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Abstract 
 
Competition chip is an experimental method that allows transcription factor (TF) 
chromatin turnover dynamics to be measured across a genome. We develop and apply a 
physical model of TF-chromatin competitive binding using chemical reaction rate theory 
and derive the physical half-life or residence time for TATA-binding protein (TBP) 
across the yeast genome from competition ChIP data. Using our physical modeling 
approach where we explicitly include the induction profile of the competitor in the 
model, we are able to estimate yeast TBP-chromatin residence time as short as 1.3 
minutes, demonstrating that competition ChIP is a relatively high temporal-resolution 
approach. Strikingly, we find a median value of ~5 TBP-chromatin binding events 
associated with the synthesis of one RNA molecule across Pol II genes, suggesting 
multiple rounds of pre-initiation complex assembly and disassembly before productive 
elongation of Pol II is achieved at most genes in the yeast genome.           
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Cellular processes including transcription are inherently dynamic.  Currently, the 
dynamics of transcription and other molecular processes in the cell are poorly 
understood1 because of a lack of methods that measure fundamental kinetic parameters in 
vivo.  Precise estimation of the chromatin-binding on-rates and off-rates of general 
transcription factors (GTFs) and other classes of transcription factors (TFs) would allow 
more quantitative understanding and modeling of pre-initiation complex (PIC) 
formation2,3, RNA polymerase recruitment and elongation, and transcription4,5.  Live-cell 
imaging at specific multi-copy genes is capable of yielding the residence time of TF-
chromatin interactions at high temporal resolution (i.e., second timescale)6 but in general 
does not allow these measurements at single-copy genes.  Cross-linking kinetic (CLK) 
analysis is a high spatial and temporal resolution method that enables estimation of the 
in-vivo TF-chromatin on-rates and off-rates at single-copy loci7,8.  Another experimental 
approach to assessing TF-chromatin dynamics is anchor-away (AA)9,10; however, only 
qualitative or semi-quantitative TF-chromatin dynamic information is determined from 
this approach9,10.  Indeed, alternative physical-modeling approaches to calculating these 
kinetic parameters are needed to independently verify the estimates obtained from CLK 
and live-cell imaging techniques11,12. 
     Competition ChIP is another high-spatial resolution method in which the endogenous 
copy of a TF contains one protein tag and an alternative copy, a competitor, is 
transcriptionally induced with an alternative protein tag13-15. We developed and applied a 
physical modeling approach using chemical kinetic theory that directly estimates the 
physical half-life or residence time of TATA-binding protein (TBP)—the general 
transcription factor which initiates PIC formation16—on chromatin across the yeast 
genome from TBP competition ChIP data15. Given that the competitor TF requires 20-30 
minutes for induction14,15, competition ChIP was generally believed to be low temporal 
resolution (20 minutes or greater)7,9. Moreover, previous analyses of competition ChIP 
data have estimated relative turnover rates13-15 and not residence times.  Lickwar et al.14 
argue that they estimated the residence time of Rap1 across the yeast genome with the 
shortest residence time being ~30 minutes; however, we show that their estimates, while 
correlated with the physical Rap1 residence time, are likely much longer than the actual 
physical residence time.  In support of this, live cell imaging12, CLK7,8 and AA9 analyses 
reveal that TBP-chromatin interactions range from seconds to a few minutes depending 
on the promoter.  However, the previous estimates of residence times were made at select 
loci using qPCR7,9 or represented effective averages across hundreds to thousands of 
promoters12.  Consequently, this study is the first to arrive at genome-wide estimates of 
TF-chromatin residence times for TBP.  Using our physical modeling approach, we are 
capable of estimating TBP-chromatin residence times as short as 1.3 minutes and as long 
as 53 minutes, demonstrating that competition ChIP is actually a relatively high temporal 
resolution method. An advantage of estimating the physical residence time as opposed to 
relative turnover is that comparison of physical residence times to other physical 
timescales including nascent RNA transcription rates inform qualitative and quantitative 
models of the efficiency or stochasticity of PIC formation and transcription1. 
Furthermore, physical residence times will lead to physical mathematical models of PIC 
assembly and transcription2,3 as more kinetic parameters are measured.    
     Comparing TBP-chromatin residence times with nascent RNA transcription rates17, 
we found that a median value of ~5 TBP binding events were associated with productive 
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RNA synthesis across Pol II genes.  Our results paint a highly dynamic, stochastic picture 
of pre-initiation complex formation with multiple rounds of partial assembly and 
disassembly before a single round of productive RNA polymerase elongation. We also 
compared TBP-chromatin residence times to Rap1 and nucleosome relative turnover13-15. 
Notably, these are the only other regulatory factors whose dynamics have been 
characterized at specific sites on a genomic scale.  We found that TBP-chromatin 
residence time was correlated with Rap113-15 but not nucleosome13-15 turnover dynamics.  
Moreover, while TBP and Rap1 chromatin dynamics were poorly correlated with nascent 
RNA transcription rates17, +1 nucleosome turnover dynamics, which likely affect Pol II 
elongation18-20, showed modest but robust positive correlation with nascent RNA 
transcription rates. Assessment of the role that the occupancy of over 200 transcription 
factors21 played in modulating TBP-chromatin residence times and nascent RNA 
transcription rates across gene promoters revealed only a subunit of TFIIE affecting TBP 
residence times while a number of initiation and elongation-related TFs had a relatively 
strong impact on nascent RNA transcription rates. Our findings point to the dynamics and 
occupancy of factors that regulate the late stages of transcription initiation including Pol 
II elongation associating more strongly with nascent RNA transcription rates than that of 
factors regulating early stages including PIC formation such as TBP and Rap1.         
 
Results 
 
Overview of competition ChIP experiment and data analysis.  Competition ChIP 
(schematically represented in Fig. 1a-d) enables direct measurement of TF-chromatin 
turnover dynamics at binding sites across a genome (e.g., yeast genome).  This is 
accomplished by attaching a protein tag to an endogenous TF (orange dots in Fig. 1a-d) 
and by expressing a competitor of that TF with a different tag (maroon dots in Fig. 1a-d).  
The relative occupancy of the alternatively tagged TFs are measured at binding sites 
across a genome using chromatin immunoprecipitation (ChIP) followed by hybridization 
to genomic tiling arrays (ChIP-chip) or high throughput sequencing (ChIP-seq).  
Quantification of the normalized ratio of induced competitor TF ChIP signal over the 
endogenous TF ChIP signal over time after induction of the competitor TF yields 
estimates of TF-chromatin turnover at any given binding site14,15.  The induction of the 
competitor concentration (labeled �� ) relative to the endogenous TBP concentration 
(labelled ��) takes ~60-70 minutes to reach steady state levels as shown by the dashed 
line in Fig. 1e-g.   
     We applied kinetic theory to model the in vivo competitive dynamics of the induced 
competitor and the endogenous TBP in a competition ChIP experiment15 to estimate the 
TBP-chromatin binding on-rate (��) and off-rate (��) (Supplementary Text Sec. 2) at 
sites across the yeast genome.  We found that the ratio of simulated induced over 
competitor occupancy versus time strongly depended on residence time ( ��/� �
 ln�2
 /��) and not the on-rate (Supplementary Text Sec. 3).  Additionally, we observed 
that the simulated ratio of occupancies using the kinetic model (solid lines in Fig. 1e-g) 
rose and saturated (at steady state levels) at slower rates with increasing residence time, 
��/� .  Consequently, TBP-chromatin interactions with short residence times (��/� � 1 
min) yielded a simulated ratio of occupancies versus time that was mildly but noticeably 
displaced or shifted (i.e., minute timescale) to the right of the induction curve (Fig. 1e) 
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while TBP-chromatin interactions with longer residence times were displaced roughly by 
the value of the residence time (Fig. 1f,g).  Intuitively, this time-delayed response of the 
ratio of occupancies relative to the induction curve can be viewed as an additional delay 
compared to induction driven by the residence time of the TF.  In fact, the simulation 
showed that the residence time is effectively the time it takes for the turnover to affect the 
ratio of occupancies in response to induction of the competitor at all times post induction, 
including times much shorter than that required for full induction.  Importantly, this delay 
is noticeable as soon as the induction curve rises above 0 (i.e., noise level), which is ~10 
minutes (Fig. 1e-g), and, as discussed below, enables residence times as short as ~1 to 2 
minutes to be estimated.  
     Along with background subtraction and normalization of TBP competition ChIP 
data14,15 (Supplementary Text Sec. 1), an important data processing step includes scaling 
of the normalized, background subtracted ChIP ratios at steady state (i.e., � 
  ∞) as 
outlined in Fig.1h (also Supplementary Text Sec. 2). In order to fit a kinetic theory of 
competitive binding represented as a ratio of the competitor over the endogenous TF 
occupancies versus time, the processed data must satisfy the constraints on the ratio of 
occupancies at the start of induction (� � 0) and steady state or equilibrium (� 
  ∞).  
More specifically, the mathematical solution of the kinetic theory equations 
(Supplementary Text Sec. 2) shows that the ratio of the competitor over endogenous TF 
occupancies equals the ratio of competitor over endogenous TBP concentration at steady 
state (� 
  ∞). This is depicted in Fig. 1e-g where the ratio of simulated occupancies 
(solid blue lines) and the ratio of TBP competitor concentration over endogenous 
concentration (dashed brown line) at steady state both equal 2.  Importantly, background 
subtraction and normalization of competition ChIP genomic tiling array or high 
throughput sequencing data across time points does not yield properly scaled data at 
steady state (as shown in Fig. 2b).  There are likely multiple reasons for this discrepancy 
between theoretical and background-subtracted normalized ratios including differences in 
the affinity of the two antibodies used to tag the competitor and endogenous TF 
(Supplementary Text Sec. 2).  Nevertheless, if a kinetic model is used to fit competition 
ChIP data, the data must be properly scaled to satisfy the constraints of the theory at the 
start of induction and at steady state—a crucial step that has not been implemented 
previously13,14. 
 
Background subtraction, normalization and scaling of competition ChIP-chip data.  
In order to fit TBP competition ChIP two-color Agilent tiling microarray data15 to our 
kinetic model, we first normalized each dataset to non-specific background (Fig. 2b,  
Supplementary Fig. 1, and Supplementary Text Sec. 1). We then subtracted locus-
specific background and scaled the data for TBP peaks within gene promoters to 
theoretically expected values at the start of induction ( � � 0 ) and steady state or 
equilibrium (� 
  ∞) (Fig. 2c and Supplementary Text Sec. 2).  The kinetic theory 
explicitly accounts for the time dependence of the induction of the competitor.  
Consequently, we fit the ratio of the induced (denoted by B) over endogenous (denoted 
by A) TBP concentration (����
/��) determined from Western blots as a function of 
induction time15 to a function that displayed critical features of the ratio: saturation as 
well as positive curvature (i.e., increasing slope) at low time points and negative 
curvature (i.e., decreasing slope) near steady state or saturation.  A Hill-like sigmoid 
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function with Hill coefficient � � 4 (Fig. 3a and Supplementary Eqn. 3) displays all of 
these properties and yielded the best fit of the ratio of concentration data over time.  The 
fit yielded a characteristic time-scale for TBP competitor induction ��

	
� � 22 min and 
the steady state ratio of induced over endogenous TBP concentration (���� 
 ∞
/�� 

2.23).  Not surprisingly, the normalized competition ChIP data at nearly every TBP 
binding site was also well approximated by an � � 4 Hill-like equation with a time-scale 
parameter ��  (Supplementary Eqn. 3), which quantifies the overall turnover response 
including induction and TF-turnover dynamics at every TBP peak.  As we showed in our 
simulation of ratios of competitor over endogenous TF occupancies using kinetic theory 
of competitive binding (Fig. 1e-g), the resulting competition ChIP ratio (after proper 
normalization, background subtraction and scaling) is a response curve that is delayed 
compared to the induction curve (with a characteristic time-scale ��

	
�) roughly by the 
residence time (��/�) (i.e., crudely ��~��

	
� � ��/�).  We used this Hill-like equation to 
background subtract and scale the data to the theoretical in vivo (denoted by superscript 
�) ratio of fractional occupancy of the competitor ��

	 ��
 to the endogenous ��
	 ��
 TBP, 

which must satisfy the boundary conditions at the start of induction ���
	 �0
 ��

	 �0
⁄ � 0
 
and steady state ( ��

	 ��
 ��
	 ��
 
⁄ 2.23  as � 
 ∞ ) as described above (Fig. 2 and 

Supplementary Text Sec. 2,4).   
 
Estimation of residence time by fitting the model of competitive binding to 
normalized, scaled competition ChIP data.  We then simultaneously numerically 
solved and fitted the in vivo kinetic equations of competitive binding between species A 
and B (Methods Eqns. 1 and 2, Supplementary Eqns. 9 and 10) to normalized, scaled 
competition ChIP data (Fig. 2 and Supplementary Text Sec. 4, 5).  We (and others13-15) 
ignored the impact of cross-linking theoretically as competition ChIP data was gathered 
at one cross-linking time (20 min of formaldehyde cross-linking in van Werven et al.13-

15). We showed that the resulting off-rate, ��, could be modestly biased (Supplementary 
Fig. 3a-d) using a generalization of the CLK framework with crosslinking to competition 
ChIP (Supplementary Eqns. 4-8). This framework could be used to correct the bias if data 
is gathered at various crosslinking times7.  As noted by Lickwar et al.14, we also found 
that the in vivo ratio of induced over endogenous TF as a function of induction time is 
insensitive to the on-rate, �� , and is very sensitive to the off-rate or residence time, 
��/� �  ln�2
 /��  (Supplementary Text Sec. 3 and Supplementary Fig. 3e-f).  
Consequently, we only arrived at relatively precise values of the residence time (��/�).                  
 
TBP-chromatin residence times ranging from 1.3 to 53 minutes estimated from 
normalized, scaled competition ChIP data.  Stratifying TBP-containing promoters in 2-
minute bands of �� , we showed that the average normalized and scaled ratio of 
competitor over endogenous signals as a function of induction time progressively showed 
slower rise as ��  increased (i.e., moved to the right) (Fig. 3b) with corresponding 
residence times increasing from 1.3 to 53 minutes (Fig. 3c, Supplementary Text Sec. 6), 
showing that residence times could be estimated from the ratio. Indeed, given that fitting 
the Hill-like equation and chemical kinetic equations should yield highly correlated 
results, we found a smooth relationship between ��/�  and ��  (as mentioned earlier, 
crudely ��~��

	
� � ��/� ) up to a point where numerically fitting the chemical kinetic 
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equations became unstable; this point is marked by �� � 24.5  min (Fig. 3d and 
Supplementary Fig. 4). This numerical instability was due to the fact that for promoters 
with �� � 24.5 min, the separation between the normalized, scaled data and the induction 
curve were well within the noise of the competition ChIP data.  For �� � 24.5 min, the 
normalized, scaled data yielded excellent fits to the chemical kinetic equations, the data 
moved progressively to the right with increasing residence time and, remarkably, allowed 
residence times as short as 1.3 minutes to be estimated (Fig. 3e-g, Supplementary Fig. 4e-
h, and Supplementary Table 1). Importantly, the shortest residence time that could be 
reliably estimated was determined by the noise in the induction and competition ChIP 
data and not the induction time of the competitor.  As soon as reliable, robust separation 
(i.e., beyond their relative error or noise) between the induction and competition ChIP 
ratio curves existed, relatively reliable residence times could be estimated.  
 
Multiple TBP-chromatin binding events are associated with synthesis of one nascent 
RNA molecule at Pol II genes.  Earlier estimates of relative TBP turnover, �, for 602 
Pol II and 264 Pol III genes were obtained using linear regression to a subset of the data 
(i.e., 10, 20, 25 and 30 min time points)15. Because a physical model of competitive 
binding rooted in reaction-rate theory naturally follows the profiles of the normalized and 
scaled data as a function of induction time (as opposed to a linear fit), we were able to 
apply stringent noise criteria on the residuals of each fit (Supplemental Text Sec. 8) and 
reliably estimate TBP residence times for 794 Pol II and 205 Pol III genes 
(Supplementary Table 1). While � and our estimates of �� are correlated (Supplementary 
Fig. 5a), � is also strongly correlated with the � � 0 ratio of induced over competitor 
ChIP signals (Supplementary Fig. 5), which suggests insufficient background subtraction 
influencing the estimates of �.  Nevertheless, in agreement with estimates of � made by 
van Werven et al.15 as well as the competition ChIP and AA results of Grimaldi et al.9, 
we found that TBP residence times were notably shorter for Pol II compared to Pol III 
genes (Fig. 4a) and to a lesser extent for TATA compared to TATA-less genes22 (Fig. 
4b).  In contrast to van Werven et al.15 but consistent with Grimaldi et al.9, we found no 
significant differences between TBP residence times comparing SAGA containing and 
SAGA free genes (Supplementary Fig. 6d) or TFIID-containing and TFIID-free genes 
(Supplementary Fig. 6g).  Given that Pol III genes tend to be higher expressed23 and have 
longer TBP residence times than Pol II genes, we were surprised to find marginally 
shorter TBP residence times at highly expressed ribosomal protein (RP) genes compared 
to other genes (Fig. 4c, Supplementary Fig. 6j).  This finding was consistent with higher 
nascent RNA transcription rates (TRs)17 for shorter TBP residence times at Pol II genes 
(Fig. 4d).  Shorter residence times were also associated with higher levels of extrinsic 
transcriptional noise24 (Fig. 4e) consistent with recent findings25.  With estimates of TR 
and TBP ��/� , we defined transcriptional efficiency, which is the product of the 
transcription rate and TBP residence time (����/�) and represents the number of TBP 
residence times or binding events associated with productive elongation of Pol II and 
transcription.  Strikingly, we found low transcriptional efficiencies for Pol II genes (Fig. 
4f).  The median ����/� across Pol II promoters was 0.2, or ~5 TBP binding events for 
productive RNA synthesis to proceed (Fig. 4f).  This is consistent with an upper limit for 
this value for most Pol II genes (i.e., ����/� � 1 ) determined by the likely TBP-
chromatin residence time from AA experiments and characteristic values of transcription 
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rate across the yeast genome9.  These findings are consistent with rapid, highly stochastic 
TPB/PIC dynamics at Pol II genes with multiple rounds of assembly and disassembly 
before productive Pol II elongation.  While we don’t have nascent RNA data for Pol III 
genes, these genes tend to be much higher expressed than Pol II genes; yet TBP residence 
times tended to be ~10 minutes (Fig. 4a) suggesting much more stable PIC formation26 
and function for Pol III genes.                 
 
TBP-chromatin residence time is correlated with relative Rap1 residence time but 
not with +1 nucleosome residence time or nascent RNA transcription rate.  To gain 
further insights into the upstream regulation and/or downstream impact of TBP-
chromatin binding dynamics especially on regulation of gene expression, we compared 
TBP residence times (��/�) to the only other regulatory factors whose dynamics have 
been characterized on a genomic scale (in yeast): previously derived Rap114 and 
nucleosome13 relative turnover rates ( ) and, their inverse turnover rates ( ��) or relative 
residence times.  Notably, we showed that the relative turnover ( ), derived using a 
Poisson statistical turnover model13,14, equals the off-rate (�� ) plus a time-dependent 
function (Supplementary Eqn. 28, Supplementary Fig. 7) and can be moderately biased. 
More importantly, the relative turnover rates are excessively biased because normalized 
ChIP ratios were not scaled to ratios of fractional occupancies before model fitting14 as 
described above (Fig. 2, Supplementary Text Sec. 14 and Supplementary Fig. 8).  In 
other words, fitting a model of the ratio of occupancies to un-scaled data (Fig. 2b) as 
opposed to properly scaled data (Fig. 2c) yields significantly biased (i.e., 30-fold or 
greater) estimates of Rap1 residence time (Supplementary Text Sec. 14 and 
Supplementary Fig. 8).  That said, we found TBP residence time (��/�) was correlated 
with Rap1 relative residence time ( ��) at non-RP Pol II genes but not at RP Pol II genes 
(Fig. 5a). TBP residence time showed weak negative correlation with Pol II transcription 
rate (corr � !0.11; Supplementary Fig. 9a).  Rap1 relative residence time ( ��) showed 
slight positive correlation (Fig. 5b) with transcription rate at non-RP genes, while 
transcriptional efficiency was modestly correlated with Rap1 relative residence time at 
non-RP Pol II genes (Fig. 5c).  Interestingly, the majority of the sites for which Rap1 
relative residence times have been determined (ranging from 30-150 min) exhibit highly 
dynamic TBP (��/� � 1.4 min or �� � 24.5 min; Supplementary Fig. 9b).  This further 
supports our findings that Rap1 relative residence times14 are 20 to 30 fold higher (or 
more) than, but likely correlated with, actual Rap1 residence times14 (Supplementary 
Text Sec. 14).  While +1 nucleosome dynamics were poorly correlated with TBP 
residence time (Fig. 5d, Supplementary Fig. 9c,d), they were positively correlated with 
transcription rate (Fig. 5e, Supplementary Fig. 9e) and efficiency (Fig. 5f, Supplementary 
Fig. 9f).  These results suggest that while the dynamics and not merely the presence 
(Supplementary Fig. 6m) of transcription factors like Rap1 regulate TBP/PIC dynamics, 
TBP and Rap1 recruitment and dynamics are not the rate-limiting step in transcription at 
Pol II genes.  Conversely, the dynamics of factors that play a role in regulating elongation 
including +1 nucleosome turnover18-20 may play more critical roles in determining the 
transcription rate and efficiency. 
 
Occupancy of multiple elongation and initiation complexes at promoters tends to 
increase transcription efficiency and rate but does not affect TBP-chromatin 
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residence time.  To further assess the hypothesis that transcription factors associated 
with elongation as opposed to PIC and Pol II recruitment or initiation are the rate-limiting 
step in transcription, we tested the effect that the presence or absence of 202 transcription 
factors mapped to the yeast genome21 had on TBP residence time, transcription rate and 
transcription efficiency. We subdivided loci for which we had estimates of TBP residence 
time into quartiles of the number of transcription, initiation, and elongation factors bound 
based on the classification by Venters et al.21.  As expected, the presence of greater 
numbers of transcription, initiation and elongation factors at promoters had no significant 
impact on TBP residence times (Fig. 6a-c) but yielded higher transcription rates (Fig. 6d-
f) and efficiencies (Fig. 6g-i).  Strikingly, the presence of more elongation factors had a 
much greater impact on both transcription rate (Fig. 6f) and efficiency (Fig. 6i) compared 
to that of initiation factors (Fig. 6e,h), consistent with our hypothesis.       
     For each of the 202 factors, we also conducted permutation tests to estimate the 
significance of differences of TBP residence times, transcription rate and efficiency at 
sites with the factor present compared to sites with that factor absent.  We only found one 
factor, Tfa2 (a TFIIE subunit), whose presence yielded statistically shorter TBP residence 
times compared to its absence (Fig. 7a). Given that TFIIE (together with TFIIH) 
recruitment leads to a complete PIC, which then requires ATP for formation of the 
transcription bubble and subsequent Pol II elongation27, higher occupancy of TFIIE could 
lead to more rapid rates of Pol II elongation and PIC disassembly.  This could explain 
shorter TBP residence times for promoters with higher levels of TFIIE.  In partial 
agreement with this, presence of Tfa2 at promoters modestly increased transcription rate 
(Fig. 7b) but had no significant effect on efficiency (Fig. 7c).  In contrast, we found that 
46% and 50% of all the initiation and elongation factors mapped, respectively, 
significantly modulated transcription rate and efficiency (Fig. 7d,e and Supplementary 
Text Sec. 16).  Not surprisingly, many of these factors were members of initiation and 
elongation complexes whose enrichment at promoters lead to both increased transcription 
rate and efficiency (Fig. 7f).  These included subunits of the PIC assembly complexes 
TFIID, TFIIF, TFIIH and Pol II, while enrichment of TFIIE at promoters displayed 
increased transcription rate only (Fig. 7e,f).  In addition, presence of multiple factors in 
complexes associated with elongation as well as initiation at promoters including Spt6, 
FACT and Mediator showed higher transcription efficiency and rate (Fig. 7e,f).   
     Components of complexes in the “access” class—those that regulate histones and 
chromatin21—associated with establishing active states of chromatin including 
monoubiquitination of H2BK123 (Bre1 and Htb1), trimethylation of H3K4 (COMPASS), 
acetylated histone tails (SAGA, NuA4 and Ada) and chromatin remodeling (Isw1 and 
Nhp6a) were enriched at genes with higher transcription efficiency and rate (Fig. 7e,f).  
In contrast, we also found access factors associated with chromatin and transcriptional 
silencing including a histone deacetylase (Sir2), and proteins that directly interact with 
histones (Tup1 and Spt2) at genes with higher transcription rates and efficiencies (Fig. 
7e).  Moreover, we found the presence of the histone variant Htz1 and components of the 
SWR1 complex, which exchanges H2A.Z (Htz1) for H2A in chromatin, at promoters 
were associated with lower transcription rates and efficiencies (Fig. 7e,f).  While this 
result is consistent with genomic studies that show an inverse correlation between Htz1 
and gene expression levels18, deletion of Htz1 reduces the rate of Pol II elongation 24% at 
the GAL10p-VPS13 gene28.  Finally, in the “orchestration” class—sequence specific 
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activators and repressors21—we found that the presence of factors (Sfp1, Ifh1 and Rap1) 
that are associated with activating ribosomal protein and biosynthesis genes resulted in 
higher transcription rates and efficiencies while a factor that activates phosphatase 
metabolism (Pho2) only increased transcription rates (Fig. 7e).  Interestingly, factors that 
recruit the repressive Tup1-Cyc8 complex (Cin5 and Skn7) along with Tup1 were 
associated either only with increased transcription rate or both increased transcription rate 
and efficiency (Fig. 7e).  We note that an important caveat in this analysis, which may 
explain the enrichment of a few transcriptional repressors at genes with higher 
transcription rates and efficiencies, was that the transcription rates and efficiencies were 
calculated for yeast in galactose15,17 while the 202 TFs were mapped in yeast in YPD21.    
 
Discussion 
 
We developed and applied a physical model of competitive binding using chemical 
kinetic theory to TBP competition ChIP-chip data and derived TBP-chromatin residence 
times genome-wide in yeast.  While competition ChIP was believed to be a low time 
resolution approach given the 20-30 minutes that it takes to induce the competitor to a 
concentration approaching steady state levels, we found that we could reliably extract 
residence times as short as 1.3 minutes.  Consistent with live cell imaging12, CLK7, and 
AA9 results, many promoters displayed highly dynamic TBP with residence times less 
than 1.3 minutes, which could not be accurately estimated (Supplementary Text Sec. 8).        
     Comparison of reliable TBP-chromatin residence times, which ranged from 1.3 
minutes to 53 minutes, across different promoter classes revealed highly dynamic TBP at 
Pol II genes and less so at Pol III genes similar to previous studies using competition 
ChIP9,15 and AA9.  In contrast to the findings of van Werven et al.15, we did not find that 
the occupancy of SAGA or TFIID at promoters significantly modulated TBP residence 
time, consistent with an independent study applying both competition ChIP and AA at 
select loci9.  We did find a significant but modest decrease in TBP residence time at 
TATA containing compared to TATA-less promoters in agreement with van Werven et 
al.15.  We also found that the TBP relative turnover parameter (�) derived by van Werven 
et. al.15 was biased by the HA/Avi ratio at the start of induction with higher HA/Avi 
ratios yielding lower relative turnover values (Supplementary Fig. 5b).  This could 
explain the discrepancy between our results and that of van Werven et al.15. 
     We also assessed the effect that the occupancies of 202 mapped TFs21 had on TBP 
residence time, transcription rate and transcription efficiency.  We only found that the 
presence of one factor, Tfa2 (a subunit of TFIIE), significantly modulated TBP residence 
time: the presence of Tfa2 at promoters by ChIP-chip analysis21 was associated with 
shorter TBP residence times.  Notably, the presence of the other TFIIE subunit, Tfa1, did 
not have an effect on TBP residence time.  Based on the analyses of Venters et al.21, Tfa1 
was present at most promoters (4350 sites)—nearly twice as many as Tfa2 (2605 sites).  
Thus, Tfa2 site enrichment may be a surrogate for overall TFIIE enrichment at 
promoters.  Conversely, we found that the presence of a number of factors classified as 
“access”, “orchestration”, “initiation” and “elongation” by Venters et al.21 significantly 
affected—mostly increasing—transcription rate and efficiency, with the presence of 
multiple factors annotated as “elongation” associated with notably higher transcription 
rates and efficiencies than those annotated as “initiation” (Fig. 6e,f,h,i).  We note that an 
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important caveat to these conclusions is that while these annotations are useful and may 
indicate a predominant role for a number of these factors, many, for example FACT, play 
multiple roles including both “initiation” and “elongation”18.  Another important caveat 
of this analysis is that our residence time, transcription rate and transcription efficiency 
estimates were generated from yeast in galactose while Venters et al.21 mapped these 202 
TFs from yeast in YPD.  While there are likely many genes whose TBP, PIC and 
transcription dynamics are not altered by the differences in media, there are some whose 
regulatory factor and transcription dynamics are significantly altered.  This may explain 
the presence of a small number of repressors (Sir2, Tup1, and Spt2) from both the 
“access” and “orchestration” class significantly increasing transcription rate and 
efficiency in our study.  Indeed, transcription rates and efficiencies might increase for 
yeast in galactose compared to YPD at genes where these factors are present at their 
promoters in YPD and absent in galactose. 
     While the presence or absence of Rap1 did not have a significant effect on TBP 
residence time, Rap1 relative residence time14 (i.e., inverse turnover rate) was correlated 
with TBP residence time.  This suggests the possibility of a number of unknown dynamic 
relationships between regulatory factors that require characterization of the dynamics as 
opposed to static snapshots of relative occupancy determined by ChIP-seq or ChIP-chip.  
We also found that Rap1 residence times were likely much shorter than previously 
reported14 and likely similar to TBP residence times, consistent with findings that Rap1 
activates transcription by interacting directly with the TBP-containing TFIID complex9,29.  
Neither Rap1 relative residence time nor TBP residence time was correlated with nascent 
RNA transcription rate or +1 nucleosome inverse turnover.  However, +1 nucleosome 
turnover rate was positively correlated with transcription rate and efficiency.  Moreover, 
in agreement with the conclusion of Grimaldi et al.9 that at least one round of PIC 
assembly is required for Pol II recruitment and elongation at most Pol II genes, we found 
a median value of ~5 TBP residence times are associated with one productive elongation 
of Pol II across Pol II genes (i.e., median transcription efficiency, ����/� , of 0.2 
molecules) suggesting multiple PIC assembly and disassembly events before synthesis of 
one RNA molecular at Pol II genes.  Taken together, these findings suggest increased 
dynamic coupling of TFs and GTFs at similar stages of PIC assembly, Pol II recruitment 
and elongation, and transcription; the dynamics of factors that are more involved in the 
early stages of transcription initiation including Pol II elongation (e.g., +1 nucleosome18-

20) are likely better dynamically correlated with transcription rate.  Our study highlights 
the importance of developing methods that estimate TF-chromatin dynamic parameters 
including residence time and the resulting insights that can be gained into the inherently 
dynamic and stochastic process of transcription. These approaches and measurements 
should ultimately allow the stochastic processes of pre-initiation complex formation, Pol 
II recruitment and elongation, and transcription to be characterized quantitatively. 
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Supplementary Information accompanies this paper at 
www.nature.com/naturecommunications. 
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Methods 
 
Background subtraction, normalization and scaling of competition ChIP data. The 
raw data generated by van Werven et al.15 (ArrayExpress E-M-TAB-58) reported the 
optical signal intensity for induced (SHA) and endogenous (SAvi) TBP concentrations 
hybridized on an Agilent whole-genome microarray. SHA and SAvi were replicated by 
swapping Cy3 and Cy5 dyes to take into account dye-specific variations in the intensity of 
the optical signal. We geometrically averaged the two dye-swapped ratios (call it ��), as 
described in Supplemental Text Sec. 1. Non-specific background probes were identified 
by fitting a normal curve to the right edge of the � � 0 minute log2(��) data as shown in 
Supplementary Figure 1. We selected signal probes in the tail of the normal fit to the non-
specific background with a false discovery rate (FDR) of 0.05 or less in the � � 0 minute 
data. �� values were normalized (denoted by ��


 ) across time points, �, by dividing �� 
by the background mean obtained from the normal fit to the background probes 
(Supplementary Figure 1). To quantify the induction of HA over time, we fitted a Hill-

like sigmoid curve with � � 4 to the ratio of the concentration of HA to Avi "
�
� ���



�
�

#, 

where A and B denote Avi and HA, respectively. The fit gave an induction time (��
	
�) of 

22 minutes and the saturation value of HA/Avi concentration ratio of 2.23 (Supplemental 
Eqn. 3, and Fig. 3a). We theoretically related the empirical values of ��


  for the signal 
probes in our data to the ratio of the in vivo fractional occupancy of HA (��

	 ) and Avi 

(��
	 ) as $��


 ! % � ��
�

�
�
�
 , where % is the locus-specific differential background between 

HA and Avi at � � 0 minutes and $ denotes a scale factor which effectively quantifies 
the ratio of the antibody affinities for HA and Avi (Supplemental Text Sec. 2). To 
determine $ and % at every TBP peak, a Hill-like sigmoid curve (with � � 4) with the 
added term % was fitted to ��


  for each peak (Supplemental Eqn. 24). % was subtracted 
from ��


  and $ was determined as the ratio of the asymptotic in vivo concentration ratio 
of HA/Avi (2.23) over the asymptotic ��


  value. Hence, after scaling and background 
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subtraction, $��

 ! %  satisfied the two boundary conditions: 

��
�

�
�
�

� 0  for � � 0 , and 

��
�

�
�
�


 2.23 as � 
 ∞, as required by the kinetic model of in vivo competitive binding. 

 

Estimation of residence time by fitting a chemical kinetic theory model of 
competitive binding to normalized, scaled competition ChIP data. The model for in 
vivo competitive binding dynamics between endogenous Avi (subscript A) and 
competitor HA (subscript B) TBP is described by mass-action differential equations 
linear in the TBP-chromatin association rate (��

	 ) and dissociation rate (��
	 ): 

���
�  

��
� !��

	 ��
	 � ��

	 
�
� ���



�
�

&1 ! ��
	 ! ��

	 '      (1) 

���
�  

��
� !��

	 ��
	 � ��

	 &1 ! ��
	 ! ��

	 '       (2) 

  
We have assumed that the association and dissociation rates for endogenous and 
competitor TBP are the same, superscript i denotes “in vivo”, and we have absorbed the 
experimentally undetermined endogenous concentration (��

	 
 into ��
	 , such that ��

	  and ��
	  

have units of inverse minutes (Supplementary Text Sec. 2). Equations (1) and (2) could 
not be solved analytically due to the time dependence of ��

	 , but a solution could be 

derived assuming that the induction of HA was instantaneous, i.e. 

�
� ���



�
�

� 0 for � � 0 and 


�
� ���



�
�

� ()�*�+��  for � , 0 . Inserting the actual time dependent 

�
� ���



�
�

 in the ideal 

induction solution gave an approximate solution to Equations (1) and (2) (Supplemental 
Eqns. 19 and 20).  
 
We fitted the approximate solution of ideal induction to the normalized, scaled ratio data 
by developing a procedure for estimating the starting values for nonlinear regression to 
proceed (Supplementary Text Sec. 5.1). The algorithm was implemented in Mathematica 
and the NonlinearModelFit function with appropriate starting values was used for fitting. 
The ratio data is almost insensitive to ��

	  (Supplementary Text Sec. 3), and hence, we 
could reliably only extract ��

	 . The ideal solution introduced a bias in our estimate of ��
	 , 

which we fixed using a pre-generated look-up table (Supplementary Text Sec. 5.2, 
Supplementary Fig. 2). Finally, we used our bias-corrected estimates from the look-up 
table as the starting point for a numerical one-dimensional Newton’s method fit of 
Equations (1) and (2) to find the minimum of the fit residual and extracted ��

	  
(Supplementary Text Sec. 5.3). To calculate the derivative of the fit residual required at 
each iteration of Newton’s method, we numerically solved the in vivo differential 
equations using NDSolve in Mathematica. Exceptions to the fitting procedure where we 
had to change the starting estimate of ��

	  or the step size for Newton’s method are noted 
in Supplementary Text Sec. 5. 
 

Statistical analyses of residence time, transcription rate and transcription efficiency 
data. Throughout the main text and the supplement, quoted correlations are Spearman 
correlation coefficients unless otherwise stated. Kolmogorov-Smirnoff (KS) test was 
conducted in R using the ks.test function to determine the p-values reported in Figs. 4, 5 
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and 6 of the main text. For Fig. 7d of the main text, permutation test (which is useful in 
particular when the test statistic does not follow a normal distribution) was used to 
calculate the false discovery rate (FDR) for ��/�, ��, and ����/� . In other words, loci 
across the genome were partitioned into two sets for each transcription factor: those that 
showed a significant enrichment of the transcription factor above the background as 
determined by Venters et al.21 and those that did not. These two sets were used to conduct 
permutation test for ��/�, ��, or ����/� test statistics using permTS in the perm library in 
R, which gave the mean difference of the test statistic between the two sets along with the 
p-value for the mean difference. The p-value was adjusted using the Benjamini-Hochberg 
correction30 using the p.adjust function in R to derive FDR estimates. In Fig. 7d the FDR 
for ����/� was plotted against the FDR for ��, and transcription factors were listed in 
descending order of ����/� mean differences. The blue dots (representing TFs that affect 
TR more significantly than ����/�) were chosen with a TR FDR < 0.06 and ����/� FDR 
> 0.1. Red dots (representing TFs that were significant in permutation tests for both TR 
and ����/�) were chosen with TR FDR < 0.1 and ����/� FDR < 0.1. Finally, black dots 
(representing TFs that potentially affect ����/�  more than TR) were chosen with TR 
FDR > 0.1 and ����/� FDR < 0.1, or TR FDR > 0.45 and ����/� FDR < 0.3. 
 
Figure Legends 
 
Figure 1 | Illustration of competition ChIP experiment. a-d, In vivo induction of HA-
tagged competitor TBP (maroon), in vivo stable population of Avi-tagged endogenous 
TBP (orange), and a depiction of fast, medium, and slow binding dynamics over 
induction times of 0 min, 20 min, and 60 minutes. a, Induced TBP concentration going 
from zero at 0 min to twice the endogenous TBP at 60 min of induction time, 
approximately following the induction in van Werven et al.15. The induction curve is also 

labeled as 

�


�
 (dashed brown curve) in e-g. b-d, The “Fast”, “Medium”, and “Slow” rows 

depict the binding of induced and endogenous TBP at loci with TBP residence times of 
less than a minute, a few minutes, and tens of minutes, respectively, for given induction 
times of 0 min, 20 min, and 60 min. e-g, Simulated in-vivo ratio of occupancy of induced 
to endogenous TBP with a residence time of 1 min, 10 min, and 70 min. e, For loci with 
fast dynamics, the occupancy ratio follows the induction curve closely, also depicted in 
(b) where the ratio of sites occupied by competitor to those occupied by endogenous TBP 
closely follows the ratio of concentrations of competitor to endogenous TBP shown in 
(a). f, The occupancy ratio lags behind the induction curve for TBP residence time of 10 
min. At 20 min post-induction the ratio of occupancies is almost zero, also shown by the 
absence of maroon dots in the middle panel of (c). Since the induction curve approaches 
the saturation value of 2 around 50 minutes, the ratio of occupancies starts approaching 
the induction curve around 60 minutes, also shown in the last panel of (c) where the 
induced TBP occupancy is twice that of the endogenous TBP. g, The rise and saturation 
of the ratio of occupancies is significantly delayed compared to the induction curve for 
TBP residence time of 70 min. Around 60 minutes, the ratio of induced occupancy to 
endogenous occupancy is ~ 0.5, also shown in the last panel of the (d) with induced TBP 
bound to one locus and endogenous TBP bound to two loci.  
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Figure 2 | Schematic workflow of the quantitative analysis pipeline. a-d, A schematic 
representation of the data processing pipeline that takes the geometrically averaged ratio 
of HA and Avi proteins from van Werven et al.15 and outputs scaled, normalized ratios 
that can be fit with the in vivo kinetics model. a, The first step was to normalize the data 
for each induction time to the non-specific background to take into account potentially 
different experimental conditions for the time points. b, After normalization, a sigmoid 
with a constant was fitted to the data for each locus: the constant (B) gave the locus 
specific background value, and the amplitude gave the saturation value for the ratio data. 
In the figure, the locus specific background is 0.078, and the saturation value is 1.01. The 
expected saturation value at each locus given by the in vivo kinetic model is the ratio of 
the concentrations of the competitor to the endogenous TBP at long induction times 
(~2.23 as shown in Fig. 3a). c, We subtracted the background (B) from the locus data and 
scaled the data with a multiplicative factor such that the saturation matched the expected 
saturation value of 2.23, without which the data and the theory would be at odds. d, After 
data processing, the data was fitted with the in vivo kinetic model to extract residence 
times. A heuristic, approximate explanation of the “lag” between the induction curve and 
the observed occupancy ratio is that the response time (denoted by ��) as measured by 
fitting a sigmoid to locus data without using the kinetic model is approximately the sum 
of the protein induction time (��

	
�) and the extracted in vivo residence time (��/�) found 
using the kinetic model. This signifies that the residence time can be qualitatively 
approximated as the difference between the response time and the protein induction time. 
 
 
Figure 3 | Estimation of TBP residence time from kinetic model fit to normalized, 
scaled competition ChIP data.  a, Ratio of concentration of competitor TBP (��) to the 
concentration of endogenous TBP (��) taken from van Werven et al.15 along with a 
sigmoid fit to the data (dashed line). The fit gave a saturation value of 2.23 and protein 
induction time ��

	
�  of 22 min (the time at which the signal reaches half the saturation 
value). b, Plot of normalized, scaled competition ChIP ratio data 
(competitor/endogenous) versus induction time. The dashed line shows the protein 
induction data from (a). As shown in Fig.1, ��  is an estimate of the overall turnover 
response time. Hence, the data stratified and averaged in bands of 2 minutes for �� 
ranging from 24.5 minutes to greater than 40 minutes showed a progressively slower rise 
as �� increased. c, Normalized density of TBP residence times, ��/�, obtained from data in 
each ��  band (same color scheme as panel (b)) showing that larger ��  leads to longer 
residence times as explained in Fig.1. d, log2-log2 plot of TBP ��/� versus response time 
��  showing a monotonic relationship between ��/�  and ��  for �� � 24.5  min.  For 
�� � 24.5  min, the noise in the data and the induction curve made ��/�  estimates 
imprecise. As a consequence, estimates of residence times shorter than ~ 90 seconds are 
unreliable. e – g, Representative fits of our kinetic theory based model to the normalized, 
scaled competition ChIP ratio data and estimates of TBP ��/�, along with the fit to the 
protein induction data (dashed, same as (a)). The colors of the data and the fits 
correspond to the appropriate ��  band shown in (b). e-g once again highlight that the 
residence time extracted using the kinetic model increases as the response time increases. 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


Figure 4 | Multiple, minute-scale TBP-chromatin binding events are associated with 
transcription at Pol II genes. a, Normalized density of TBP residence time (on log2 
scale) for Pol II and Pol II promoters which yielded a median Pol II TBP residence time 
(��/�) of 3 min and median for Pol III genes of 9 min.  The difference between the two 
distributions is significant with a Kolmogorov-Smirnoff (KS) p-value = 2.2e-16. b, 
Normalized TBP  ��/� (on log2 scale) density for TATA-containing versus TATA-less 
promoters.  TATA-containing promoters have over all shorter residence times than 
TATA-less promoters (KS p-value = 0.0075). c, Ribosomal protein (RP) genes have 
marginally shorter TBP residence times compared to non-RP genes (median RP ��/� �
1.4  min and median non-RP ��/� � 1.6  min; KS p-value=0.25). d, Promoters in the 
highest quartile of transcription rate (TR) tend to have shorter TBP ��/� than promoters in 
the lowest quartile (KS p-value = 0.005). e, Promoters with higher extrinsic 
transcriptional noise (�0���)30 have lower TBP residence time (KS p-value = 0.048). f, 
Normalized density of transcription efficiency (defined as the transcription rate 
multiplied by residence time, ����/�) showing that the median transcriptional efficiency 
is 0.21 molecules. In other words, for a representative Pol II promoter, ~5 TBP turnovers 
are required before a single molecule of RNA is successfully transcribed (inverse of 
transcriptional efficiency).  
 
Figure 5 | TBP dynamics are correlated with Rap1 but not +1 nucleosome dynamics. 
a-c, log2-log2 scatterplot of Rap1 relative residence time ( ��) versus (a) TBP residence 
time (��/�), (b) transcription rate (��), and (c) transcription efficiency (����/� ) for 
Ribosomal protein (RP) genes in blue and non-RP genes in red. Rap1  �� correlated well 
with TBP ��/�  and ����/�  at non-RP genes, but not at RP genes.  ��  was mildly 
correlated with �� at RP genes. d-f, Normalized density of  (d) TBP residence time 
(��/�), (e) transcription rate (��), and (f) transcription efficiency (����/� ) at genes 
containing hot and cold +1 nucleosomes. Hot nucleosomes were in the top quartile of 
nucleosome turnover and cold were in the bottom quartile (see Supplementary Text Sec. 
15). There is no difference in TBP ��/�  between hot and cold nucleosomes (KS p-
value=0.50) (d), but hot nucleosomes tend to have higher �� (KS p-value=0.007) (e) and 
higher ����/� (KS p-value=1.3e-7) (f).  
 
Figure 6 | High numbers of elongation factors at Pol II promoters are associated 
with higher transcription rates and efficiencies. a-c, Normalized density of TBP 
residence time (��/�) on log2 scale for genes with the upper quartile numbers of bound 
transcription factors (TFs) and genes with the lower quartile numbers of bound TFs (out 
of 202 mapped TFs in Venters et. al21) showing that ��/� is not modulated by (a) the 
number of total TFs, (b) initiation TFs or elongation TFs (c). The elongation and 
initiation TFs were annotated as in Venters et. al8. d-f, Normalized density of 
transcription rate (��) on the log2 scale for genes with the upper quartile numbers of 
bound TFs and genes with the lower quartile numbers of bound TFs showing that �� is 
modulated by (d) the number of total TFs (KS p-value=8.6e-5), (e) initiation TFs (KS p-
value=9.8e-4), and (f) elongation TFs (KS p-value=3.14e-11). g-i, Normalized density of 
transcription efficiency (����/�) on log2 scale for genes with the upper quartile numbers 
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of bound TFs and genes with the lower quartile numbers of bound TFs showing that 
����/� is significantly modulated by (g) the number of overall TFs (KS p-value=2.4e-4), 
(h) initiation TFs (KS p-value=0.05), and (i) elongation TFs (KS p-value=8.5e-8) (i). 
 
Figure 7 | Presence of TFIIE is associated with lower TBP residence times. a-c, The 
presence of Tfa2 yielded (a) lower TBP residence time (��/�) (KS p-value=5.4e-3) and 
(b) transcription rate (��) with KS p-value=0.028, while (c) the transcription efficiency 
(����/�) was not affected by Tfa2. d, Significance of the genome-wide change in TR (x-
axis) and ����/� (y-axis) due to the presence or absence of each TF (each dot) of 202 
mapped TFs21. The false discovery rate (FDR) was calculated by performing a 
permutation t-test between the loci where a TF was bound and the loci that lacked that 
TF, after which multiple hypothesis correction (Benjameni-Hochberg correction) was 
applied. Low FDRs were used to identify TFs that are likely to affect the transcription 
rate only (blue dots), the transcription efficiency only (black dots) or both (red dots). e, 
Ranked list of TFs plotted in (d) (categorized according to access, orchestration, initiation 
and elongation21) with the highest (“Fastest”) or lowest (“Slowest”) �� (blue), ����/� 
(black), or both �� and ����/� (red). f, Select multi-protein complexes from the list in 
(e) highlighting the role of each complex in increasing (“Fast Subunits”) or decreasing 
(“Slow Subunits”) �� and/or ����/�. 
 
References 
 
1 Hager, G. L., McNally, J. G. & Misteli, T. Transcription dynamics. Mol Cell 35, 

741-753, doi:10.1016/j.molcel.2009.09.005 (2009). 

2 Boettiger, A. N., Ralph, P. L. & Evans, S. N. Transcriptional regulation: effects 

of promoter proximal pausing on speed, synchrony and reliability. PLoS 

Comput Biol 7, e1001136, doi:10.1371/journal.pcbi.1001136 (2011). 

3 Boettiger, A. N. Analytic approaches to stochastic gene expression in 

multicellular systems. Biophys J 105, 2629-2640, 

doi:10.1016/j.bpj.2013.10.033 (2013). 

4 Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A. & Singer, R. H. Real-Time 

Observation of Transcription Initiation and Elongation on an Endogenous 

Yeast Gene. Science 332, 475-478 (2011). 

5 Suter, D. M. et al. Mammalian Genes Are Transcribed with Widely Different 

Bursting Kinetics. Science 332, 472-474 (2011). 

6 Karpova, T. S. et al. Concurrent Fast and Slow Cycling of a Transcriptional 

Activator at an Endogenous Promoter. Science 319, 466-469 (2008). 

7 Poorey, K. et al. Measuring chromatin interaction dynamics on the second 

time scale at single-copy genes. Science 342, 369-372, 

doi:10.1126/science.1242369 (2013). 

8 Viswanathan, R., Hoffman, E. A., Shetty, S. J., Bekiranov, S. & Auble, D. T. 

Analysis of chromatin binding dynamics using the crosslinking kinetics (CLK) 

method. Methods 70, 97-107, doi:10.1016/j.ymeth.2014.10.029 (2014). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


9 Grimaldi, Y., Ferrari, P. & Strubin, M. Independent RNA polymerase II 

preinitiation complex dynamics and nucleosome turnover at promoter sites 

in vivo. Genome Res 24, 117-124, doi:10.1101/gr.157792.113 (2014). 

10 Haruki, H., Nishikawa, J. & Laemmli, U. K. The anchor-away technique: rapid, 

conditional establishment of yeast mutant phenotypes. Mol Cell 31, 925-932, 

doi:10.1016/j.molcel.2008.07.020 (2008). 

11 Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in 

embryonic stem cells. Cell 156, 1274-1285, doi:10.1016/j.cell.2014.01.062 

(2014). 

12 Sprouse, R. O. et al. Regulation of TATA-binding protein dynamics in living 

yeast cells. Proc Natl Acad Sci U S A 105, 13304-13308, 

doi:10.1073/pnas.0801901105 (2008). 

13 Dion, M. F. et al. Dynamics of replication-independent histone turnover in 

budding yeast. Science 315, 1405-1408, doi:10.1126/science.1134053 

(2007). 

14 Lickwar, C. R., Mueller, F., Hanlon, S. E., McNally, J. G. & Lieb, J. D. Genome-

wide protein-DNA binding dynamics suggest a molecular clutch for 

transcription factor function. Nature 484, 251-255, 

doi:10.1038/nature10985 (2012). 

15 van Werven, F. J., van Teeffelen, H. A., Holstege, F. C. & Timmers, H. T. Distinct 

promoter dynamics of the basal transcription factor TBP across the yeast 

genome. Nat Struct Mol Biol 16, 1043-1048, doi:10.1038/nsmb.1674 (2009). 

16 Grunberg, S. & Hahn, S. Structural insights into transcription initiation by 

RNA polymerase II. Trends Biochem Sci 38, 603-611, 

doi:10.1016/j.tibs.2013.09.002 (2013). 

17 Pelechano, V., Chavez, S. & Perez-Ortin, J. E. A complete set of nascent 

transcription rates for yeast genes. PLoS One 5, e15442, 

doi:10.1371/journal.pone.0015442 (2010). 

18 Rando, O. J. & Winston, F. Chromatin and transcription in yeast. Genetics 190, 

351-387, doi:10.1534/genetics.111.132266 (2012). 

19 Nock, A., Ascano, J. M., Barrero, M. J. & Malik, S. Mediator-regulated 

transcription through the +1 nucleosome. Mol Cell 48, 837-848, 

doi:10.1016/j.molcel.2012.10.009 (2012). 

20 Teves, S. S., Weber, C. M. & Henikoff, S. Transcribing through the nucleosome. 

Trends Biochem Sci 39, 577-586, doi:10.1016/j.tibs.2014.10.004 (2014). 

21 Venters, B. J. et al. A comprehensive genomic binding map of gene and 

chromatin regulatory proteins in Saccharomyces. Mol Cell 41, 480-492, 

doi:10.1016/j.molcel.2011.01.015 (2011). 

22 Basehoar, A. D., Zanton, S. J. & Pugh, B. F. Identification and distinct 

regulation of yeast TATA box-containing genes. Cell 116, 699-709 (2004). 

23 Moqtaderi, Z. & Struhl, K. Genome-wide occupancy profile of the RNA 

polymerase III machinery in Saccharomyces cerevisiae reveals loci with 

incomplete transcription complexes. Mol Cell Biol 24, 4118-4127 (2004). 

24 Stewart-Ornstein, J., Weissman, J. S. & El-Samad, H. Cellular noise regulons 

underlie fluctuations in Saccharomyces cerevisiae. Mol Cell 45, 483-493, 

doi:10.1016/j.molcel.2011.11.035 (2012). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


25 Ravarani, C. N., Chalancon, G., Breker, M., de Groot, N. S. & Babu, M. M. Affinity 

and competition for TBP are molecular determinants of gene expression 

noise. Nat Commun 7, 10417, doi:10.1038/ncomms10417 (2016). 

26 Yudkovsky, N., Ranish, J. A. & Hahn, S. A transcription reinitiation 

intermediate that is stabilized by activator. Nature 408, 225-229, 

doi:10.1038/35041603 (2000). 

27 Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription 

initiation by RNA polymerase II. Nat Rev Mol Cell Biol 16, 129-143, 

doi:10.1038/nrm3952 (2015). 

28 Santisteban, M. S., Hang, M. & Smith, M. M. Histone variant H2A.Z and RNA 

polymerase II transcription elongation. Mol Cell Biol 31, 1848-1860, 

doi:10.1128/MCB.01346-10 (2011). 

29 Mencia, M., Moqtaderi, Z., Geisberg, J. V., Kuras, L. & Struhl, K. Activator-

specific recruitment of TFIID and regulation of ribosomal protein genes in 

yeast. Mol Cell 9, 823-833 (2002). 

30 Reiner, A., Yekutieli, D. & Benjamini, Y. Identifying differentially expressed 

genes using false discovery rate controlling procedures. Bioinformatics 19, 

368-375 (2003). 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


ΘBi�ΘAi

CB�CA

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0

R
at

io

ΘBi�ΘAi

CB�CA

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0

R
at

io

ΘBi�ΘAi

CB�CA

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0

R
at

io

a

b

c

d

Fast

Medium

Slow

t = 0 min t = 20 min t = 60 min

t1/2 = 1 min t1/2 = 10 min t1/2 = 70 min
e f g

Time [min] Time [min] Time [min]

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


� �
� �

�

�

�

�

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

� �
� �

�
�

�
�

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 
C

hI
P-

ch
ip

 r
at

io

B = 0.078

Saturation = 
1.01 ≠  2.23

� �

�
�

�

�

�

�

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

Ba
ck

gr
ou

nd
 su

bt
ra

ct
ed

,
sc

al
ed

  C
hI

P-
ch

ip
 r

at
io

B = 0

Saturation = 2.23

� �

�
�

�

�

�

�

Fit ΘB i�ΘAi

CB�CA

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

R
at

io Saturation = 2.23 
= CB/CA at t = ∞

Protein Induction time = 22 min

Response time (39 min) � 
Protein induction time (22 
min) + residence time (14 
min)

t1�2 � 13.86 min

R
aw

 C
hI

P-
ch

ip
 

ra
tio

Fitting kinetic model

Normalization

Background subtraction and scaling

a b

c d

Time [min] Time [min]

Time [min] Time [min]

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


� �

�

� �
�

� �

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

2.5

Time [min]

C B
�C

A

� �

�
�

�

�
� �

Fit ΘBi�ΘAi

CB�CA

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0

R
at

io

� �
�
�
�

�

�

�

Fit ΘBi�ΘAi

CB�CA

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0

R
at

io

�

�

��
� �

�

�

Fit ΘBi�ΘAi

CB�CA

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0

R
at

io

t1/2 = 1.4 min t1/2 = 13.9 min t1/2 = 53.3 min

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75
Time [min]

N
or

m
al

ize
d 

Sc
al

ed
 S

ig
na

l

t 0

> 40.5 min
24.5−26.5 min
26.5−28.5 min
28.5−30.5 min
30.5−32.5 min
32.5−34.5 min
34.5−36.5 min
36.5−38.5 min
38.5−40.5 min

Induction curve

0 1 2 3 4 5

0
1

2
3

4
5

6

log2(t1 2 [min])

N
or

m
al

iz
ed

 D
en

si
ty

3.5 4.0 4.5 5.0 5.5 6.0

−8
−4

0
4

log2(t0[min])

lo
g 2

(t 1
2[

m
in

])

Time[min] Time[min] Time[min]

a b

c d

e f g

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


0 1 2 3 4 5

0.
0

0.
4

0.
8

log2(t1 2[min])

N
or

m
al

ize
d 

de
ns

ity Pol II 
Pol III

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

log2(t1 2[min])

N
or

m
al

iz
ed

 d
en

si
ty TATA

TATA−less

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

log2(t1 2[min])

N
or

m
al

iz
ed

 d
en

si
ty RP genes

Other genes

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

log2(t1 2[min])

No
rm

al
ize

d 
de

ns
ity High TR

Low TR

0 1 2 3 4 5

0.
0

0.
4

0.
8

log2(t1 2[min])

N
or

m
al

ize
d 

de
ns

ity CVext > 0.123
CVext < 0.087

−6 −4 −2 0 2 40.
00

0.
10

0.
20

0.
30

log2(TR t1 2 [molecules])

N
or

m
al

ize
d 

de
ns

ity

mean               = 0.42 molecules
median              = 0.21 moleculesTR t 1 2

TR t 1 2

a b c

d e f

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


1 2 3 4

5.
0

5.
5

6.
0

6.
5

7.
0

log2(t1 2[min])

lo
g 2

(  
   

[m
in

])

corr = -0.09
corr = +0.47

λ-
1

−6 −4 −2 0 2

5.
0

5.
5

6.
0

6.
5

7.
0

log2(TR [molecules/min])

corr = -0.06
corr = +0.11

lo
g 2

(  
   

[m
in

])
λ-
1

−6 −4 −2 0 2

5.
0

5.
5

6.
0

6.
5

7.
0

log2(TR t1 2 [molecules])

corr = -0.002
corr = +0.33

lo
g 2

(  
   

[m
in

])
λ-
1

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

log2(t1 2[min])

N
or

m
al

ize
d 

de
ns

ity Hot +1 nuc
Cold +1 nuc

−6 −4 −2 0 2 4

0.
0

0.
2

0.
4

log2(TR [molecules/min])

N
or

m
al

ize
d 

de
ns

ity Hot +1 nuc
Cold +1 nuc

−6 −4 −2 0 2 4

0.
0

0.
2

0.
4

log2(TR t1 2[molecules])

N
or

m
al

ize
d 

de
ns

ity Hot +1 nuc
Cold +1 nuc

a b c

d e f

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

N
or

m
al

ize
d 

de
ns

ity > 74 TFs
< 40 TFs

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

N
or

m
al

ize
d 

de
ns

ity > 74 TFs
< 40 TFs

−6 −4 −2 0 2 40.
00

0.
15

0.
30

N
or

m
al

ize
d 

de
ns

ity > 74 TFs
< 40 TFs

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

N
or

m
al

ize
d 

de
ns

ity > 19 Initiation TFs
< 12 Initiation TFs

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

N
or

m
al

ize
d 

de
ns

ity > 19 Initiation TFs
< 12 Initiation TFs

−6 −4 −2 0 2 40.
00

0.
15

0.
30

N
or

m
al

ize
d 

de
ns

ity > 19 Initiation TFs
< 12 Initiation TFs

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

N
or

m
al

ize
d 

de
ns

ity > 12 Elongation TFs
< 4 Elongation TFs

−8 −6 −4 −2 0 2 4
0.

0
0.

2
0.

4
N

or
m

al
ize

d 
de

ns
ity < 4 Elongation TFs

> 12 Elongation TFs

−6 −4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

N
or

m
al

ize
d 

de
ns

ity > 12 Elongation TFs
< 4 Elongation TFs

d e f

g h i

log2(t1 2[min]) log2(t1 2[min]) log2(t1 2[min])

log2(TR [molecules/min]) log2(TR [molecules/min]) log2(TR [molecules/min])

log2(TR t1 2[molecules]) log2(TR t1 2[molecules]) log2(TR t1 2[molecules])

a b c

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


0 1 2 3 4 5

0.
0

0.
4

0.
8

N
or

m
al

ize
d 

de
ns

ity Tfa2
No Tfa2

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

N
or

m
al

ize
d 

de
ns

ity Tfa2
No Tfa2

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

N
or

m
al

ize
d 

de
ns

ity Tfa2
No Tfa2

log2(t1 2[min]) log2(TR [molecules/min]) log2(TR t1 2[molecules])

a b c

Fast Subunits

Esa1, Epl1, Eaf3
Rlr1, Thp1

Spt7, Chd1, H�1, 
Spt3 

Bur6, Ncb2
Htb1 

Tfa1, Tfa2
Ssl2, Kin28, Tfb1, 

Tfb3
Med4, Srb4
Spt16, Pob3

Spt6, Iws1
Rpb2, Rpo21, Rpb3
Taf14, Taf3, Taf13, 

Taf4
Set1, Bre20.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TR FDR

TR
 t 1

2 F
D

R

Slow subunits

Htz1 

Rgr1

Swc1, Vps72 

Complex

NuA4
Tho

SAGA/SLIK

NC2
Nucleosome

TFIIE
TFIIH

Mediator
FACT
SwrC
Spt6
PolII
TFIID

Compass

Fastest:
Spt7, Bur6
Tfa1, Ssl2

Kin28, 
Taf14

Med4, Tfa2
Tbp, Ncb2
H�1, Tfb1
Taf3, Tfb3

Taf13, Tfg1
Spt3, Tfc6

Taf4
Srb4

Slowest:
Swc1
Htz1

Vps72
Ioc3

Slowest:
Xpb1
Fkh2

Fastest:
Chd1
Isw1
Ycs4
 Esa1

Nhp6a
Epl1
Sir2
Spt2
Bre1
Set1
Tup1
Ahc1

Slowest:
Rgr1

Fastest:
Cin5
Pho2
Ume6
Sfp1
 Ifh1    

  Rap1 
Dig1   

Spt23 

Initiation
Orchestra-

tionAccess
Elonga-

tion

Fastest:
Dst1
Paf1
Ctr9

Spt16, 
Rpo21  

Spt6, Rpb3   
Rpb2, Iws1

Rpb7
Ess1
Pob3

Rtt103 
Pcf11
Rlr1

Most signi�cant in TR t1/2

Most signi�cant in TR

Most igni�cant in TR t1/2 and TR

d e f

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/

