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Cellular processes including transcription are inherently dynamic.  Currently, the 
dynamics of transcription and other molecular processes in the cell are poorly 
understood1 because of a lack of methods that measure fundamental kinetic 
parameters in vivo.  Precise estimation of the chromatin-binding on- and off-rates of 
general transcription factors (TFs) would allow stochastic modeling of pre-initiation 
complex formation2,3, RNA polymerase recruitment and elongation, and 
transcription4,5.  Live-cell imaging at specific multi-copy genes is capable of yielding 
the residence time of TF-chromatin interactions at high temporal resolution (i.e., 
second timescale)6 but does not allow these measurements at single-copy genes.  
Cross-linking kinetic (CLK) analysis is a high spatial and temporal resolution 
method that enables estimation of the in-vivo TF-chromatin on- and off-rates at 
single-copy loci7.  However, alternative approaches to estimating these kinetic 
parameters are needed to independently verify CLK as well as live-cell imaging 
approaches8.  We developed and applied a physical modeling approach using 
chemical kinetic theory that directly estimates the residence time of TATA-binding 
protein (TBP) across the yeast genome from TBP competition ChIP data9—another 
high-spatial resolution method10,11, which was generally believed to be low temporal 
resolution (20 min or greater).  Using this approach, we are capable of estimating 
TBP-chromatin residence times on the minute time-scale across the yeast genome, 
demonstrating that competition ChIP is actually a relatively high temporal 
resolution method.  Comparing TBP-chromatin residence times with nascent RNA 
transcription rates12, we find that ~5 TBP binding events are associated with 
productive RNA synthesis at the typical gene.  Our results paint, for the first time, a 
highly dynamic, stochastic picture of pre-initiation complex formation with multiple 
rounds of partial assembly and disassembly before productive RNA polymerase 
elongation.      
 
We use kinetic theory to model the in vivo competitive dynamics of the induced 
competitor and the endogenous TBP in competition ChIP experiment9 with TF-chromatin 
binding on-rate (��) and off-rate (��) (Supplemental Text Sec 1). In order to fit TBP 
competition ChIP two-color Agilent tiling microarray data9 to our kinetic model, we first 
normalize, background subtract, and scale the data for TBP peaks within gene promoters 
to theoretically expected values at the start of induction (� � 0) and steady state or 
equilibrium (� �  ∞) (Supplemental Text and Extended Data Fig. 1).  The kinetic theory 
explicitly accounts for induction of the competitor.  Consequently, we fit the ratio of the 
induced (denoted by B) over endogenous (denoted by A) TBP concentration (��	�
/��) 
determined from Western blots as a function of induction time9 to a Hill-like sigmoid 
function with Hill coefficient � � 4 (Fig. 1a).  The fit yields a characteristic time-scale 
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for TBP induction ��
��� � 22 min and the steady state ratio of induced over endogenous 

TBP concentration (��	� � ∞
/�� � 2.233).  The normalized competition ChIP data is 
also well approximated by an � � 4 Hill-like equation with a time-scale parameter �� 
(Supplemental Eqn. 3), which quantifies the overall turnover response including 
induction and turnover dynamics at every TBP peak.  We use this Hill-like equation to 
background subtract and scale the data to the theoretical in-vivo (denoted by superscript 
�) ratio of fractional occupancy of the competitor ��

� 	�
 to the endogenous ��
� 	�
 TBP 

which must satisfy the boundary conditions at the start of induction (��
� 	0
 ��

� 	0
⁄ � 0) 
and steady state ( ��

� 	�
 ��
� 	�
 �⁄ 2.233  as � � ∞ ) (Supplemental Eqn. 24 and 

Supplemental Text).   
 
We simultaneously numerically solve and fit the in vivo chemical kinetic equations of 
competitive binding between species A and B (Supplemental Eqns. 1 and 2) to 
normalized, scaled competition ChIP data (see Extended Data Figs. 2 and Supplemental 
Text).  We (and others9-11) ignore the impact of cross-linking theoretically as competition 
ChIP data was gathered at one cross-linking time (20 min of formaldehyde cross-linking) 
and show that the resulting off-rate, ��, could be modestly biased (Extended Data Fig. 3 
a-d) using a generalization of the CLK framework to competition ChIP (Supplemental 
Eqns. 4-8). This framework could be used to correct the bias if data is gathered at various 
crosslinking times7.  As noted by Lickwar et al.11, we also find that the in vivo ratio of 
induced over endogenous TF as a function of induction time is insensitive to the on-rate, 
��, and is very sensitive to the off-rate or residence time, ��/
 �  ln	2
 /�� (Extended 
Data Fig. 3 e-f).  Consequently, we only arrive at relatively precise values of the 
residence time (��/
) by fitting the kinetic equations to competition ChIP ratio data.                  
 
Stratifying TBP-containing promoters in 2-minute bands of ��, we show that the average 
normalized, scaled ratio of competitor over endogenous signals as a function of induction 
time progressively shows slower rise as �� increases (i.e., moves to the right) (Fig. 1b) 
with corresponding residence times increasing from 1.4 to 70 minutes (Fig. 1c), showing 
that residence times could be estimated from the ratio. Indeed, given that fitting the Hill-
like equation and chemical kinetic equations should yield highly correlated results, we 
find a smooth relationship between ��/
 and �� up to a point where numerically fitting the 
chemical kinetic equations becomes unstable at �� � 24.5 min (Fig. 1d and Extended 
Data Fig. 4). This numerical instability is due to the fact that for promoters with �� �
24.5 min, the separation between the normalized, scaled data and the induction curve are 
well within the noise of the competition ChIP data.  For �� � 24.5 min, the normalized, 
scaled data yield excellent fits to the chemical kinetic equations, move progressively to 
the right with increasing residence time and, remarkably, allow residence times as short 
as 1.3 minutes to be estimated (Figs. 1 e-g, Extended Data Fig. 4 e-h, and Extended Data 
Table 1).  Importantly, the lower bound on the time resolution is determined by the noise 
in the induction and competition ChIP data and not the induction time of the competitor. 
 
Because a physical model of competitive binding rooted in reaction-rate theory naturally 
follows the profiles of the normalized, scaled data as a function of induction time, we are 
able to apply stringent noise criteria on the residuals of each fit (Supplemental Text) and 
reliably estimate TBP residence times for 794 Pol II and 205 Pol III genes (Extended 
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Data Table 1).  This is in comparison to earlier estimates of relative turnover, �, for 602 
Pol II and 264 Pol III genes that were obtained using linear regression to a subset of the 
data (i.e., 10, 20, 25 and 30 min time points)9.  While � and our estimates of ��  are 
correlated (Extended Data Fig. 5a), � is also strongly correlated with the � � 0 ratio of 
induced over competitor ChIP signals (Extended Data Fig. 5), which suggests insufficient 
background subtraction influencing the estimates of �.  Nevertheless, in agreement with 
estimates of � made by van Werven et al.9, we find TBP residence times are notably 
shorter for Pol II compared to Pol III genes (Fig. 2a) and to a lesser extent for TATA 
compared to TATA-less genes13 (Fig. 2b).  In contrast to van Werven et al.9, we find no 
significant differences between TBP residence times comparing SAGA containing and 
SAGA free genes (Extended Data Fig. 6d) or TFIID containing and TFIID free genes 
(Extended Data Fig. 6g).  Given that Pol III genes tend to be higher expressed14 and have 
longer TBP residence times than Pol II genes, we were surprised to find marginally 
shorter TBP residence times at highly expressed ribosomal protein (RP) genes (Extended 
Data Fig. 6j) compared to other genes (Fig. 2c).  This finding was consistent with higher 
nascent RNA transcription rates (TRs)12 for shorter TBP residence times at Pol II genes 
(Fig. 2d).  Shorter residence times were also associated with higher levels of 
transcriptional extrinsic noise15 (Fig. 2e) consistent with recent findings16.  With 
estimates of TR and TBP ��/
, we defined transcriptional efficiency, which is the product 
of the transcription rate and TBP residence time (����/
) and represents the number of 
TBP residence times or binding events associated with productive elongation of Pol II 
and transcription.  Strikingly, we find low transcriptional efficiencies for Pol II genes 
(Fig. 2f).  The median ����/
  across Pol II promoters is ~5 TBP binding events for 
productive RNA synthesis to proceed (Fig. 2f).  These findings are consistent with a 
stable scaffold model of PIC formation17 and function for Pol III genes, and rapid, highly 
stochastic TPB/PIC dynamics at higher expressed Pol II genes.                 
 
To gain further insights into the upstream regulation and/or downstream impact of TPB-
chromatin binding dynamics especially on regulation of gene expression, we compared 
TBP residence times to previously derived Rap111 and nucleosome10 relative turnover 
rates (�) and their relative residence times (���).  Notably, we show that � equals �� plus 
a time-dependent function (Supplemental Eqn. 28, Extended Data Fig. 7) and can be 
excessively biased if normalized ChIP ratios are not properly scaled to ratios of fractional 
occupancies before model fitting11 (Supplemental text and Extended Data Fig. 8).  
Nevertheless, we find TBP residence time is correlated with Rap1 ��� at non-RP Pol II 
genes but not at RP Pol II genes (Fig. 3a). TBP ��/
 (corr � �0.11; Extended Data Fig. 
9a) and Rap1 ���  (Fig. 3b) show weak negative and positive correlation with 
transcription rate, respectively, while transcriptional efficiency is modestly correlated 
with Rap1 relative residence time at non-RP Pol II genes (Fig. 3c).  Interestingly, the 
majority of sites, for which Rap1 relative residence times were determined (ranging from 
30-150 min), contain highly dynamic TBP (��/
 � 1.4 min or �� � 24.5 min; Extended 
Data Fig. 9b), further supporting our findings that Rap1 relative residence times11 are 20 
to 30 fold higher than, but likely correlated with, Rap1 ��/
 .  While +1 nucleosome 
dynamics are poorly correlated with TBP residence time (Figs. 3d, Extended Data Figs. 9 
c,d), they are positively correlated with transcription rate (Figs. 3e, Extended Data Fig. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045161doi: bioRxiv preprint 

https://doi.org/10.1101/045161
http://creativecommons.org/licenses/by/4.0/


9e) and efficiency (Figs. 3f, Extended Data Fig. 9f).  These results suggest that while the 
dynamics and not merely the presence (Extended Data Fig. 6m) of transcription factors 
like Rap1 potentially regulate TBP/PIC dynamics, TBP and Rap1 recruitment and 
dynamics are not the rate-limiting step in transcription at Pol II genes.  Conversely, the 
dynamics of factor that regulate elongation including +1 nucleosome turnover may play a 
more critical role in determining transcription rate and efficiency. 
 
To further assess the hypothesis that transcription factors associated with elongation as 
opposed to PIC and Pol II recruitment or initiation are the rate limiting step in 
transcription, we tested the effect that the presence or absence of 202 transcription factors 
mapped to the yeast genome18 had on TBP residence time, transcription rate and 
transcription efficiency.  We subdivided loci for which we had estimates of TBP 
residence time into quartiles of the number transcription, initiation and elongation factors, 
respectively.  As expected, the presence of greater numbers of transcription, initiation and 
elongation factors at promoters had no significant impact on TBP residence times (Figs. 
4a-c) but yielded higher transcription rates (Figs. 4d-f) and efficiencies (Fig. 4g-i).  
Strikingly, the presence of more elongation factors had a much greater impact on both 
transcription rate (Fig. 4f) and efficiency (Fig. 4i) compared to that of initiation factors 
(Figs. 4e,h), consistent with our hypothesis.  For each of the 202 factors, we also assessed 
the significance of differences of TBP residence times, transcription rate and efficiency at 
sites with the factor present compared to sites with that factor absent.  We only found one 
factor, Tfa2 (a TFIIE subunit), whose presence or absence yielded significantly different 
residence times (Fig. 5a).  However, Tfa2 had a more modest effect on transcription rate 
(Fig. 5b) and no significant effect on efficiency (Fig. 5c).  In contrast, we find that 46% 
and 50% of all the initiation and elongation factors mapped, respectively, significantly 
modulate transcription rate and efficiency (Fig. 5d,e).  Not surprisingly, many of these 
factors are members of initiation and elongation complexes whose enrichment at 
promoters leads to both increased transcription rate and efficiency (Fig. 5f).   
 
We find that the dynamics as opposed to the presence of factors like Rap1 affect TBP 
residence time, suggesting a number of unknown dynamic relationships and regulatory 
roles for transcription factors that await characterization and testing using methods that 
measure dynamic parameters including residence time and transcriptional efficiency.  
These approaches and measurements should ultimately allow the stochastic processes of 
pre-initiation complex formation, Pol II recruitment and elongation and transcription to 
be characterized quantitatively.      
 
Supplementary Information is linked to the online version of the paper at 
www.nature.com/nature. 
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Methods 
 
Background subtraction, normalization and scaling of competition ChIP data.  
The raw data generated by van Werven et al.9 (ArrayExpress E-M-TAB-58) reported the 
optical signal intensity for induced (SHA) and endogenous (SAvi) protein concentrations 
hybridized on an Agilent whole-genome microarray. SHA and SAvi were replicated by 
swapping Cy3 and Cy5 dyes to take into account dye-specific variations in the intensity of 
the optical signal. In our analysis, we used the geometric average of the two dye-swapped 
ratios, �� , as described in Supplemental Text. Non-specific background probes were 
identified by fitting a normal curve to the right edge of the � � 0 minute log2(SHA/SAvi) 
data as shown in Extended Data Figure 1. For our analysis, we selected signal probes in 
the tail of the normal fit to the non-specific background with a false discovery rate (FDR) 
of 0.05 or less in the � � 0 minute data. �� values were normalized across time points, �, 
by dividing them by the background mean obtained from the normal fit to the background 
probes (Extended Data Figure 1). To quantify the induction of HA over time, we fit a 
Hill-like sigmoid curve with � � 4 to the ratio of the concentration of HA over Avi 

�
�
� ���



�
�

 , where A and B denote Avi and HA, respectively. The fit gives an induction time 

(��
��� ) of 22 minutes and the saturation value of HA/Avi concentration ratio of 2.23 

(Supplemental Eqn. 3, and Fig. 1a). We relate the empirical values of normalized �� for 
the signal probes in our data to the ratio of the in-vivo fractional occupancy of HA (��

� ) 

and Avi (��
� ) as !�� � " � ��

�

�
�
�
 , where " is the locus-specific differential background 

between HA and Avi at � � 0 minutes, and ! denotes a scale factor which effectively 
quantifies the ratio of the antibody affinities for HA and Avi (Supplemental Text Section 
2). To determine ! and " at every TBP peak, a Hill-like sigmoid curve (with � � 4) with 
the added term " was fit to the normalized �� (Supplemental Eqn. 24). " was subtracted 
from �� and ! was determined as the ratio of the asymptotic in-vivo concentration ratio 
of HA/Avi (2.23) over the asymptotic �� value. Hence, after scaling and background 

subtraction, !�� � "  satisfied the two boundary conditions: 
��
�

�
�
�

� 0  for � � 0 , and 

��
�

�
�
�

� 2.23 as � � ∞, as required by the kinetic model of in-vivo competitive binding. 

 

Estimation of residence time by fitting chemical kinetic theory based model of 
competitive binding to normalized, scaled competition ChIP data. The model for in-
vivo competitive binding dynamics between endogenous Avi (subscript A) and 
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competitor HA (subscript B) TBP is described by mass-action differential equations 
linear in the TBP-chromatin association rate (��

� ) and dissociation rate (��
� ): 

���
�  

��
� ���

� ��
� # ��

� 
�
� ���



�
�

$1 � ��
� � ��

� %      (1) 

���
�  

��
� ���

� ��
� # ��

� $1 � ��
� � ��

� %       (2) 

  
We have assumed that the association and dissociation rates for endogenous and 
competitor TBP are the same, superscript i denotes “in-vivo”, and we have absorbed the 
experimentally undetermined endogenous concentration (��

� 
 into ��
� , such that ��

� and 
��

� have units of inverse minutes (Supplemental Text Section 2). Equations (1) and (2) 
cannot be solved analytically due to the time dependence of ��

� , but a solution can be 

derived for the case when the induction of HA is instantaneous: 

�
� ���



�
�

� 0 for � � 0 and 


�
� ���



�
�

� &'�(�)��  for � * 0 . Inserting the actual time dependent 

�
� ���



�
�

 in the ideal 

induction solution gives an approximate solution to the Equations (1) and (2) 
(Supplemental Eqns. 19 and 20, Extended Data Fig. 2).  
 
We fit the approximate solution of ideal induction to the normalized, scaled ratio data 
using NonlinearModelFit in Mathematica (Supplemental Text Section 5.1). The ratio data 
is almost insensitive to ��

� , and hence, we can reliably extract only ��
� . The approximate 

solution introduces a bias in our estimate of ��
� , which we fix using a pre-generated look-

up table (Supplemental Text Section 5.2). Finally, we use our bias-corrected estimates as 
the starting point for a numerical one-dimensional Newton’s method fit of Equations (1) 
and (2) to find the minimum of the fit residual and extract ��

�  (Supplemental Text Section 
5.3). To calculate the derivative of the fit residual required at each iteration of Newton’s 
method, we numerically solve the in-vivo differential equations using NDSolve in 
Mathematica. Exceptions to the fitting procedure where we had to change the starting 
estimate of ��

�  or the step size for Newton’s method are noted in Supplemental Text 
Section 5. 
 

Statistical analyses of residence time, transcription rate and transcription efficiency 
data.  Throughout the main text and the supplement, quoted correlations are Spearman 
correlation coefficients unless otherwise stated. Kolmogorov-Smirnoff (KS) test was 
conducted in R using the ks.test function to determine the p-values reported in Figs. 2, 3, 
and 4 of the main text. For Fig. 5a of the main text, permutation test (which is useful in 
particular when the test statistic does not follow a normal distribution) was used to 
calculate the false discovery rate (FDR) for ��/
, ��, and ����/
 . In other words, loci 
across the genome were partitioned into two sets for each transcription factor: those that 
showed a significant enrichment of the transcription factor above the background as 
determined by Venters et al.18, and those that did not. These two sets were used to 
conduct permutation test for  ��/
, ��, and ����/
 using permTS in the perm library in R, 
which gives the mean difference between the two sets along with the p-value for the 
mean difference. The p-value was adjusted using the Benjamini-Hochberg correction19 
using the p.adjust function in R to derive FDR estimates. In Fig. 5d the FDR for ����/
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was plotted against the FDR for ��, and transcription factors were listed in descending 
order of ����/
 mean differences. The blue dots (representing TFs that affect TR more 
significantly than ����/
) were chosen with a TR FDR < 0.06 and ����/
 FDR > 0.1. 
Red dots (representing TFs that are significant in permutation tests for both TR and 
����/
) were chosen with TR FDR < 0.1 and ����/
  FDR < 0.1. Finally, black dots 
(representing TFs that potentially affect ����/
  more than TR) were chosen with TR 
FDR > 0.1 and ����/
 FDR < 0.1, or TR FDR > 0.45 and ����/
 FDR < 0.3. 
 
Figure Legends 
 
Figure 1 | Estimation of TBP residence time from model fit of normalized, scaled 
competition ChIP data.  a, Ratio of concentration of competitor TBP (denoted by B) to 
the concentration of endogenous TBP (denoted by A) as a function of induction time 
measured by Western blotting9 along with a sigmoid fit to the data. The fit gives an 
induction time ��

���  of 22 minutes and a saturation concentration ratio of 2.233 as the 
induction time goes to infinity. b, Plot of normalized, scaled competition ChIP ratio data 
(competitor/endogenous) versus induction time, stratified and averaged in bands of 2 
minutes for �� , an estimate of the overall turnover response time, ranging from 24.5 
minutes to greater than 40 minutes, along with induction data (dashed). The average data 
shows a progressively slower rise as ��  increases. c, Normalized density of residence 
times, ��/
 , obtained from data within each ��  band (same color scheme as panel (b)) 
showing that larger �� leads to longer residence times. d, log2-log2 plot of ��/
 versus �� 
showing a monotonic relationship between ��/
 and �� for �� � 24.5 min.  For loci with 
�� � 24.5  min, the noise in the data and the induction curve makes ��/
  estimates 
imprecise. As a consequence, estimates of residence times shorter than ~ 90 seconds are 
unreliable. e – g, Representative fits of our chemical kinetic theory based model to the 
normalized, scaled competition ChIP ratio data and estimates of ��/
, along with the Hill-
like sigmoid function fit to the induction data (dashed) with ��

��� � 22 min. The colors of 
the data and the fits correspond to the appropriate �� band shown in (b). 
 
Figure 2 | Multiple, minute-scale TBP-chromatin binding events required for 
transcription at high expressed Pol II genes. a, Normalized density of ��/
 for Pol II 
and Pol II genes showing that median Pol II residence time is 3 minutes, while the 
median for Pol III genes is 9 minutes.  The difference between the two distributions is 
significant with a Kolmogorov-Smirnoff (KS) p-value = 2.2e-16. b, Normalized ��/
 
density for TATA-containing versus TATA-less promoters.  TATA-containing promoters 
have over all shorter residence times than TATA-less promoters (KS p-value = 0.0075). 
c, RP genes have marginally shorter residence times compared to non-RP genes (median 
RP ��/
 � 1.4 min and median non-RP ��/
 � 1.6 min; KS p-value=0.25). d, Promoters 
in the highest quartile of TR tend to have shorter ��/
  than promoters in the lowest 
quartile (KS p-value = 0.005). e, Promoters with higher extrinsic transcriptional noise 
have lower residence time (KS p-value = 0.048). f, Normalized density of transcription 
efficiency (defined as the transcription rate multiplied by residence time, ����/
) on the 
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log2 scale showing that for a typical Pol II promoter, ~5 TBP turnovers are required 
before a single molecule of RNA is successfully transcribed.  
 
Figure 3 | TBP dynamics are correlated with Rap1 but not +1 nucleosome dynamics. 
a-c, log2-log2 scatterplot of Rap1 relative residence time (���) versus ��/
 (a), �� (b), 
and ����/
 (c) for non-RP genes (red) and RP genes (blue). Rap1 ��� is correlated well 
with ��/
 and ����/
 at non-RP genes, but not at RP genes. ��� is mildly correlated with 
��, while ��/
  is mildly anti-correlated with ��. d-f, Normalized ��/
  (d), �� (e) and 
����/
 (f) densities for genes containing hot and cold +1 nucleosomes. Hot nucleosomes 
were in the top quartile of nucleosome turnover and cold were in the bottom quartile. 
There was no difference in the residence times between hot and cold nucleosomes (KS p-
value=0.50) (d), but hot nucleosomes tended to have higher �� (KS p-value=0.007) (e) 
and higher ����/
 (KS p-value=1.3e-7) (f).  
 
Figure 4 | High numbers of elongation factors at Pol II promoters are associated 
with higher transcription rates and efficiencies. a-c, Normalized density of ��/
  on 
log2 scale for genes with the upper quartile numbers of bound TFs and genes with the 
lower quartile numbers of bound TFs (out of 202 mapped TFs18) showing that ��/
 is not 
modulated by the number of overall TFs (a), initiation TFs (b) or elongation TFs (c). d-f, 
Normalized density of �� on the log2 scale for genes with the upper quartile numbers of 
bound TFs and genes with the lower quartile numbers of bound TFs showing that �� is 
modulated by the number of overall TFs (KS p-value=8.6e-5) (d), initiation TFs (KS p-
value=9.8e-4) (e) and elongation TFs (KS p-value=3.14e-11) (f). g-i, Normalized density 
of ����/
  on log2 scale for genes with the upper quartile numbers of bound TFs and 
genes with the lower quartile numbers of bound TFs showing that ����/
 is significantly 
modulated by the number of overall TFs (KS p-value=2.4e-4) (g), initiation TFs (KS p-
value=0.05) (h) and elongation TFs (KS p-value=8.5e-8) (i). 
 
Figure 5 | Presence of TFIIE results in lower TBP residence times. a-c, The presence 
of Tfa2 yielded lower ��/
 (KS p-value=5.4e-3) (a) and �� (KS p-value=0.028) (b), but 
����/
 was not affected by Tfa2 (c). d, Significance of the increase or decrease that the 
presence versus absence of each TF (each dot) of 202 mapped TFs18 had on ����/
 (y-
axis) and/or �� (x-axis) quantified by performing a permutation t-test and applying a 
false discovery rate (FDR) correction. Low FDRs were used to identify TFs that are 
likely to affect the transcription rate only (blue dots), the transcription efficiency only 
(black dots) or both (red dots). e, Ranked list of TFs (categorized according to access, 
orchestration, initiation and elongation18) whose presence compared to absence at genes 
yielded the most significant higher (“Fastest” in table) or lower (“Slowest” in table) �� 
(blue), ����/
  (black), or both �� and ����/
  (red). f, Select multi-protein complexes 
from the list in (e) highlighting the role of each complex in increasing (“Fast Subunits” in 
table) or decreasing (“Slow Subunits” in table) �� and/or ����/
 using the same color 
scheme as (d) and (e). 
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