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Abstract
Background: The identification of genomic
biomarkers is a key step towards improving
diagnostic tests and therapies. We present a
reference-free method for this task that relies on
a k-mer representation of genomes and a ma-
chine learning algorithm that produces intelligi-
ble models. The method is computationally scal-
able and well-suited for whole genome sequenc-
ing studies.

Results: The method was validated by generat-
ing models that predict the antibiotic resistance
of C. difficile, M. tuberculosis, P. aeruginosa,
and S. pneumoniae for 17 antibiotics. The ob-
tained models are accurate, faithful to the bio-
logical pathways targeted by the antibiotics, and
they provide insight into the process of resistance
acquisition. Moreover, a theoretical analysis of
the method revealed tight statistical guarantees
on the accuracy of the obtained models, support-
ing its relevance for genomic biomarker discov-
ery.

Conclusions: Our method allows the generation
of accurate and interpretable predictive models
of phenotypes, which rely on a small set of ge-
nomic variations. The method is not limited to
predicting antibiotic resistance in bacteria and is
applicable to a variety of organisms and pheno-
types. Kover, an efficient implementation of our
method, is open-source and should guide bio-
logical efforts to understand a plethora of phe-
notypes (http://github.com/aldro61/
kover/).
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† Shared senior authorship

Background
Despite an era of supercomputing and increasingly precise
instrumentation, many biological phenomena remain mis-
understood. For example, phenomena such as the develop-
ment of some cancers, or the lack of efficiency of a treat-
ment on an individual, still puzzle researchers. One ap-
proach to understanding such events is the elaboration of
case-control studies, where a group of individuals that ex-
hibit a given biological state (phenotype) is compared to a
group of individuals that do not. In this setting, one seeks
biological characteristics (biomarkers), that are predictive
of the phenotype. Such biomarkers can serve as the basis
for diagnostic tests, or they can guide the development of
new therapies and drug treatments by providing insight on
the biological processes that underlie a phenotype (Azuaje,
2011; Koboldt et al., 2013; Mbianda et al., 2015; Simon,
2011). With the help of computational tools, such studies
can be conducted at a much larger scale and produce more
significant results.

In this work, we focus on the identification of genomic
biomarkers. These include any genomic variation, from
single nucleotide substitutions and indels, to large scale
genomic rearrangements. With the increasing throughput
and decreasing cost of DNA sequencing, it is now possible
to search for such biomarkers in the whole genomes of a
large set of individuals (Koboldt et al., 2013; van Dijk et al.,
2014). This motivates the need for computational tools that
can cope with large amounts of genomic data and identify
the subtle variations that are biomarkers of a phenotype.

Genomic biomarker discovery relies on multiple genome
comparisons. Genomes are typically compared based on
a set of single nucleotide polymorphisms (SNP) (Brookes,
1999; Koboldt et al., 2013; Nielsen et al., 2011). A SNP
exists at a single base pair location in the genome when a
variation occurs within a population. The identification of
SNPs relies on multiple sequence alignment, which is com-
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putationally expensive and can produce inaccurate results
in the presence of large-scale genomic rearrangements,
such as gene insertions, deletions, duplications, inversions,
or translocations (Bonham-Carter et al., 2014; Leimeister
et al., 2014; Song et al., 2014; Vinga & Almeida, 2003;
Vinga, 2007).

Recently, methods for genome comparison that alleviate
the need for multiple sequence alignment, i.e., reference-
free genome comparison, have been investigated (Bonham-
Carter et al., 2014; Leimeister et al., 2014; Song et al.,
2014; Vinga & Almeida, 2003; Vinga, 2007). In this work,
we use such an approach, by comparing genomes based
on the k-mers, i.e., sequences of k nucleotides, that they
contain. The main advantage of this method is that it is ro-
bust to genomic rearrangements. Moreover, it provides a
fully unbiased way of comparing genomic sequences and
identifying variations that are associated with a phenotype.
However, this genomic representation is far less compact
than a set of SNPs and thus poses additional computational
challenges.

In this setting, the objective is to find the most concise set
of genomic features (k-mers) that allows for accurate pre-
diction of the phenotype (Azuaje, 2011). Including unin-
formative or redundant features in this set would lead to
additional validation costs and could mislead researchers.
In this work, we favor an approach based on machine learn-
ing, where we seek a computational model of the phe-
notype that is accurate and sparse, i.e. that relies on the
fewest genomic features. Learning such models from large
data representations, such as the k-mer representation, is a
challenging problem (Hastie et al., 2013). Indeed, there
are many more genomic features than genomes, which
increases the danger of overfitting, i.e., learning random
noise patterns that lead to poor generalization performance.
In addition, the majority of the k-mers are uninformative
and cannot be used to predict the phenotype. Finally, due
to the structured nature of genomes, many k-mers occur
simultaneously and are thus highly correlated.

Previous work in the field of biomarker discovery has gen-
erally combined feature selection and predictive modeling
methods (Azuaje, 2011; Saeys et al., 2007). Feature se-
lection serves to identify features that are associated with
the phenotype. These features are then used to construct a
predictive model with the hope that it can accurately pre-
dict the phenotype. The most widespread approach consists
in measuring the association between the features and the
phenotype with a statistical test, such as the χ2 test or a
t-test. Then, some of the most associated features are se-
lected and given to a modeling algorithm. In the machine
learning literature, such methods are referred to as filter
methods (Guyon & Elisseeff, 2003; Hastie et al., 2013).

When considering millions of features, it is not possible to

efficiently perform multivariate statistical tests. Hence, fil-
ter methods are limited to univariate statistical tests. While
univariate filters are highly scalable, they discard multivari-
ate patterns in the data, that is, combinations of features that
are, together, predictive of the phenotype. Moreover, the
feature selection is performed independently of the mod-
eling, which can lead to a suboptimal choice of features.
Embedded methods address these limitations by integrat-
ing the feature selection in the learning algorithm (Guyon
& Elisseeff, 2003; Saeys et al., 2007). These methods se-
lect features based on their ability to compose an accurate
predictive model of the phenotype. Moreover, some of
these methods, such as the Set Covering Machine (Marc-
hand & Shawe-Taylor, 2002), can consider multivariate in-
teractions between features.

In this study, we propose to apply the Set Covering Ma-
chine (SCM) algorithm to genomic biomarker discovery.
We devise extensions to this algorithm that make it well
suited for learning from extremely large sets of genomic
features. We combine this algorithm with the k-mer rep-
resentation of genomes, which reveals uncharacteristically
sparse models that explicitly highlight the relationship be-
tween genomic variations and the phenotype of interest.
We present statistical guarantees on the accuracy of the
models obtained using this approach. Moreover, we pro-
pose an efficient implementation of the method, which can
readily scale to large genomic datasets containing thou-
sands of individuals and hundreds of millions of k-mers.

The method was used to model the antibiotic resistance of
four common human pathogens, including Gram-negative
and Gram-positive bacteria. Antibiotic resistance is a
growing public health concern, as many multidrug-resistant
bacterial strains are starting to emerge. This compromises
our ability to treat common infections, which increases
mortality and health care costs (World Health Organiza-
tion, 2014; Davies & Davies, 2010). Better computational
methodologies to assess resistance phenotypes will assist
in tracking epidemics, improve diagnosis, enhance treat-
ment, and facilitate the development of new drugs (Earle
et al., 2016; Bradley et al., 2015). This study highlights
that, with whole genome sequencing and machine learning
algorithms, such as the SCM, we can readily zero in on the
genes, mutations, and processes responsible for antibiotic
resistance and other phenotypes of interest.

Machine learning for biomarker discovery
The problem of distinguishing two groups of living organ-
isms based on their genomes can be formalized as a su-
pervised learning problem. In this setting, we assume that
we are given a data sample S that contains m learning
examples. These examples are pairs (x, y), where x is a
genome and y is a label that corresponds to one of two
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possible phenotypes. More specifically, we assume that
x ∈ {A, T,G,C}∗, which corresponds to the set of all
possible strings of DNA nucleotides and that y ∈ {0, 1}.
In this work, the label y = 1 is assigned to the case
group and y = 0 to the control group. The examples
in S are assumed to be drawn independently from an un-
known, but fixed, data generating distribution D. Hence
S def
= {(x1, y1), ..., (xm, ym)} ∼ Dm.

Most learning algorithms are designed to learn from a vec-
tor representation of the data. Thus, to learn from genomes,
we must define a function φφφ : {A, T,G,C}∗ → Rd, that
takes a genome as input and maps it to some d dimensional
vector space (the feature space). We choose to represent
each genome by the presence or absence of every possi-
ble k-mer. This representation is detailed in the Methods
section.

Subsequently, a learning algorithm can be applied to the
set S′ def

= {(φφφ(x1), y1), ..., (φφφ(xm), ym)} to obtain a model
h : Rd → {0, 1}. The model is a function that, given the
feature representation of a genome, estimates the associ-
ated phenotype. The objective is thus to obtain a model h
that has a good generalization performance, i.e., that mini-
mizes the probability, R(h), of making a prediction error
for any example drawn according to the distribution D,
where

R(h)
def
= Pr

(x,y)∼D
[h(φφφ(x)) 6= y]. (1)

Application specific constraints

Biomarker discovery leads to two additional constraints on
the model h. These are justified by the cost of applying the
model in practice and on the ease of interpretation of the
model by domain experts.

First, we strive for a model that is sparse, i.e., that uses
a minimal set of features to predict the phenotype. This
property is important, as it can greatly reduce the cost of
applying the model in practice. For example, if the model
relies on a sufficiently small number of features, these
can be measured by using alternative methods, e.g., poly-
merase chain reaction (PCR), rather than sequencing entire
genomes.

In addition, the model must be easily interpretable by do-
main experts. This is essential for extracting useful bio-
logical information from the data, to facilitate comprehen-
sion, and is critical for adoption by the scientific commu-
nity. We make two observations in an attempt to obtain
a clear definition of interpretability. The first is that the
structure of a model can affect its interpretability. For ex-
ample, rule-based models, such as decision trees (Breiman
et al., 1984), are naturally understood as their predictions
consist in answering a series of questions; effectively fol-

lowing a path in the tree. In contrast, linear models, such
as those obtained with support vector machines (Cortes &
Vapnik, 1995) or neural networks (Cheng & Titterington,
1994), are complex to interpret, as their predictions consist
in computing linear combinations of features. The second
observation is that, regardless of the structure of the model,
sparsity is an essential component in interpretability, since
models with many rules are inevitably more tedious to in-
terpret.

The Set Covering Machine

The SCM (Marchand & Shawe-Taylor, 2002) is a learn-
ing algorithm that uses a greedy approach to produce un-
characteristically sparse rule-based models. In this work,
the rules are individual units that detect the presence or the
absence of a k-mer in a genome. These rules are boolean-
valued, i.e., they can either output true or false. The models
learned by the SCM are logical combinations of such rules,
which can be conjunctions (logical-AND) or disjunctions
(logical-OR). To predict the phenotype associated with a
genome, each rule in the model is evaluated and the re-
sults are aggregated to obtain the prediction. A conjunction
model assigns the positive class (y = 1) to a genome if all
the rules output true, whereas a disjunction model does the
same if at least one rule outputs true.

The time required for learning a model with the SCM grows
linearly with the number of genomes in the dataset and with
the number of k-mers under consideration. This algorithm
is thus particularly well suited for learning from large ge-
nomic datasets. Moreover, as it will be discussed later, we
have developed an efficient implementation of the SCM,
which can easily scale to hundreds of millions of k-mers
and thousands of genomes, while requiring a few gigabytes
of memory. This is achieved by keeping the data on exter-
nal storage, e.g., a hard drive, and accessing it in small con-
tiguous blocks. This is in sharp contrast with other learning
algorithms, which require that the entire dataset be stored
in the computer’s memory.

The SCM algorithm is detailed in Additional File 1 – Ap-
pendix 1. In the Methods section, we propose algorithmic
and theoretical extensions to the SCM algorithm that make
it a method of choice for genomic biomarker discovery.

Results
Data

Antibiotic resistance datasets were acquired for four bac-
terial species: Clostridium difficile, Mycobacterium tu-
berculosis, Pseudomonas aeruginosa, and Streptococcus
pneumoniae. Each dataset was a combination of whole
genome sequencing reads and antibiotic susceptibility mea-
surements for multiple isolates. The M. tuberculosis, P.
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Figure 1. Distribution of resistant and sensitive isolates in each dataset.

aeruginosa, and S. pneumoniae data were respectively ob-
tained from Merker et al. (Merker et al., 2015), Kos et
al. (Kos et al., 2015) and Croucher et al. (Croucher et al.,
2013). The C. difficile data were obtained from Dr. Loo
and Dr. Bourgault. The genomes were submitted to the Eu-
ropean Nucleotide Archive [EMBL:PRJEB11776] and the
antibiotic susceptibility measurements are provided in Ad-
ditional data file 1.

The sequencing data, which are detailed in Additional File
2 - Table S1, were acquired using a variety of Illumina
platforms. The genomes were assembled and subsequently
split into k-mers of length 31 (Methods). Guidelines for se-
lecting an appropriate k-mer length are provided in Meth-
ods.

Each (pathogen, antibiotic) combination was considered
individually, yielding 17 datasets in which the number of
examples (m) ranged from 111 to 556 and the number of k-
mers (|K|) ranged from 10 to 123 millions. Figure 1 shows
the distribution of resistant and sensitive isolates in each
dataset. The datasets are further detailed in Additional File
2 - Table S2.

The SCM models are sparse and accurate

The models obtained using the SCM were compared to
those obtained using other machine learning algorithms
based on their generalization performance and sparsity.
Comparisons were made with rule-based models: the
CART decision tree algorithm (Breiman et al., 1984), linear
classifiers: L1-norm and L2-norm regularized linear sup-
port vector machines (L1SVM, L2SVM) (Cortes & Vapnik,
1995), and kernel methods: polynomial and linear kernel
support vector machines (PolySVM, LinSVM) (Schölkopf
et al., 2004; Shawe-Taylor & Cristianini, 2004). CART
and support vector machines are state-of-the-art machine
learning algorithms that have been abundantly used in bi-

ological applications (Kingsford & Salzberg, 2008; Noble,
2006). Publicly available implementations of these algo-
rithms were used: Scikit-learn (Pedregosa et al., 2011) for
CART, LIBLINEAR (Fan et al., 2008) for L1SVM and
L2SVM, and LIBSVM (Chang & Lin, 2011) for PolySVM
and LinSVM.

The following protocol was used to compare the algo-
rithms. Each dataset was split into a training set (2/3 of
the data) and a separate testing set (1/3). 5-fold cross-
validation was performed on the training set to select the
best hyperparameter values. Finally, each algorithm was
trained on the training set and predictions were computed
on the held-out testing set. For each algorithm, the gen-
eralization performance was measured by the error rate on
the independent testing set and sparsity was measured by
the number of k-mers that contributed to the model. This
procedure was repeated 10 times, on different partitions of
the data, and the algorithms were compared based on the
average error rate and sparsity. A Wilcoxon signed-rank
test (Wilcoxon, 1945) was used to assess the statistical sig-
nificance of the comparisons.

The algorithms were also compared to a baseline method
that predicts the most abundant class in the training set (re-
sistant or sensitive).

Our implementation of the SCM was able to learn from
the entire feature space, that is, all the k-mers. The time re-
quired for training the algorithm varied between 33 seconds
and two hours, depending on the dataset, and the memory
requirements were always inferior to eight gigabytes. In
contrast, the CART, L1SVM, and L2SVM algorithms were
unable to learn from the entire feature space. For these
algorithms, the entire dataset had to be stored in the com-
puter’s memory, generating massive memory requirements.
Hence, these algorithms were combined with a feature se-
lection step that reduced the size of the feature space.
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Table 1. Feature Selection: Average testing set error rate and sparsity (in parentheses) for 10 random partitions of the data. Results are
shown for the SCM, which uses the entire feature, and the feature selection-based methods: χ2 + CART, χ2 + L1SVM, χ2 + L2SVM
and χ2 + SCM. The baseline method predicts the most abundant class in the training set. The smallest error rates are in bold.
Dataset SCM χ2 + CART χ2 + L1SVM χ2 + L2SVM χ2 + SCM Baseline
C. difficile

Azithromycin 0.030 (3.3) 0.086 (7.2) 0.064 (20326.0) 0.056 (106) 0.075 (3.0) 0.446
Ceftriaxone 0.073 (2.6) 0.117 (6.8) 0.087 (8114.1) 0.102 (106) 0.111 (3.2) 0.306
Clarithromycin 0.011 (3.0) 0.070 (8.0) 0.062 (36686.1) 0.059 (106) 0.069 (3.5) 0.446
Clindamycin 0.021 (1.4) 0.011 (2.0) 0.009 (598.2) 0.021 (106) 0.008 (2.3) 0.136
Moxifloxacin 0.020 (1.0) 0.020 (1.3) 0.020 (25.6) 0.048 (106) 0.021 (1.1) 0.390

M. tuberculosis
Ethambutol 0.179 (1.4) 0.185 (1.9) 0.153 (201.3) 0.221 (106) 0.174 (3.2) 0.351
Isoniazid 0.021 (1.0) 0.021 (1.1) 0.017 (104.7) 0.125 (106) 0.021 (1.2) 0.421
Pyrazinamide 0.318 (3.1) 0.371 (4.4) 0.353 (481.2) 0.342 (106) 0.366 (5.8) 0.347
Rifampicin 0.031 (1.4) 0.031 (1.5) 0.031 (130.0) 0.196 (106) 0.029 (1.3) 0.452
Streptomycin 0.050 (1.0) 0.052 (1.6) 0.043 (98.8) 0.137 (106) 0.050 (2.1) 0.435

P. aeruginosa
Amikacin 0.175 (4.9) 0.206 (14.1) 0.187 (11514.6) 0.164 (106) 0.164 (9.7) 0.216
Doripenem 0.270 (1.4) 0.261 (1.9) 0.261 (950.0) 0.275 (106) 0.307 (8.5) 0.359
Levofloxacin 0.072 (1.2) 0.076 (1.0) 0.085 (148.9) 0.212 (106) 0.083 (3.5) 0.463
Meropenem 0.267 (1.6) 0.261 (1.0) 0.328 (5368.5) 0.327 (106) 0.331 (9.1) 0.404

S. pneumoniae
Benzylpenicillin 0.013 (1.1) 0.012 (2.3) 0.011 (124.9) 0.013 (106) 0.013 (1.3) 0.073
Erythromycin 0.037 (2.0) 0.047 (3.8) 0.041 (328.8) 0.042 (106) 0.041 (5.1) 0.142
Tetracycline 0.031 (1.1) 0.029 (1.2) 0.032 (1108.5) 0.037 (106) 0.033 (2.2) 0.106

Table 2. Entire feature space: Average testing set error rate and sparsity (in parentheses) for 10 random partitions of the data. Results
are shown for the SCM and the kernel methods: LinSVM and PolySVM. The baseline method predicts the most abundant class in the
training set. The smallest error rates are in bold.
Dataset SCM LinSVM PolySVM Baseline
C. difficile

Azithromycin 0.030 (3.3) 0.050 (32 752 570) 0.048 (32 752 570) 0.446
Ceftriaxone 0.073 (2.6) 0.079 (25 405 987) 0.076 (25 405 987) 0.306
Clarithromycin 0.011 (3.0) 0.053 (32 752 570) 0.053 (32 752 570) 0.446
Clindamycin 0.021 (1.4) 0.039 (30 988 214) 0.039 (30 988 214) 0.136
Moxifloxacin 0.020 (1.0) 0.054 (32 752 570) 0.048 (32 752 570) 0.390

M. tuberculosis
Ethambutol 0.179 (1.4) 0.215 (9 465 489) 0.221 (9 465 489) 0.351
Isoniazid 0.021 (1.0) 0.117 (9 701 935) 0.119 (9 701 935) 0.421
Pyrazinamide 0.318 (3.1) 0.382 (8 058 479) 0.382 (8 058 479) 0.347
Rifampicin 0.031 (1.4) 0.200 (9 701 935) 0.204 (9 701 935) 0.452
Streptomycin 0.050 (1.0) 0.143 (9 282 080) 0.148 (9 282 080) 0.435

P. aeruginosa
Amikacin 0.175 (4.9) 0.184 (116 441 834) 0.179 (116 441 834) 0.216
Doripenem 0.270 (1.4) 0.288 (122 438 059) 0.281 (122 438 059) 0.359
Levofloxacin 0.072 (1.2) 0.221 (122 216 859) 0.225 (122 216 859) 0.463
Meropenem 0.267 (1.6) 0.329 (123 466 989) 0.331 (123 466 989) 0.404

S. pneumoniae
Benzylpenicillin 0.013 (1.1) 0.015 (8 968 176) 0.015 (8 968 176) 0.073
Erythromycin 0.037 (2.0) 0.046 (9 666 898) 0.047 (9 666 898) 0.142
Tetracycline 0.031 (1.1) 0.039 (8 657 259) 0.037 (8 657 259) 0.106
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The next two sections compare the SCM to two categories
of methods: those that require feature selection and those
that learn from the entire feature space. In both cases, the
SCM was found to yield the sparsest and most accurate
models.

FEATURE SELECTION

Feature selection was performed using a univariate filter
that measured the association between each feature and
the phenotype (Azuaje, 2011; Guyon & Elisseeff, 2003;
Saeys et al., 2007). Using the χ2 test of independence, the
1 000 000 most associated features were retained. Results
comparing the SCM, which uses all features, to the univari-
ately filtered algorithms: χ2 + CART, χ2 + L1SVM, and
χ2 + L2SVM, are shown in Table 1.

In terms of error rate, all the algorithms surpass the baseline
method, indicating that relevant information about antibi-
otic resistance was found in the genomes. The error rate of
the SCM is smaller or equal to that of χ2+CART on 12/17
dataset (p = 0.074), χ2 + L1SVM on 11/17 datasets (p =
0.179), and χ2 + L2SVM on 16/17 datasets (p = 0.001).
Moreover, the SCM was found to learn sparser models than
these algorithms (χ2 + CART: p = 0.003, χ2 + L1SVM:
p = 0.0003, χ2 + L2SVM: p = 0.0003).

In addition, the SCM was compared to a variant which uses
univariate feature selection (χ2 + SCM). This comparison
revealed that the SCM surpasses the χ2 + SCM in terms
of accuracy (p = 0.001) and sparsity (p = 0.054), high-
lighting the importance of multivariate patterns in the data
(Table 1).

The ability to consider the entire feature space is thus crit-
ical and eliminates the selection biases of feature selection
methods. However, for most machine learning algorithms,
this remains impossible due to computational limitations
and the danger of overfitting. The next section compares
the SCM to two methods that learn from the entire feature
space.

ENTIRE FEATURE SPACE

By means of the kernel trick, kernel methods can
efficiently learn from very high dimensional feature
spaces (Schölkopf et al., 2004; Shawe-Taylor & Cristian-
ini, 2004). However, as opposed to the SCM, they do not
yield sparse models that can be interpreted by domain ex-
perts.

The SCM was compared to support vector machines cou-
pled with linear (LinSVM) and polynomial (PolySVM)
kernels. When learning from our binary genomic represen-
tation (Methods), the LinSVM yields a linear model that
considers the presence or absence of each k-mer. More-
over, the PolySVM yields a linear model that considers all

possible conjunctions of 1 to d k-mers, where d is a hyper-
parameter of the kernel. The obtained models are thus akin
to those of the SCM, making this comparison particularly
interesting.

The results, shown in Table 2, indicate that the SCM
models are both more accurate (LinSVM: p = 0.0003,
PolySVM: p = 0.0003) and sparser (LinSVM: p = 0.001,
PolySVM: p = 0.006) than those of the aforementioned
algorithms. Further analysis revealed that the poor perfor-
mance of LinSVM and PolySVM is due to overfitting (Ad-
ditional File 2 - Table S3), which likely occurs due to the
immensity of the feature space. In contrast, the SCM was
not found to overfit. This is consistent with the theoretical
result described in Methods, which indicates that the SCM
is not prone to overfitting in settings where the number of
features is much larger than the number of examples.

In summary, it is not only its ability to consider the en-
tire feature space, but also its sparsity and high resistance
to overfitting that make for the strong performance of the
SCM. In complement to these results, the mean and stan-
dard deviation of the sensitivity, specificity, and error rate
for each algorithm are provided in Additional File 2 - Ta-
bles S4, S5, S6.

The SCM models are biologically relevant

The biological relevance of the SCM models was investi-
gated. To achieve this, the algorithm was retrained on each
dataset, using all the available data. This yielded a single
phenotypic model for each dataset. Then, the k-mer se-
quences of the rules in the models were annotated by using
Nucleotide BLAST (Altschul et al., 1990) to search them
against a set of annotated genomes.

Moreover, for each rule in the models, rules that the SCM
found to be equally predictive of the phenotype (equivalent
rules) were considered in the analysis. Such rules are not
used for prediction, but can provide insight on the type of
genomic variation that was identified by the algorithm (see
Methods). For example, a small number of rules target-
ing k-mers that all overlap on a single or few nucleotides,
suggests a point mutation. Alternatively, a large number of
rules, that target k-mers which can be assembled to form
a long sequence, suggests a large-scale genomic variation,
such as a gene insertion or deletion.

The annotated models for each dataset are illustrated in Ad-
ditional File 3 - Figure S1. Below, a subset of these models,
which is illustrated in Figure 2, is discussed. For each ge-
nomic variation identified by the algorithm, a thorough lit-
erature review was performed, with the objective of finding
known, and validated, associations to antibiotic resistance.

For M. tuberculosis, the isoniazid resistance model con-
tains a single rule which targets the katG gene. This gene
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katG - Catalase-Peroxydase
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ermB - rRNA Adenine N-6-Methyltransferase

Penicillin-Binding Protein
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Figure 2. Six antibiotic resistance models, which are all disjunctions (logical-OR). The rounded rectangles correspond to antibiotics. The
circular nodes correspond to k-mer rules. A single border indicates a presence rule and a double border indicates an absence rule. The
numbers in the circles show to the number of equivalent rules. A rule is connected to an antibiotic if it was included in its model. The
weight of the edges gives the importance of each rule as defined by Equations (3) and (4). The models for all 17 datasets are illustrated
in Additional File 3 - Figure S1.

encodes the catalase-peroxidase enzyme (KatG), which is
responsible for activating isoniazid, a prodrug, into its toxic
form. As illustrated in Figure 3, the k-mers associated with
this rule and its equivalent rules all overlap a concise lo-
cus of katG, suggesting the occurrence of a point mutation.
This locus contains codon 315 of KatG, where mutations
S315G, S315I, S315N and S315T are all known to result in
resistance (Cade et al., 2010; Da Silva & Palomino, 2011).
A multiple sequence alignment revealed that these variants
were all present in the dataset. The SCM therefore selected
a rule that captures the absence of the wild-type sequence
at this locus, effectively including the presence of all the
observed variants.

The rifampicin resistance model contains two rules,
which target the rifampicin resistance-determining region
(RRDR) of the rpoB gene. This gene, which encodes the β-
subunit of the RNA polymerase, is the target of rifampicin.
The antibiotic binds to RpoB, which inhibits the elongation
of messenger RNA. Mutations in the RRDR are known to
cause conformational changes that result in poor binding
of the drug and cause resistance (Da Silva & Palomino,
2011). Furthermore, one of the rules has a much greater
importance than the other. This suggests the existence of
two clusters of rifampicin resistant strains, one being pre-
dominant, while both harbor mutations in different regions
of the RRDR.

For S. pneumoniae, the first and most important rule of
the erythromycin resistance model targets the mel gene.
The mel gene is part of the macrolide efflux genetic as-
sembly (MEGA) and is known to confer resistance to ery-

WT

S315G

S315I

S315N

S315T

A G C

G G C

A T C

A A C

A C C

Figure 3. Going beyond k-mers: This figure shows the location,
on the katG gene, of each k-mer targeted by the isoniazid model
(rule and equivalent rules). All the k-mers overlap a concise locus,
suggesting that it contains a point mutation that is associated with
the phenotype. A multiple sequence alignment revealed a high
level of polymorphism at codon 315 (shown in red). The wild-
type sequence (WT), as well as the resistance conferring variants
S315G, S315I, S315N and S315T, were observed. The rule in the
model captures the absence of WT and thus, includes the occur-
rence of all the observed variants.

thromycin (Daly et al., 2004; Ambrose et al., 2005). Of
note, this gene is found on an operon with either the mefA
or the mefE gene, which are also part of the MEGA and as-
sociated with erythromycin resistance (Daly et al., 2004). It
is likely that the algorithm targeted the mel gene to obtain
a concise model that includes all of these resistance deter-
minants. The second rule in the model is an absence rule
that targets the wild-type version of the metE gene. This

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/045153doi: bioRxiv preprint 

https://doi.org/10.1101/045153
http://creativecommons.org/licenses/by-nc-nd/4.0/


Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons

gene is involved in the synthesis of methionine (Basavanna
et al., 2013). Alterations in this gene could lead to a lack
of methionine in the cell and impact the ribosomal machin-
ery, which is the drug’s target. However, further validation
is required to confirm this resistance determinant.

For C. difficile, the resistance models for azithromycin and
clarithromycin, two macrolide antibiotics, share a rule with
the resistance model for clindamycin, a lincosamide antibi-
otic. These three antibiotics function by binding the 50S
subunit of the ribosome and interfering with bacterial pro-
tein synthesis (Tenson et al., 2003). Cross-resistance be-
tween macrolide and lincosamide antibiotics is caused by
the presence of the ermB gene that encodes rRNA adenine
N-6-methyltransferase, an enzyme that methylates position
2058 of the 23S rRNA within the larger 50S subunit (Far-
row et al., 2000; Tenson et al., 2003; Vester & Douth-
waite, 2001). The shared rule for the macrolide and the
lincosamide models rightly targets the ermB gene. This
rule has 616 equivalent rules, all of the presence type, tar-
geting ermB. Arguably, the algorithm correctly found the
presence of this gene to be a cross-resistance determinant,
in agreement with the literature (Farrow et al., 2000; Ten-
son et al., 2003; Vester & Douthwaite, 2001).

Azithromycin and clarithromycin have similar mechanisms
of action and, as expected, their resistance models are
identical. They contain a presence rule that targets a re-
gion of the Tn6110 transposon, characterized in C. difficile
strain QCD-6626 (Brouwer et al., 2011). This region is
located 136 base pairs downstream of a 23S rRNA methyl-
transferase, which is a gene known to be associated with
macrolide resistance (Kaminska et al., 2010). The next rule
in the models targets the presence of the penicillin-binding
protein, which plays a role in resistance to β-lactam antibi-
otics, such as ceftriaxone (Waxman & Strominger, 1983).
Among the azithromycin-resistant isolates in our dataset,
92.7% are also resistant to ceftriaxone. Similarly, 92.2%
of the clarithromycin-resistant isolates are resistant to cef-
triaxone. Hence, this rule was likely selected due to these
strong correlations.

Finally, clindamycin resistance model contains a rule tar-
geting a Tn6194-like conjugative transposon. This trans-
poson contains the ermB gene, which is associated with re-
sistance to this antibiotic (Wasels et al., 2013). Moreover,
it is rarely found in clinical isolates, which could explain
its smaller importance.

Spurious correlations can be overcome

One limitation of statistical methods that derive models
from data is their inability to distinguish causal variables
from those that are highly correlated with them. To our
knowledge, it is very difficult to prevent this pitfall. How-
ever the interpretability and the sparsity of the obtained

models can be leveraged to identify and circumvent spu-
rious correlations.

One notable example of such a situation is the strong corre-
lation in resistance to antibiotics that do not share common
mechanisms of action. These correlations might originate
from treatment regimens. For instance, Figure 4 A shows,
for M. tuberculosis, the proportion of isolates that are iden-
tically labeled (resistant or sensitive) for each pair of antibi-
otics. More formally, this figure shows a matrix C, where
each entry Cij corresponds to a pair of datasets (Si, Sj)
and

Cij
def
=
|{(x, y) ∈ Si : (x, y) ∈ Sj}|

|Si|
. (2)

Notice the large proportion of isolates in the streptomycin
dataset that are identically labeled in the isoniazid dataset
(95.6%). Consequently, the models obtained for strepto-
mycin and isoniazid resistance are identical (Additional
File 3 - Figure S1). However, these antibiotics have dif-
ferent mechanisms of action and thus, different resistance
mechanisms.

The following procedure is proposed to eliminate spurious
correlations and identify causal genomic variants:

1. Learn a model using the SCM.

2. Validate the association between the rules in the model
and the phenotype using mutagenesis and phenotypic
assays.

3. If a rule is not rightly associated with the phenotype,
remove the k-mers of the rule and its equivalent rules
from the data.

4. Repeat until a causal association is found.

In practice, the models can be validated by genetically en-
gineering mutants that match the k-mer variations targeted
by the model. Such mutants can be engineered by diverse
means, such as homologous recombination, the CRISPR-
Cas9 approach (Hsu et al., 2014), or standard molecular
biology cloning. For a conjunction, a multilocus mutant
can be engineered to test the synergy between the pres-
ence/absence of the k-mers. For a disjunction, the rules
must be validated individually, by engineering one mu-
tant for each rule in the model. Finally, the phenotypes
of the mutants can be experimentally validated using phe-
notypic assays. For example, antibiotic resistance can be
validated by using standard susceptibility testing protocols
in the presence of the antibiotic.

Figure 4 B shows a proof of concept, where the iterative
procedure was applied to streptomycin resistance. Resis-
tance to this antibiotic is well documented and thus, a liter-
ature review was used in lieu of the experimental validation
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Figure 4. Overcoming spurious correlations: This figures shows how spurious correlations in the M. tuberculosis data affect the models
produced by the Set Covering Machine. a) For each M. tuberculosis dataset, the proportion of isolates that are identically labeled in each
other dataset is shown. This proportion is calculated using Equation (2). b) The antibiotic resistance models learned by the SCM at each
iteration of the correlation removal procedure. Each model is represented by a rounded rectangle identified by the round number and
the estimated error rate. All the models are disjunctions (logical-OR). The circular nodes correspond to k-mer rules. A single border
indicates a presence rule and a double border indicates an absence rule. The numbers in the circles show to the number of equivalent
rules. A rule is connected to an antibiotic if it was included in its model. The weight of the edges gives the importance of each rule.

of mutants. Six rounds were required in order to converge
to a known resistance mechanism, i.e., the rpsL gene (Nair
et al., 1993). The models obtained throughout the itera-
tions contained rules targeting the katG and the rpoB genes,
which are respectively isoniazid and rifampicin resistance
determinants (Cade et al., 2010; Da Silva & Palomino,
2011). Again, this occurs due to the large proportion of iso-
lates in the streptomycin dataset that are identically labeled
in the isoniazid (95.6%) and rifampicin datasets (85.9%).

Hence, should the algorithm identify variations that are cor-
related with, but not causal of the phenotype, one could
detect and eliminate them, eventually converging to causal
variants. The search for causality is therefore a feedback
between machine learning and experimental biology, which
is made possible by the high sparsity and interpretability of
the models generated using the SCM.

The SCM can predict the level of resistance

To further demonstrate how the SCM can be used to ex-
plore the relationship between genotypes and phenotypes,
it was used to predict the level of benzylpenicillin resis-
tance in S. pneumoniae. For this bacterium, penicillin re-
sistance is often mediated by alterations that reduce the
affinity of penicillin-binding proteins (Fani et al., 2014).
Moderate-level resistance is due to alterations in PBP2b
and PBP2x, whereas high-level resistance is due to addi-
tional alterations in PBP1a. Based on the antibiotic sus-
ceptibility data described in Additional File 2 - Table S2,

three levels of antibiotic resistance were defined and used
to group the isolates: high-level resistance (R), moderate-
level resistance (I) and sensitive (S). We then attempted to
discriminate highly resistant isolates from sensitive isolates
and moderately resistant isolates from sensitive isolates.
The same protocol as in the previous sections was used.

An error rate of 1.3% was obtained for discriminating
highly resistant and sensitive isolates. The obtained model
correctly targeted the pbp1a gene. Based on the protocol
presented in Additional File 1 – Appendix 2, all the k-mers
located in this gene were removed and the experiment was
repeated. This yielded a model with an error rate of 1.7%
that targeted the pbp2b gene. These results are consistent
with the literature, since they indicate that alterations in
both genes are equally predictive of a high-level of resis-
tance and thus, that they occur simultaneously in isolates
that are highly resistant to penicillin (Fani et al., 2014).

An error rate of 6.4% was obtained for discriminating mod-
erately resistant and sensitive isolates. The obtained model
correctly targeted the pbp2b gene. Again, all the k-mers
located in this gene were removed and the experiment was
repeated. The obtained model had an error rate of 7.2% and
targeted the pbp2x gene. In accordance with the literature,
this indicates that alterations in both genes are predictive
of moderate-level resistance. However, our results indicate
that alterations in pbp2b are slightly more predictive of this
phenotype.
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Discussion
We have addressed the problem of learning computational
phenotyping models from whole genome sequences. We
sought a method that produces accurate models that are in-
terpretable by domain experts, while relying on a minimal
set of biomarkers. Our results for predicting antibiotic re-
sistance demonstrate that this goal has been achieved.

Biologically relevant insight was acquired for drug resis-
tance phenotypes. Indeed, within hours of computation, we
have retrieved antibiotic resistance mechanisms that have
been reported over the past decades. Of note, we have
shown that the k-mers in the SCM models can be further
refined to determine the type of the underlying genomic
variations. Hence, this method could be used to rapidly
gain insight on the causes of resistance to new antibiotics,
for which the mechanism of action might not be fully un-
derstood. Furthermore, as our results suggest, our method
could be used to discover resistance mechanisms that are
shared by multiple antibiotics, which would allow the de-
velopment of more effective combination therapies.

In terms of accuracy, the method was shown to outperform
a variety of machine learning-based biomarker discovery
methods. For a majority of datasets, the achieved error rates
are well below 10%. Given the inherent noise in antibi-
otic susceptibility measurements, it is likely that these error
rates are near optimal. For M. tuberculosis and P. aerugi-
nosa, some datasets were shown to have contrasting results,
where none of the evaluated methods produced accurate
models. A FastQC (and, 2010) analysis revealed that, of
the four species considered, these two species have the low-
est sequencing data quality (Additional File 2 - Table S1).
Moreover, for these species only, the data were acquired us-
ing a combination of MiSeq and HiSeq instruments, which
could undermine the comparability of the genomes (Loman
et al., 2012).

We therefore hypothesize that the inability to learn accu-
rate models on some datasets is either due to the quality
of the sequencing data, an insufficient number of learning
examples, or extra-genomic factors that influence the phe-
notype. For instance, epigenetic modifications have been
shown to alter gene expression in bacteria and play a role
in virulence (Adam et al., 2008; Casadesús & Low, 2006).
Assuming the availability of the data, future work could ex-
plore extensions to jointly learn models from genetic and
epigenetic data.

In terms of sparsity, the SCM was shown to produce the
sparsest models. Notably, this was achieved without nega-
tively impacting the prediction accuracy of the models. We
hypothesize that this is due to the small number of genomic
variations that drive some genome-related phenotypes.

Hence, we presented empirical evidence that, in the con-

text of genomic biomarker discovery, the SCM outperforms
a variety of machine learning algorithms, which were se-
lected to have diverse model structures and levels of spar-
sity. This suggests that the conjunctions and disjunctions
produced by the SCM, in addition to being intuitively un-
derstandable, are more suitable for this task. In Methods,
we provide tight statistical guarantees on the accuracy of
the models obtained using our approach. Such theoretical
results are uncommon for this type of tool and, together
with the empirical results, indicate the SCM is a tool of
choice for genomic biomarker discovery.

Conclusions
The identification of genomic biomarkers is a key step to-
wards improving diagnostic tests and therapies. In this
study, we have demonstrated how machine learning can
be used to identify such biomarkers in the context of case-
control studies. We proposed a method that relies on the Set
Covering Machine algorithm to generate models that are
accurate, concise and intelligible to domain experts. The
obtained models make phenotypic predictions based on the
presence or absence of short genomic sequences, which
makes them well-suited for translation to the clinical set-
tings using methods such as PCR. The proposed method is
broadly applicable and is not limited to predicting drug re-
sponse in bacteria. Hence, we are confident that this work
will transpose to other organisms, phenotypes, and even to
scenarios involving complex mixtures of genomes, such as
metagenomic studies. The efficiency and the simplicity of
the models obtained using our method could guide biolog-
ical efforts for understanding a plethora of phenotypes.

To facilitate the integration of our method in genomic anal-
ysis pipelines, we provide Kover, an implementation that
efficiently combines the modeling power of the Set Cover-
ing Machine with the versatility of the k-mer representa-
tion. The implementation is open-source and is available at
http://github.com/aldro61/kover.

Methods
Genome assembly and fragmentation into k-mers

All genomes were assembled using the SPAdes genome as-
sembler (Bankevich et al., 2012) and were subsequently
split into k-mers using the Ray Surveyor tool, which is
part of the Ray de novo genome assembler (Boisvert et al.,
2010; 2012). Genome assembly is not mandatory for ap-
plying our method. Instead, one could use k-mer counting
software to identify the k-mers present in the raw reads of
each genome. However, with sufficient coverage, genome
assembly can increase the quality of the k-mer represen-
tation by eliminating sequencing errors. This reduces the
number of unique k-mers and thus, the size of the feature
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space.

Choosing the k-mer length

The k-mer length is an important parameter of the proposed
method. Exceedingly small values of k will yield k-mers
that ambiguously map to multiple genomic loci. Yet, an ex-
ceedingly large k will yield very specific k-mers that only
occur in few genomes. To our knowledge, a general pro-
tocol for selecting the k-mer length does not exist. We
therefore propose two approaches to selecting an appropri-
ate length.

The first consists of using prior biological knowledge about
the organism under study. For instance, the mutation rate is
an important factor to consider. If it is expected to be high
(e.g., viruses), small k-mers are preferable. Conversely, if
the mutation rate is low, longer k-mers can be used, allow-
ing the identification of additional genomic variations, such
as DNA tandem repeats, which can be relevant for predict-
ing the phenotype (Zhou et al., 2014). Extensive testing
has shown that k = 31 appears to be optimal for bacterial
genome assembly (Boisvert et al., 2012) and recent studies
have employed it for reference-free bacterial genome com-
parisons (Earle et al., 2016; Bradley et al., 2015). Hence,
this value was used in the current study.

The second method is better suited for contexts where no
prior knowledge is available. It consists of considering k
as a hyperparameter of the learning algorithm and setting
its value by cross-validation. In this case, the algorithm is
trained using various values of k and the best value is se-
lected based on the cross-validation score. This process is
more computationally intensive, since the algorithm needs
to be trained multiple times. However, it ensures that the
k-mer length is selected based on the evidence of a good
generalization performance.

In this study, both approaches were compared and shown to
yield similar results. Indeed, no significant variation in ac-
curacy was observed for the models obtained with k = 31
and with k selected from {15, 21, 31, 51, 71, 91} by cross-
validation (Additional File 1 – Appendix 3). This corrob-
orates that k-mers of length 31 are well-suited for bacte-
rial genome comparisons. Moreover, it indicates that cross-
validation can recover a good k-mer length in the absence
of prior knowledge.

Applying the Set Covering Machine to genomes

We represent each genome by the presence or absence of
each possible k-mer. There are 4k possible k-mers and
hence, for k = 31, we consider 431 > 4 · 1018 k-mers. Let
K be the set of all, possibly overlapping, k-mers present
in at least one genome of the training set S. Observe
that K omits k-mers that are absent in S and thus non-

discriminatory, which allows the SCM to efficiently work
in this enormous feature space. Then, for each genome x,
let φφφ(x) ∈ {0, 1}|K| be a |K| dimensional vector, such
that its component φi(x) = 1 if the i-th k-mer of K is
present in x and 0 otherwise. An example of this rep-
resentation is given in Figure 5. We consider two types
of boolean-valued rules: presence rules and absence rules,
which rely on the vectors φφφ(x) to determine their out-
come. For each k-mer ki ∈ K, we define a presence
rule as pki(φφφ(x))

def
= I[φi(x) = 1] and an absence rule as

aki
(φφφ(x))

def
= I[φi(x) = 0], where I[a] = 1 if a is true

and I[a] = 0 otherwise. The SCM, which is detailed in
Additional File 1 – Appendix 1, can then be applied by us-
ing {(φφφ(x1), y1), ...,φφφ(xm), ym)} as the set S of learning
examples and by using the set of presence/absence rules
defined above as the set R of boolean-valued rules. This
yields a phenotypic model which explicitly highlights the
importance of a small set of k-mers. In addition, this model
has a form which is simple to interpret, since its predictions
are the result of a simple logical operation.Représenta&on*“bagXofXwords”*
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Figure 5. The k-mer representation: An example of the k-mer
representation. Given the set of observed k-mers K and a genome
x, the corresponding vector representation is given by φφφ(x).

Tiebreaker function

At each iteration of the SCM algorithm (Marchand &
Shawe-Taylor, 2002), the rules are assigned a utility score
based on their ability to classify the examples for which
the outcome of the model is not settled. The number of
such examples decreases at each iteration. Consequently, it
is increasingly likely that many rules have an equal utility
score. This phenomenon is accentuated when considering
many more rules than learning examples, which is the case
of biomarker discovery. We therefore extend the algorithm
by introducing a tiebreaker function for rules of equal util-
ity. The tiebreaker consists in selecting the rule that best
classifies all the learning examples, i.e., the one with the
smallest empirical error rate. This simple strategy favors
rules that are more likely to be associated with the pheno-
type.
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Exploiting equivalent rules

When applied to genomic data, the tiebreaker does not al-
ways identify a single best rule. This is a consequence
of the inherent correlation that exists between k-mers that
occur simultaneously in the genome, such as k-mers that
overlap or that are nearby in the genomic structure. The
rules that the tiebreaker cannot distinguish are deemed
equivalent. Our goal being to obtain concise models, only
one of these rules is included in the model and used for
prediction. This rule is selected randomly, but other strate-
gies could be applied. As it has been demonstrated in the
results, these rules provide a unique approach for decipher-
ing, de novo, new biological mechanisms without the need
for prior information. Indeed, the set of k-mers targeted by
these rules can be analyzed to draw conclusions on the type
of genomic variation that was identified by the algorithm,
e.g., point mutation, indel or structural variation.

Measuring the importance of rules

We propose a measure of importance for the rules in a con-
junction or disjunction model. Taking rule importance into
consideration can facilitate the interpretation of the model.
Importance should be measured proportionally to the im-
pact of each rule on the predictions of the model. Ob-
serve that for any example x, a conjunction model predicts
h(x) = 0 if at least one of its rules returns 0. Thus, when a
rule returns 0, it directly contributes to the outcome of the
model. Moreover, a conjunction model predicts h(x) = 1
if and only if exactly all of its rules return 1. Hence, in this
case, all the rules contribute equally to the prediction and
thus, we do not need to consider this case in the measure
of importance. The importance of a rule r in a conjunction
model is therefore given by:

I∧(r)
def
=

∑
(x,y)∈S I[r(x) = 0 ∧ h(x) = 0]∑

(x,y)∈S I[h(x) = 0]
, (3)

where r(x) is the outcome of rule r on example x. In con-
trast, a disjunction model predicts h(x) = 1 if at least one
of its rules return 1. Moreover, it predicts h(x) = 0 if and
only if exactly all of its rules returns 0. The importance of
a rule in a disjunction model is thus given by:

I∨(r)
def
=

∑
(x,y)∈S I[r(x) = 1 ∧ h(x) = 1]∑

(x,y)∈S I[h(x) = 1]
. (4)

An upper bound on the error rate

When the number of learning examples is much smaller
than the number of features, many machine learning algo-
rithms tend to overfit the training data and thus, have a poor
generalization performance (Hastie et al., 2013). Genomic
biomarker discovery fits precisely in this regime. Using

sample-compression theory (Floyd & Warmuth, 1995; Lit-
tlestone & Warmuth, 1986; Marchand & Sokolova, 2005),
we obtained an upper bound on the error rate, R(h), of
any model, h, learned using our proposed approach. Inter-
estingly, this bound indicates that we are not in a setting
where the SCM is prone to overfitting, even if the number
of features is much larger than the number of example.

Formally, for any distribution D, with probability at least
1− δ, over all datasets S drawn according to Dm, we have
that all models h have R(h) ≤ ε, where

ε = 1− exp

( −1
m−mZ − r

[
ln

(
m

mZ

)
+ ln

(
m−mZ

r

)
+ |h| · ln(2 · |Z|)

+ ln

(
π6(|h|+ 1)2(r + 1)2(mZ + 1)2

216 · δ

)])
, (5)

where m is the number of learning examples, |h| is the
number of rules in the model, Z is a set containing mZ ≤
|h| learning examples (genomes) in which each k-mer in
the model can be found, |Z| is the total number of nu-
cleotides inZ and r is the number of prediction errors made
by h on S \ Z . The steps required to obtain this bound are
detailed in Additional File 1 – Appendix 4.1.

This theoretical result guarantees that our method will
achieve good generalization, regardless of the number of
possible features under consideration (4k), provided that
we obtain a sparse model (small |h|) that makes few er-
rors on the training set (small r). Hence, the occurrence
of overfitting is not influenced by the immensity of the
feature space under consideration. This is theoretical ev-
idence that the SCM is a method of choice for genomic
biomarker discovery studies. Moreover, this is reflected in
our empirical results, which indicate that using various k-
mer lengths, and thus feature spaces of various sizes, does
not significantly affect the accuracy of the obtained models
(p = 0.551) (Additional File 1 – Appendix 3).

This result is counter-intuitive with respect to classical ma-
chine learning theory and highlights the benefits of us-
ing sample-compression theory to analyze the behavior of
learning algorithms.

Finally, following the idea of Marchand and Shawe-
Taylor (Marchand & Shawe-Taylor, 2002), we attempted
to use the bound value as a substitute for 5-fold cross-
validation. In this case, the bound value was used to deter-
mine the best combination of hyperparameter values (Ad-
ditional File 1 – Appendix 4.2). This led to a sixfold de-
crease in the number of times the SCM had to be trained
and yielded sparser models (p = 0.014) with similar accu-
racies (p = 0.463).
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Efficient implementation

The large size of genomic datasets tends to surpass the
memory resources of modern computers. Hence, there is
a need for algorithms that can process such datasets with-
out solely relying on the computer’s memory. Out-of-core
algorithms achieve this by making efficient use of external
storage, such as file systems. Along with this work, we
propose Kover, an out-of-core implementation of the Set
Covering Machine tailored for presence/absence rules of k-
mers. Kover implements all the algorithmic extensions pro-
posed in this work. It makes use of the HDF5 library (The
HDF Group, 2015) to efficiently store the data and process
it in blocks. Moreover, it exploits atomic CPU instructions
to accelerate computations. The details are provided in Ad-
ditional File 1 – Appendix 5. Kover is implemented in the
Python and C programming languages, is open-source soft-
ware and is available free of charge.

Future work

The proposed method is currently limited to the presence or
absence of k-mers. This binary representation leads to de-
sirable algorithmic properties and allows the use of highly
efficient atomic CPU instructions in the implementation.
Consequently, the proposed method scales linearly with the
number of k-mers and genomes, something that would not
be possible if k-mer frequencies were considered. In fu-
ture work, we will explore ways to incorporate k-mer fre-
quencies, while preserving the scalability of our method.
This new type of model will allow the detection of k-mers
at multiple genomic loci, which could prove important for
modeling phenotypes that are affected by structural varia-
tions, such as copy number variations.
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pices of Calcul Québec and Compute Canada. AD is
recipient of an Alexander Graham Bell Canada Gradu-
ate Scholarship Doctoral Award of the National Sciences
and Engineering Research Council of Canada (NSERC).
This work was supported in part by the NSERC Discov-
ery Grants (FL; 262067, MM; 122405) and an award to
MT from the Ministère de l’enseignement supérieur, de la
recherche, de la science et de la technologie du Québec
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l’Université de Montréal, McGill University Health Centre,
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Michael G B, Rüsch-Gerdes, Sabine, Mokrousov, Igor,
Aleksic, Eman, Allix-Béguec, Caroline, Antierens, An-
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