

candidate regions for AI in Eurasia (like the LIPA gene and the FAP/IFIH1736

region). These mostly include genes involved in lipid metabolism, pigmenta-737

tion and innate immunity, as observed in previous studies [5, 6, 103]. Pheno-738

typic changes in these systems may have allowed archaic humans to survive in739

Eurasia during the Pleistocene, and may have been passed on to present-day740

human populations during their expansion out of Africa.741

When using more lenient definitions of what we consider to be “uniquely742

shared archaic alleles” we find sites containing these alleles in genes that have743

been previously found to be under positive selection (like OCA2 and TYRP1 )744

but not necessarily under adaptive introgression. While these do not show as745

strong signatures of adaptive introgression as genes like BNC2 and POU2F3,746

their curious haplotype patterns and their relationship to archaic genomes747

warrants further exploration.748

We tested whether uniquely shared archaics alleles at high frequencies749

in non-Africans were significantly more likely to be found in genic regions,750

relative to all shared archaic alleles, but did not find a significant enrichment.751

Though this suggests archaic haplotypes subject to AI may not be preferen-752

tially found near or inside genes, it may also be a product of a lack of power,753

or of the fact that not all uniquely shared archaic alleles may be truly intro-754

gressed. As mentioned before, some of these alleles may be present due to755

incomplete lineage sorting, which could add noise to the test signal. A more756

rigorous - and possibly more powerful - test could involve testing whether757

HMM-inferred introgressed archaic segments at high frequency tend to be758

found in genic regions, relative to all inferred introgressed archaic segments,759

while controlling for features like the length of introgressed segments and the760

sensitivity of the HMM to different regions of the genome. However, in this761

study, we did not pursue this line of research further.762

In this study, we have mostly focused on positive selection for archaic al-763

leles. One should remember, though, that a larger proportion of introgressed764

genetic material was likely maladaptive to modern humans, and therefore se-765

lected against. Indeed, two recent studies have shown that negative selection766

on archaic haplotypes may have reduced the initial proportion of archaic ma-767

terial present in modern humans immediately after the hybridization event(s)768
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[104, 105].769

Another caveat is that some regions of the genome display patterns that770

could be consistent with multiple introgression events, followed by positive771

selection on one or more distinct archaic haplotypes [62]. In this study, we772

have simply focused on models with a single pulse of admixture, and have773

not considered complex scenarios with multiple sources of introgression. Ad-774

ditionally, the currently limited availability of high-coverage archaic human775

genomes may prevent us from detecting AI events for which the source may776

not have been closely related to the sequenced Denisovan or Altai Nean-777

derthal genomes. This may include other Neanderthal or Denisovan subpop-778

ulations, or other (as yet unsampled) archaic groups that may have lived in779

Africa and Eurasia.780

It is also worth noting that positive selection for archaic haplotypes may781

be due to heterosis, rather than adaptation to particular environments [104].782

That is, archaic alleles may not have been intrinsically beneficial, but simply783

protective against deleterious recessive modern human alleles, and therefore784

selected after their introduction into the modern human gene pool. The785

degree of dominance of deleterious alleles in humans remains elusive, so it is786

unclear how applicable this model would be to archaic admixture in humans.787

Although many of the statistics we introduced in this study have their788

draw-backs - notably their dependence on simulations to assess significance789

- they highlight a characteristic signature left by AI in present-day human790

genomes. Future avenues of research could involve developing ways to incor-791

porate uniquely shared sites into a robust test of selection that specifically792

targets regions under AI. For example, one could think about modifying793

statistics based on local between-population population differentiation, like794

PBS [9], so that they are only sensitive to allele frequency differences at sites795

that show signatures of archaic introgression.796

Finally, while this study has largely focused on human AI, several other797

species also show suggestive signatures of AI [106]. Assessing the extent798

and prevalence of AI and uniquely shared sites in other biological systems799

could provide new insights into their biology and evolutionary history. This800

may also serve to better understand how populations of organisms respond801

to introgression events, and to derive general principles about the interplay802

between admixture and natural selection.803
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J. G. Schraiber, F. Jay, K. Prüfer, C. de Filippo, et al., A high-coverage823

genome sequence from an archaic denisovan individual, Science 338824

(2012) 222–226.825

[5] S. Sankararaman, S. Mallick, M. Dannemann, K. Prüfer, J. Kelso,826
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R. Mägi, et al., Meta-analysis identifies 13 new loci associated with1049

waist-hip ratio and reveals sexual dimorphism in the genetic basis of1050

fat distribution, Nature genetics 42 (2010) 949–960.1051

[68] C.-T. Liu, M. L. Buchkovich, T. W. Winkler, I. M. Heid, I. Borecki,1052

C. S. Fox, K. L. Mohlke, K. E. North, L. A. Cupples, A. A. A. G.1053

Consortium, et al., Multi-ethnic fine-mapping of 14 central adiposity1054

loci, Human molecular genetics (2014) ddu183.1055

[69] C.-T. Liu, K. L. Monda, K. C. Taylor, L. Lange, E. W. Demerath,1056

W. Palmas, M. K. Wojczynski, J. C. Ellis, M. Z. Vitolins, S. Liu, et al.,1057

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045237doi: bioRxiv preprint 

https://doi.org/10.1101/045237
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genome-wide association of body fat distribution in african ancestry1058

populations suggests new loci, PLoS Genet 9 (2013) e1003681.1059

[70] D. Shungin, T. W. Winkler, D. C. Croteau-Chonka, T. Ferreira, A. E.1060
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7. Tables1209

Table 1: Summary statistics mentioned in the main text.
Statistic Explanation Reference
D D-statistic: measures excess allele sharing between a test population and an

outgroup using a sister population that is more closely related to the test
than the ougroup

[1][22]

fD Similar to the D-statistic, but serves to better control for local variation in
diversity patterns if one is interested in finding loci with excess ancestry from
an admixing population.

[25]

RD Average ratio of the divergence between an individual from the source pop-
ulation and an individual from the admixed population, and the divergence
between an individual from the source population and an individual from the
non-admixed population. This is computed by taking the average over all
pairs of admixed and non-admixed individuals.

This study

UA,B,C(w, x, y) Number of sites in which any allele is at a frequency lower than w in panel
B, higher than x in panel B and equal to y in panel C.

This study

UA,B,C,D(w, x, y, z) Number of sites in which any allele is at a frequency lower than w in panel
A, higher than x in panel B, equal toy in panel C and equal to z in panel D.

This study

Q95A,B,C(w, y) 95% quantile of the distribution of derived allele frequencies in panel B, for
sites where the derived allele is at a frequency lower than w in panel A and
equal to y in panel C.

This study

Q95A,B,C,D(w, y, z) 95% quantile of the distribution of derived allele frequencies in panel B, for
sites where the derived allele is at a frequency lower than w in panel A, equal
to y in panel C and equal to z in panel D.

This study

Het Expected heterozygosity, measured as the average of 2p(1 − p) over all sites
in a window, where p is the frequency of an arbitrarily chosen allele.

[107]

D′[intro] A measure of linkage disequilibrium. Computed as D/Dmax where D =
pXY − pXpY , pXY is the frequency of haplotype XY , pX is the frequency of
allele X, pY is the frequency of allele Y , and Dmax is the maximum theoretical
value that D can take. D′[intro] is computed only using frequencies from the
introgressed panel.

[108]

D′[comb] D′ computed using haplotype and allele frequencies from the combination of
the introgressed and non-introgressed panels.

[108]

r2[intro] A measure of linkage disequilibrium. Computed as D2/(pX(1 − pX)pY (1 −
pY )). r2[intro] is computed only using frequencies from the introgressed
panel.

[109]

r2[comb] r2 computed using haplotype and allele frequencies from the combination of
the introgressed and non-introgressed panels.

[109]
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8. Figures1210

Figure 1: Schematic illustration of the way the UA,B,C and Q95A,B,C statistics are calcu-
lated.
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Figure 2: Demographic models described in the main text.
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Figure 3: Receiver operating characteristic curves for a scenario of adaptive introgression
(s=0.1) compared to a scenario of neutrality (s=0), using 1,000 simulations for each case.
Populations A and B split from each other 4,000 generations ago, and their ancestral
population split from population C 16,000 generations ago. Population sizes were constant
and set at 2N = 20, 000. The admixture event occurred 1,600 generations ago from
population C to population B, at rate 2% (top panels) or 25% (bottom panels). The right
panels are zoomed-in versions of the left panels.
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Figure 4: Joint distribution of Q95A,B,C(w, y) and UA,B,C(w, x, y) for different choices
of w (1%, 10%) and x (20%, 50%). We set y to 100% in all cases. 100 individuals were
sampled from panel A, 100 from panel B and 2 from panel C. The demographic parameters
were the same as in Figure 3.
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Figure 5: We computed the number of uniquely shared sites in the autosomes and
the X chromosome between particular archaic humans and different choices of present-
day non-African panels X (x-axis) from phase 3 of the 1000 Genomes Project. We
used a shared frequency cutoff of 0% (A), 20% (B) and 50% (C). Nea-only =
UAfr,X,Nea,Den(1%, 20%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 20%, 0%, 100%).
Nea-all = UAfr,X,Nea(1%, 20%, 100%). Den-all = UAfr,X,Den(1%, 20%, 100%). Both =
UAfr,X,Nea,Den(1%, 20%, 100%, 100%). Finally, we scaled each of the statistics from pan-
els A-C by the number of segregating sites in each 1000 Genomes population panel, yielding
panels D-F.
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Figure 6: For each population panel from the 1000 Genomes Project, we jointly
plotted the U and Q95 statistics with an archaic frequency cutoff of > 20%
within each population. Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%) and
Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 20%, 0%, 100%)
and Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 20%, 100%)
and Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 20%, 100%) and
Q95Afr,X,Den(1%, 100%). Both = UAfr,X,Nea,Den(1%, 20%, 100%, 100%) and
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure 7: We partitioned the genome into non-overlapping windows of 40kb. Within each
window, we computed UEUR,Out,Nea,Den(1%, x, y, z) and UEAS,Out,Nea,Den(1%, x, y, z),
where Out=EAS+AFR for EUR as the target introgressed population, and
Out=EUR+AFR for EAS as the target introgressed population. We searched for
Neanderthal-specific alleles (y = 100%, z = 0%), Denisovan-specific alleles (y = 0%, z =
100%) and alleles present in both archaic genomes (y = 100%, z = 100%) that were
uniquely shared with either EUR or EAS at various frequencies (z=0%, z=20%, z=50%
and z=80%). Windows that fall within the upper tail of the distribution for each modern-
archaic population pair are colored in red (P < 0.001 / number of pairs tested) and those
that do not are colored in blue, except for those in the X chromosome, which are in green.
Ovals drawn around multiple points contain multiple windows with uniquely shared alleles
that are contiguous. For comparison, the number of high frequency uniquely shared sites
between Denisova and Tibetans is also shown [17], although Tibetans are not included in
the 1000 Genomes data and the region is 32 kb long, so this may be an underestimate.
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Figure 8: We plotted the 40kb regions in the 99.9% highest quantiles of both
the Q95Out,Pop,Nea,Den(1%, y, z) and UOut,Pop,Nea,Den(1%, x, y, z) statistics for different
choices of target introgressed population (Pop) and outgroup non-introgressed population
(Out), and different archaic allele frequency cutoffs within the target population (x). A)
We plotted the extreme regions for continental populations EUR (Out=EAS+AFR), EAS
(Out=EUR+AFR) and Eurasians (EUA, Out=AFR), using a target population archaic
allele frequency cutoff x of 20%. B) We plotted the extreme regions from the same statis-
tics as in panel A, but with a more stringent target population archaic allele frequency
cutoff x of 50%. C) We plotted the extreme regions for individual non-African popula-
tions within the 1000 Genomes data, using all African populations (excluding African-
Americans) as the outgroup, and a cutoff x of 20%. D) We plotted the extreme regions
from the same statistics as in panel C, but with a more stringent target population ar-
chaic allele frequency cutoff x of 50%. Nea-only = UOut,Pop,Nea,Den(1%, x, 100%, 0%)
and Q95Out,Pop,Nea,Den(1%, 100%, 0%). Den-only = UOut,Pop,Nea,Den(1%, x, 0%, 100%)
and Q95Out,Pop,Nea,Den(1%, 0%, 100%). Both = UOut,Pop,Nea,Den(1%, x, 100%, 100%) and
Q95Out,Pop,Nea,Den(1%, 100%, 100%).
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Figure 9: We explored the haplotype structure of six candidate regions with strong ev-
idence for AI. For each region, we applied a clustering algorithm to the haplotypes of
particular human populations and then ordered the clusters by decreasing similarity to
the archaic human genome with the larger number of uniquely shared sites (see Meth-
ods Section). We also plotted the number of differences to the archaic genome for each
human haplotype and sorted them simply by decreasing similarity. In the latter case,
no clustering was performed, so the rows in the cumulative difference plots do not nec-
essarily correspond to the rows in the adjacent haplotype structure plots. POU2F3 :
chr11:120120001-120200000. BNC2 : chr9:16720001-16760000. LARS : chr5:145480001-
145520000. FAP/IFIH1 : chr2:163040001-163120000. OAS1 : chr12:113360001-113400000.
LIPA: chr10:90920001-90980000.

46

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045237doi: bioRxiv preprint 

https://doi.org/10.1101/045237
http://creativecommons.org/licenses/by-nc-nd/4.0/


9. Supplementary Tables1211

Table S1: 95% quantiles of the UA,B,C statistic in a 40 kb window, under differ-
ent demographic scenarios and archaic allele frequency cutoffs in the outgroup
(A) and target (B) population panels. The demographic scenarios correspond
to scenarios A, B, C and G from Figure 2. The bottlenecks were 5X and lasted
200 generations.

Max. outgroup freq. Min. target freq. Scenario 95% quantile under neutrality
0.01 0.8 Admixture (2%) 0
0.01 0.8 Admixture (10%) 0
0.01 0.8 Admixture (25%) 0
0.01 0.8 Ancestral Structure (strong mig.) 0
0.01 0.8 Ancestral Structure (medium mig.) 1
0.01 0.8 Ancestral Structure (weak mig.) 18
0.01 0.8 Admixture (2%), then bottleneck 0
0.01 0.8 Admixture (10%), then bottleneck 0
0.01 0.8 Admixture (25%), then bottleneck 0.05
0.01 0.8 Bottleneck, then admixture (2%) 0
0.01 0.8 Bottleneck, then admixture (10%) 0
0.01 0.8 Bottleneck, then admixture (25%) 0
0.01 0.5 Admixture (2%) 2
0.01 0.5 Admixture (10%) 2
0.01 0.5 Admixture (25%) 5
0.01 0.5 Ancestral Structure (strong mig.) 0
0.01 0.5 Ancestral Structure (medium mig.) 5
0.01 0.5 Ancestral Structure (weak mig.) 22
0.01 0.5 Admixture (2%), then bottleneck 2
0.01 0.5 Admixture (10%), then bottleneck 2
0.01 0.5 Admixture (25%), then bottleneck 8
0.01 0.5 Bottleneck, then admixture (2%) 2
0.01 0.5 Bottleneck, then admixture (10%) 2
0.01 0.5 Bottleneck, then admixture (25%) 6
0.01 0.2 Admixture (2%) 6
0.01 0.2 Admixture (10%) 13
0.01 0.2 Admixture (25%) 29.05
0.01 0.2 Ancestral Structure (strong mig.) 0
0.01 0.2 Ancestral Structure (medium mig.) 9.05
0.01 0.2 Ancestral Structure (weak mig.) 25
0.01 0.2 Admixture (2%), then bottleneck 6
0.01 0.2 Admixture (10%), then bottleneck 17
0.01 0.2 Admixture (25%), then bottleneck 30
0.01 0.2 Bottleneck, then admixture (2%) 8
0.01 0.2 Bottleneck, then admixture (10%) 13.05
0.01 0.2 Bottleneck, then admixture (25%) 29
0.01 0 Admixture (2%) 24
0.01 0 Admixture (10%) 37
0.01 0 Admixture (25%) 39
0.01 0 Ancestral Structure (strong mig.) 3
0.01 0 Ancestral Structure (medium mig.) 12.05
0.01 0 Ancestral Structure (weak mig.) 27
0.01 0 Admixture (2%), then bottleneck 21
0.01 0 Admixture (10%), then bottleneck 34
0.01 0 Admixture (25%), then bottleneck 38
0.01 0 Bottleneck, then admixture (2%) 28
0.01 0 Bottleneck, then admixture (10%) 34.05
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0.01 0 Bottleneck, then admixture (25%) 37.05
0.1 0.8 Admixture (2%) 0
0.1 0.8 Admixture (10%) 2
0.1 0.8 Admixture (25%) 2
0.1 0.8 Ancestral Structure (strong mig.) 0
0.1 0.8 Ancestral Structure (medium mig.) 11
0.1 0.8 Ancestral Structure (weak mig.) 23.05
0.1 0.8 Admixture (2%), then bottleneck 0
0.1 0.8 Admixture (10%), then bottleneck 2
0.1 0.8 Admixture (25%), then bottleneck 2
0.1 0.8 Bottleneck, then admixture (2%) 1
0.1 0.8 Bottleneck, then admixture (10%) 2
0.1 0.8 Bottleneck, then admixture (25%) 2
0.1 0.5 Admixture (2%) 5
0.1 0.5 Admixture (10%) 6
0.1 0.5 Admixture (25%) 12
0.1 0.5 Ancestral Structure (strong mig.) 0
0.1 0.5 Ancestral Structure (medium mig.) 17
0.1 0.5 Ancestral Structure (weak mig.) 29
0.1 0.5 Admixture (2%), then bottleneck 6
0.1 0.5 Admixture (10%), then bottleneck 7
0.1 0.5 Admixture (25%), then bottleneck 12
0.1 0.5 Bottleneck, then admixture (2%) 6
0.1 0.5 Bottleneck, then admixture (10%) 6.05
0.1 0.5 Bottleneck, then admixture (25%) 12
0.1 0.2 Admixture (2%) 12
0.1 0.2 Admixture (10%) 18.05
0.1 0.2 Admixture (25%) 35
0.1 0.2 Ancestral Structure (strong mig.) 4
0.1 0.2 Ancestral Structure (medium mig.) 21
0.1 0.2 Ancestral Structure (weak mig.) 32.05
0.1 0.2 Admixture (2%), then bottleneck 14
0.1 0.2 Admixture (10%), then bottleneck 22
0.1 0.2 Admixture (25%), then bottleneck 37
0.1 0.2 Bottleneck, then admixture (2%) 14
0.1 0.2 Bottleneck, then admixture (10%) 20
0.1 0.2 Bottleneck, then admixture (25%) 37
0.1 0 Admixture (2%) 29
0.1 0 Admixture (10%) 44
0.1 0 Admixture (25%) 45
0.1 0 Ancestral Structure (strong mig.) 11
0.1 0 Ancestral Structure (medium mig.) 25
0.1 0 Ancestral Structure (weak mig.) 34
0.1 0 Admixture (2%), then bottleneck 28
0.1 0 Admixture (10%), then bottleneck 40
0.1 0 Admixture (25%), then bottleneck 44
0.1 0 Bottleneck, then admixture (2%) 35
0.1 0 Bottleneck, then admixture (10%) 41
0.1 0 Bottleneck, then admixture (25%) 45
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Table S2: 95% quantiles of the Q95A,B,C statistic in a 40 kb window, un-
der different demographic scenarios and archaic allele frequency cutoffs in the
outgroup (A) population panel. The demographic scenarios correspond to sce-
narios A, B, C and G from Figure 2.

Max. outgroup freq. Scenario 95% quantile under neutrality
0.01 Admixture (2%) 0.28
0.01 Admixture (10%) 0.37
0.01 Admixture (25%) 0.54
0.01 Ancestral Structure (strong mig.) 0.04
0.01 Ancestral Structure (medium mig.) 0.67
0.01 Ancestral Structure (weak mig.) 1
0.01 Admixture (2%), then bottleneck 0.31
0.01 Admixture (10%), then bottleneck 0.44
0.01 Admixture (25%), then bottleneck 0.6
0.01 Bottleneck, then admixture (2%) 0.28
0.01 Bottleneck, then admixture (10%) 0.42
0.01 Bottleneck, then admixture (25%) 0.55
0.1 Admixture (2%) 0.47
0.1 Admixture (10%) 0.51
0.1 Admixture (25%) 0.63
0.1 Ancestral Structure (strong mig.) 0.25
0.1 Ancestral Structure (medium mig.) 0.91
0.1 Ancestral Structure (weak mig.) 1
0.1 Admixture (2%), then bottleneck 0.53
0.1 Admixture (10%), then bottleneck 0.58
0.1 Admixture (25%), then bottleneck 0.67
0.1 Bottleneck, then admixture (2%) 0.47
0.1 Bottleneck, then admixture (10%) 0.53
0.1 Bottleneck, then admixture (25%) 0.66
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Table S3: 40 kb windows that lie in the highest 99.9% quantile of both UA,B,Nea,Den and
Q95A,B,Nea,Den for various outgroup panels A and target panels B, using an outgroup
maximum frequency cutoff of 1%, and using different target allele frequency cutoffs (20%,
50%). For each region, we also show other statistics indicative of AI for reference. We
partitioned the 1000 Genomes panels into outgroup panel A and target panel B in different
ways (column “Mode”), depending on the signals we were looking for. These modes of
partitioning are as follows. “Populations” = outgroup panel was the combination of all the
populations that were not the target panel. “PopulationsB” = outgroup panel was the
combination of all African panels (excluding admixed African-Americans), while target
panel was one of the non-African panels. “Continents” = target panel was either the EUR
continental panel (in which case the outgroup was AFR+EAS) or the EAS continental
panel (in which case the outgroup was AFR+EUR). “ContinentsB” = target panel was
the EUR continental panel (in which case the outgroup was AFR+EAS+SAS) or the
EAS continental panel (in which case the outgroup was AFR+EUR+SAS) or the SAS
continental panel (in which case the outgroup was AFR+EUR+EAS). “Eurasia” = target
panel was EUR+EAS, while outgroup panel was AFR.

https://www.dropbox.com/s/p9k94i2c50rincq/Extreme_gene_table.

xlsx?dl=0
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10. Supplementary Figures1212

Figure S1: Schematic illustration of the way the UA,B,C,D and Q95A,B,C,D statistics are
calculated.
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Figure S2: Density of various statistics meant to detect genetic patterns left by adaptive
introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive introgression
(s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was
the same as in Figure 3 and the admixture rate was set at 2%. See Table 1 for a definition
of the statistics shown.
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Figure S3: Density of various statistics meant to detect genetic patterns left by adaptive
introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive introgression
(s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was
the same as in Figure 3 and the admixture rate was set at 10%. See Table 1 for a definition
of the statistics shown.
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Figure S4: Density of various statistics meant to detect genetic patterns left by adaptive
introgression, for three scenarios: neutrality (s=0) in blue, weak adaptive introgression
(s=0.01) in purple and strong adaptive introgression (s=0.1) in red. The demography was
the same as in Figure 3 and the admixture rate was set at 25%. See Table 1 for a definition
of the statistics shown.
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Figure S5: Density of statistics that detect patterns of linkage disequilibrium for various
neutral and adaptive introgression scenarios. See Table 1 for a definition of the statistics
shown.
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Figure S6: Receiver operating characteristic curves for adaptive introgression with con-
stant population size, using 1,000 simulations of adaptive introgression, under various
selection (s=0.1, s=0.01) and admixture rate (2%, 10%, 25%) regimes. Populations A and
B split from each other 4,000 generations ago, and their ancestral population split from
population C 16,000 generations ago. Population sizes were set at 2N = 20, 000. The
admixture event occurred 1,600 generations ago from population C into population B,
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Figure S7: Joint distribution of Q95A,B,C(1%,100%) and other statistics (RD, Het, D and
fD). 100 individuals were sampled from panel A, 100 from panel B and 2 from panel C.
The demographic parameters were the same as in Figure 3.
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Figure S8: Receiver operating characteristic curves for adaptive introgression with a pre-
admixture bottleneck, using 1,000 simulations under adaptive introgression . We simulated
the same demography as in Figure 3, but also included a 5X bottleneck in population B
after the introgression event, starting 3,000 generations ago and finishing 2,800 generations
ago.
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Figure S9: Receiver operating characteristic curves for adaptive introgression with a post-
admixture bottleneck, using 1,000 simulations under adaptive introgression . We simulated
the same demography as in Figure 3, but also included a 5X bottleneck in population B
after the introgression event, starting 1,400 generations ago and finishing 1,200 generations
ago.
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Figure S10: Joint distribution of Q95A,B,C(w, y) and UA,B,C(w, x, y) for different choices
of w (1%, 10%) and x (20%, 50%). We set y to 100% in all cases. 100 individuals were
sampled from panel A, 100 from panel B and 2 from panel C. In this case, we included
a 5X bottleneck in population B after the introgression event, starting 1,400 generations
ago and finishing 1,200 generations ago.
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Figure S11: Joint distribution of Q95A,B,C(1%,100%) and other statistics (RD, Het, D
and fD). 100 individuals were sampled from panel A, 100 from panel B and 2 from panel
C. In this case, we included a 5X bottleneck in population B after the introgression event,
starting 1,400 generations ago and finishing 1,200 generations ago.
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Figure S12: Receiver operating characteristic curves for adaptive introgression with an
intermediate neutrality period. We simulated the same demography as in Figure 3, but
changed the selection coefficient of the beneficial variant to be 0 right after the introgression
event (1,600 generations ago). If still present in population B, the variant regained its
original coefficient 800 generations ago.
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Figure S13: Receiver operating characteristic curves for a selective sweep from de novo
mutation. We simulated the same demography as in Figure 3, but rather than introducing
the beneficial variant in the introgressed population via admixture from an archaic popu-
lation, we introduced it by mutation in the introgressed population (B) 3,900 generations
ago.
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Figure S14: Receiver operating characteristic curves for selection from standing variation.
We simulated the same demography as in Figure 3, but rather than introducing the bene-
ficial variant in the introgressed population via admixture from an archaic population, we
introduced it with a starting frequency of 20% in the introgressed population (B) 3,900
generations ago.
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Figure S15: Receiving operating characteristic curves for adaptive introgression against a
neutral ancestral structure model with strong migration rates. The demographic scenario
for adaptive introgression was the same as in Figure 3. For a description of the ancestral
structure model, see main text.
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Figure S16: Receiving operating characteristic curves for adaptive introgression against
a neutral ancestral structure model with intermediate migration rates. The demographic
scenario for adaptive introgression was the same as in Figure 3. For a description of the
ancestral structure model, see main text.
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Figure S17: Receiving operating characteristic curves for adaptive introgression against a
neutral ancestral structure model with weak migration rates. The demographic scenario
for adaptive introgression was the same as in Figure 3. For a description of the ancestral
structure model, see main text.
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Figure S18: We computed D(X,YRI,Y,Chimpanzee) for different choices of present-day
human panels X (x-axis) from phase 3 of the 1000 Genomes Project, and for two high-
coverage archaic human genomes Y: Altai Neanderthal (blue) and Denisova (red). The low
value of the right-most panel is due to that panel being composed of African-Americans,
which have a higher proportion of African ancestry than the other panels.

68

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045237doi: bioRxiv preprint 

https://doi.org/10.1101/045237
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S19: We computed the number of uniquely shared sites in the X chromo-
some between particular archaic humans genomes and different choices of present-day
non-African human panels X (x-axis) from phase 3 of the 1000 Genomes Project,
using a shared frequency cutoff of 0% (top-left panel), 20% (top-right panel) and
50% (bottom-left panel). Nea-only = UAfr,X,Nea,Den(1%, 20%, 100%, 0%). Den-only =
UAfr,X,Nea,Den(1%, 20%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 20%, 100%). Den-all =
UAfr,X,Den(1%, 20%, 100%). Both = UAfr,X,Nea,Den(1%, 20%, 100%, 100%). We also com-
puted the quantile statistics Q95 for different choices of present-day non-African human
panels (x-axis) from phase 3 of the 1000 Genomes Project (bottom-right panel). Nea-
only = Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = Q95Afr,X,Nea,Den(1%, 0%, 100%).
Nea-all = Q95Afr,X,Nea(1%, 100%). Den-all = Q95Afr,X,Den(1%, 50%, 100%). Both =
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure S20: We computed the quantile statistics Q95 for different choices of present-day
non-African human panels (x-axis) from phase 3 of the 1000 Genomes Project (D). Nea-
only = Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = Q95Afr,X,Nea,Den(1%, 0%, 100%).
Nea-all = Q95Afr,X,Nea(1%, 100%). Den-all = Q95Afr,X,Den(1%, 100%). Both =
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure S21: For each population panel from the 1000 Genomes Project, we jointly plotted
the U and Q95 statistics with an archaic frequency cutoff of > 0% within each population.
Nea-only = UAfr,X,Nea,Den(1%, 0%, 100%, 0%) and Q95Afr,X,Nea,Den(1%, 100%, 0%).
Den-only = UAfr,X,Nea,Den(1%, 0%, 0%, 100%) and Q95Afr,X,Nea,Den(1%, 0%, 100%).
Nea-all = UAfr,X,Nea(1%, 0%, 100%) and Q95Afr,X,Nea(1%, 100%). Den-
all = UAfr,X,Den(1%, 0%, 100%) and Q95Afr,X,Den(1%, 100%). Both =
UAfr,X,Nea,Den(1%, 0%, 100%, 100%) and Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure S22: Effect of bottlenecks on the distribution of various statistics under introgres-
sion and neutrality.
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Figure S23: Boxplots showing the effect of different types of bottlenecks on the distribution
of U and Q95 under neutrality. We performed 1,000 simulations for each of 6 different
3-population scenarios with 25% admixture from population C into population B, fol-
lowing the models described in Figure 2. Scenario 1: Constant population size (Figure
2.A). Scenario 2: Pre-admixture 5X bottleneck for 200 generations (Figure 2.B). Scenario
3: Post-admixture 5X bottleneck for 200 generations (Figure 2.C). Scenario 4: Post-
admixture 5X bottleneck for 400 generations. Scenario 5: Post-admixture 10X bottleneck
for 200 generations. Scenario 6: Post-admixture 10X bottleneck for 400 generations.

73

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045237doi: bioRxiv preprint 

https://doi.org/10.1101/045237
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S24: Violin plots showing the effect of different types of bottlenecks on the distri-
bution of U and Q95 under neutrality (this is the same data as Figure S23). We performed
1,000 simulations for each of 6 different 3-population scenarios with 25% admixture from
population C into population B, following the models described in Figure 2. Scenario 1:
Constant population size (Figure 2.A). Scenario 2: Pre-admixture 5X bottleneck for 200
generations (Figure 2.B). Scenario 3: Post-admixture 5X bottleneck for 200 generations
(Figure 2.C). Scenario 4: Post-admixture 5X bottleneck for 400 generations. Scenario
5: Post-admixture 10X bottleneck for 200 generations. Scenario 6: Post-admixture 10X
bottleneck for 400 generations.
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Figure S25: For each population panel from the 1000 Genomes Project, we jointly
plotted the U and Q95 statistics with an archaic frequency cutoff of > 50%
within each population. Nea-only = UAfr,X,Nea,Den(1%, 50%, 100%, 0%) and
Q95Afr,X,Nea,Den(1%, 100%, 0%). Den-only = UAfr,X,Nea,Den(1%, 50%, 0%, 100%)
and Q95Afr,X,Nea,Den(1%, 0%, 100%). Nea-all = UAfr,X,Nea(1%, 50%, 100%)
and Q95Afr,X,Nea(1%, 100%). Den-all = UAfr,X,Den(1%, 50%, 100%) and
Q95Afr,X,Den(1%, 100%). Both = UAfr,X,Nea,Den(1%, 50%, 100%, 100%) and
Q95Afr,X,Nea,Den(1%, 100%, 100%).
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Figure S26: Uniquely shared archaic alleles in an East Asian (EAS) panel. Joint distri-
bution of Q95EUR+AFR,EAS,Nea,Den(1%, y, z) and UEUR+AFR,EAS,Nea,Den(1%,x,y,z), for
40kb non-overlapping regions along the genome, using two choices of x (20% in left col-
umn panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S27: Uniquely shared archaic alleles in an European (EUR) panel. Joint distri-
bution of Q95EAS+AFR,EUR,Nea,Den(1%, y, z) and UEAS+AFR,EUR,Nea,Den(1%,x,y,z), for
40kb non-overlapping regions along the genome, using two choices of x (20% in left col-
umn panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S28: Uniquely shared archaic alleles in a South Asian (SAS)
panel. Joint distribution of Q95EAS+EUR+AFR,SAS,Nea,Den(1%, y, z) and
UEAS+EUR+AFR,SAS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the
genome, using two choices of x (20% in left column panels,50% in right column panels).
Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-
specific shared alleles are displayed in the top panels, Denisovan-specific shared alleles are
displayed in the middle-row panels, and alleles shared with both archaic human genome
are displayed in the bottom panels.
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Figure S29: Uniquely shared archaic alleles in a Eurasian (EUA=EUR+SAS+EAS)
panel. Joint distribution of Q95AFR,EUR+SAS+EAS,Nea,Den(1%, y, z) and
UAFR,EUR+SAS+EAS,Nea,Den(1%,x,y,z), for 40kb non-overlapping regions along the
genome, using two choices of x (20% in left column panels,50% in right column panels).
Red dots refer to regions that are in the 99.9% quantiles for both statistics. Neanderthal-
specific shared alleles are displayed in the top panels, Denisovan-specific shared alleles are
displayed in the middle-row panels, and alleles shared with both archaic human genome
are displayed in the bottom panels.
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Figure S30: Uniquely shared archaic alleles in a Bengali (BEB) panel. Joint dis-
tribution of Q95AFR,BEB,Nea,Den(1%, y, z) and UAFR,BEB,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S31: Uniquely shared archaic alleles in a Chinese Dai (CDX) panel. Joint dis-
tribution of Q95AFR,CDX,Nea,Den(1%, y, z) and UAFR,CDX,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S32: Uniquely shared archaic alleles in a Central European (CEU) panel. Joint
distribution of Q95AFR,CEU,Nea,Den(1%, y, z) and UAFR,CEU,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S33: Uniquely shared archaic alleles in a Han Chinese (CHB) panel. Joint dis-
tribution of Q95AFR,CHB,Nea,Den(1%, y, z) and UAFR,CHB,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S34: Uniquely shared archaic alleles in a Southern Han Chinese (CHS) panel. Joint
distribution of Q95AFR,BEB,Nea,Den(1%, y, z) and UAFR,CHS,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S35: Uniquely shared archaic alleles in a Colombian (CLM) panel. Joint dis-
tribution of Q95AFR,CLM,Nea,Den(1%, y, z) and UAFR,CLM,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S36: Uniquely shared archaic alleles in a Finnish (FIN) panel. Joint distribution of
Q95AFR,FIN,Nea,Den(1%, y, z) and UAFR,FIN,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statis-
tics. Neanderthal-specific shared alleles are displayed in the top panels, Denisovan-specific
shared alleles are displayed in the middle-row panels, and alleles shared with both archaic
human genome are displayed in the bottom panels.
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Figure S37: Uniquely shared archaic alleles in a British (GBR) panel. Joint distribu-
tion of Q95AFR,GBR,Nea,Den(1%, y, z) and UAFR,GBR,Nea,Den(1%,x,y,z), for 40kb non-
overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S38: Uniquely shared archaic alleles in a Gujarati Indian (GIH) panel. Joint
distribution of Q95AFR,GIH,Nea,Den(1%, y, z) and UAFR,GIH,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S39: Uniquely shared archaic alleles in an Iberian (IBS) panel. Joint distribution of
Q95AFR,IBS,Nea,Den(1%, y, z) and UAFR,IBS,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statis-
tics. Neanderthal-specific shared alleles are displayed in the top panels, Denisovan-specific
shared alleles are displayed in the middle-row panels, and alleles shared with both archaic
human genome are displayed in the bottom panels.
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Figure S40: Uniquely shared archaic alleles in an Indian Telugu (ITU) panel. Joint
distribution of Q95AFR,ITU,Nea,Den(1%, y, z) and UAFR,ITU,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S41: Uniquely shared archaic alleles in a Japanese (JPT) panel. Joint distri-
bution of Q95AFR,JPT,Nea,Den(1%, y, z) and UAFR,JPT,Nea,Den(1%,x,y,z), for 40kb non-
overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S42: Uniquely shared archaic alleles in a Kinh (KHV) panel. Joint distribu-
tion of Q95AFR,KHV,Nea,Den(1%, y, z) and UAFR,KHV,Nea,Den(1%,x,y,z), for 40kb non-
overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S43: Uniquely shared archaic alleles in a Mexican (MXL) panel. Joint dis-
tribution of Q95AFR,MXL,Nea,Den(1%, y, z) and UAFR,MXL,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S44: Uniquely shared archaic alleles in a Peruvian (PEL) panel. Joint dis-
tribution of Q95AFR,PEL,Nea,Den(1%, y, z) and UAFR,PEL,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S45: Uniquely shared archaic alleles in a Punjabi (PJL) panel. Joint distribution of
Q95AFR,PJL,Nea,Den(1%, y, z) and UAFR,PJL,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statis-
tics. Neanderthal-specific shared alleles are displayed in the top panels, Denisovan-specific
shared alleles are displayed in the middle-row panels, and alleles shared with both archaic
human genome are displayed in the bottom panels.
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Figure S46: Uniquely shared archaic alleles in a Puerto Rican (PUR) panel. Joint dis-
tribution of Q95AFR,PUR,Nea,Den(1%, y, z) and UAFR,PUR,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9% quan-
tiles for both statistics. Neanderthal-specific shared alleles are displayed in the top panels,
Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles shared
with both archaic human genome are displayed in the bottom panels.
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Figure S47: Uniquely shared archaic alleles in a Sri Lankan Tamil (STU) panel. Joint
distribution of Q95AFR,STU,Nea,Den(1%, y, z) and UAFR,STU,Nea,Den(1%,x,y,z), for 40kb
non-overlapping regions along the genome, using two choices of x (20% in left column
panels,50% in right column panels). Red dots refer to regions that are in the 99.9%
quantiles for both statistics. Neanderthal-specific shared alleles are displayed in the top
panels, Denisovan-specific shared alleles are displayed in the middle-row panels, and alleles
shared with both archaic human genome are displayed in the bottom panels.
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Figure S48: Uniquely shared archaic alleles in a Toscani (TSI) panel. Joint distribution of
Q95AFR,TSI,Nea,Den(1%, y, z) and UAFR,TSI,Nea,Den(1%,x,y,z), for 40kb non-overlapping
regions along the genome, using two choices of x (20% in left column panels,50% in right
column panels). Red dots refer to regions that are in the 99.9% quantiles for both statis-
tics. Neanderthal-specific shared alleles are displayed in the top panels, Denisovan-specific
shared alleles are displayed in the middle-row panels, and alleles shared with both archaic
human genome are displayed in the bottom panels.
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Figure S49: We explored the haplotype structure of OCA2, TYRP1, SLC16A11 and
MUC19. We applied a clustering algorithm to the haplotypes of particular human popula-
tions and then ordered the clusters by decreasing similarity to the archaic human genome
with the larger number of uniquely shared sites. We also plotted the number of differ-
ences to the closest archaic haplotype for each human haplotype and sorted them simply
by decreasing similarity. Note that, in the latter case, no clustering was performed, so
the rows in the cumulative difference plots do not necessarily correspond to the rows
in the adjacent haplotype structure plots. OCA2 : chr15:28160001-28200000. TYRP1 :
chr9:12680001-12720000. SLC16A11 : chr17:6880001-6960000. MUC19 : chr12:40800001-
40840000.
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Figure S50: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the POU2F3 region, using the Altai Neanderthal genome as
the archaic source.
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Figure S51: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the BNC2 region, using the Altai Neanderthal genome as the
archaic source.
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Figure S52: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the OAS region, using the Altai Neanderthal genome as the
archaic source.
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Figure S53: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the LARS region, using the Altai Neanderthal genome as the
archaic source.
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Figure S54: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the FAP/IFIH1 region, using the Altai Neanderthal as the
archaic source.
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Figure S55: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the CHD2 region, using the Altai Neanderthal genome as the
archaic source.
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Figure S56: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the TLR1-6 region, using the Altai Neanderthal genome as the
archaic source.
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Figure S57: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the ZFHX3 region, using the Altai Neanderthal genome as the
archaic source.
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Figure S58: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the LIPA region, using the Denisova genome as the archaic
source.
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Figure S59: Introgressed tracks inferred in the four Non-African 1000 Genomes continental
panels by an HMM [20] in the MUSTN1 region, using the Denisova genome as the archaic
source.
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