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CONTROLLING FOR CONFOUNDING EFFECTS IN
SINGLE CELL RNA SEQUENCING STUDIES USING

BOTH CONTROL AND TARGET GENES

By Mengjie Chen∗ and Xiang Zhou†

University of North Carolina and University of Michigan

Single cell RNA sequencing (scRNAseq) technique is becoming
increasingly popular for unbiased and high-resolutional transcriptome
analysis of heterogeneous cell populations. Despite its many advan-
tages, scRNAseq, like any other genomic sequencing technique, is
susceptible to the influence of confounding effects. Controlling for
confounding effects in scRNAseq data is a crucial step for accurate
downstream analysis. Here, we present a novel statistical method,
which we refer to as scPLS, for robust and accurate inference of con-
founding effects. scPLS takes advantage of the fact that genes in a
scRNAseq study can often be naturally classified into two sets: a con-
trol set of genes that are free of effects of the predictor variables and a
target set of genes that are of primary interest. By modeling the two
sets of genes jointly using the partial least squares regression, scPLS
is capable of making full use of the data to improve the inference of
confounding effects. scPLS is closely related to and bridges between
two existing subcategories of methods, and enjoys robust performance
across a range of application scenarios. To accompany our method, we
also develop a new, block-wise expectation maximization algorithm
for scalable inference. Our algorithm is an order of magnitude faster
than a standard one, making scPLS applicable to hundreds of cells
and hundreds of thousands of genes. With extensive simulations and
comparisons with other methods, we demonstrate the effectiveness of
scPLS. Finally, we apply scPLS to analyze two scRNAseq data sets
to illustrate its benefits in removing technical confounding effects as
well as for removing cell cycle effects.

1. Introduction. Single-cell RNA sequencing (scRNAseq) has emerged
as a powerful tool in genomics. While the traditional RNA sequencing,
known as the bulk RNAseq, measures gene expression levels averaged across
many different cells in a sample of potentially heterogeneous cell popula-
tion, scRNAseq can measure gene expression levels directly at the single
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cell resolution. As a result, scRNAseq is less influenced by the variation of
cell type and cell composition across different samples – a major confound-
ing in the analyses of bulk RNAseq studies. Because of this benefit and
its high resolution, scRNAseq provides unprecedented insights into many
basic biological questions that are previously difficult to address. For ex-
ample, scRNAseq has been applied to classify novel cell subtypes [49, 55]
and cellular states [16, 31], reconstruct cell lineage and quantify progressive
gene expression during development [47, 46, 9, 53], perform spatial map-
ping and re-localization [1, 39], identify differentially expressed genes and
gene expression modulars [41, 21, 27], and investigate the genetic basis of
gene expression variation by detecting heterogenic allelic specific expressions
[4, 8].

Like any other genomic sequencing experiment, scRNAseq studies are
influenced by many factors that can introduce unwanted variation in the
sequencing data and confound the down-stream analysis [43]. Due to low
capture efficiency and low amount of input material, such unwanted vari-
ation are exacerbated in scRNAseq experiments [50]. Indeed, adjusting for
confounding factors in scRNAseq data has been shown to be crucial for
accurate estimation of gene expression levels and successful down-stream
analysis [13, 20, 22, 43, 50]. However, depending on the source, adjusting
for confounding factors in scRNAseq can be non-trivial. Some confounding
effects, such as read sampling noise and drop-out events, are direct conse-
quences of low sequencing-depth, which are random in nature and can be
readily addressed by probabilistic modeling using existing statistical meth-
ods [20, 13, 22, 10, 36]. Other confounding effects are inherent to a particular
experimental protocol and can cause amplification bias, but can be easily
mitigated by using new protocols [14]. Yet other confounding effects are due
to observable batches and can be adjusted for by including batch labels and
technician ids as covariates or dealt with other statistical methods [18, 51].
However, many confounding factors are hidden and are difficult or even
impossible to measure. Common hidden confounding factors include various
technical artifacts during library preparation and sequencing, and unwanted
biological confounders such as cell cycle status. These hidden confounding
factors can cause systematic bias, are notoriously difficult to control for, and
are the focus of the present study.

To effectively infer and control for hidden confounding factors in scR-
NAseq studies, we develop a novel statistical method, which we refer to as
scPLS. scPLS is specifically designed in the unsupervised setting where the
predictor variables are not known a priori (e.g. cell clustering problems).
scPLS takes advantage of the fact that genes in a scRNAseq study can often
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be naturally classified into two sets: a control set of genes that are free of
effects of the predictor variables and a target set of genes that are of pri-
mary interest. By modeling the two sets of genes jointly using the partial
least squares regression, scPLS is capable of making full use of the data
to improve the inference of confounding factors. scPLS is closely related to
and bridges between two existing subcategories of methods: a subcategory
of methods (e.g. PCA [37, 28, 34, 44] and LMM [17, 19, 29]) that treat
control and target genes in the same fashion, and another subcategory of
methods (e.g. RUV [37, 15] and scLVM [6]) that use control genes alone for
inferring confounding factors. By bridging between the two subcategories
of methods, scPLS enjoys robust performance across a range of application
scenarios. scPLS is also computationally efficient: with a new block-wise ex-
pectation maximization (EM) algorithm, it is scalable to thousands of cells
and tens of thousands of genes. Using simulations and two real data appli-
cations, we show how scPLS can be used to remove confounding effects and
enable accurate down-stream analysis in scRNAseq studies. Our method
is implemented as a part of the Citrus project and is freely available at:
http://chenmengjie.github.io/Citrus/.

The paper is organized as follows. In Section 2 we provide a brief review
of existing statistical methods for removing confounding effects and describe
how scPLS is related to and motivated from these methods. In Section 3,
we provide a methodological description of the scPLS model, with inference
details provided in Section 4. In Section 5 we present comparisons between
scPLS and several existing methods using simulations. In Section 6, we apply
scPLS to two real scRNAseq data sets to remove technical confounding
effects or cell cycle effects. Finally, we conclude the paper with a summary
and discussion in Section 7.

2. Review of Previous Methods. Many statistical methods have
been developed in sequencing- and array-based genomic studies to infer hid-
den confounding factors and control for hidden confounding effects. Based
on their targeted application, these statistical methods can be generally
classified into two categories.

The first category of methods are supervised and application-specific:
these methods are designed to infer the confounding factors in the presence of
a known predictor variable, and to correct for the confounding effects with-
out removing the effects of the predictor variable. For example, scientists
are often interested in identifying genes that are differentially expressed be-
tween two pre-determined treatment conditions or that are associated with
a measured predictor variable of interest. To remove the confounding effects
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in these applications, methods, include SVA [28], sparse regression models
[45, 54], and, more recently, RUV [12, 11], are developed. Although these
application-specific methods are widely applied in many genomics studies,
their usage is naturally restricted to cases where the primary variable of
interest is known. The application-specific methods become inconvenient in
cases where there are multiple variables of interest (e.g. in eQTL mapping
problems). They also become inapplicable when the primary variable of in-
terest is not observed (e.g. in clustering problems).

Our scPLS belongs to the second category of unsurpervised methods,
which are designed to infer the confounding factors without knowing or us-
ing the predictor variable of interest. Notable applications of unsurpervised
methods in scRNAseq studies include cell type clustering and classification
[49, 55, 16, 31, 47, 46, 9, 53]. Existing unsurpervised statistical methods can
be further classified into two subcategories. The first subcategory of methods
treat all genes in the same fashion and use all of them to infer the confound-
ing factors. For example, the principal component analysis (PCA) or the
factor model extracts the principal components or factors from all genes as
surrogates for the confounding factors [37, 28, 34, 44]. The inferred factors
are treated as covariates whose effects are further removed from gene expres-
sion levels before downstream analyses. Similarly, the linear mixed models
(LMMs) construct a sample relatedness matrix based on all genes to capture
the influence of the confounding factors [17, 19, 29]. The relatedness matrix
are then included in the downstream analyses to control for the confound-
ing effects. In contrast, the second subcategory of unsupervised methods are
recently developed to take advantage of a set of control genes for inferring
the confounding factors [6, 37]. These methods divide genes into two sets: a
control set of genes that are known to be free of effects of interest a priori
and a target set of genes that are of primary interest. Unlike the first subcat-
egory, the second subcategory of methods treat the two gene sets differently
in inferring the confounding factors: the confounding factors are only in-
ferred from the control set, and are then used to remove the confounding
effects in the target genes for subsequent downstream analysis. For exam-
ple, scRNAseq studies often add ERCC spike-in controls prior to the PCR
amplification and sequencing steps. The spike-in controls can be used to
capture the hidden confounding technical factors associated with the exper-
imental procedures, which are further used to remove technical confounding
effects (e.g. reverse transcription or PCR amplification confounding effects)
from the target genes [17]. Similarly, most scRNAseq studies include a set
of control genes that are known to have varying expression levels across cell
cycles. These cell cycle genes can be used to capture the unmeasured cell
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cycle status of each cell, which are further used to remove cell cycle effects in
the target genes [6]. Prominent methods in the second subcategory include
the unsupervised version of RUV [37, 15] and scLVM [6].

The two subcategories of unsupervised methods use different strategies to
infer the confounding factors. Therefore, these two sets of methods are ex-
pected to perform well in different settings. Specifically, the first subcategory
of methods have the advantage of using information contained in all genes to
accurately infer the confounding effects. However, when the predictor vari-
able of interest influences a large number of genes, then this subcategory
of methods may incorrectly remove the primary effects of interest. On the
other hand, the second subcategory of methods infer confounding factors
only from the control genes and are thus not prone to mistakenly removing
the primary effects of interest. However, these methods overlook one impor-
tant fact – that the hidden confounding factors not only influence the control
genes but also the target genes, i.e. the exact reason that we need to remove
such confounding effects in the first place. Because the confounding factors
influence both control and target genes, using control genes alone to infer
the confounding factors can be suboptimal as it fails to use the information
from target genes.

To more effectively infer and control for hidden confounding factors in
scRNAseq studies, we develop a novel statistical method, which we refer
to as scPLS. scPLS bridges between the two subcategories of unsupervised
methods and effectively includes each as a special case. Like the first sub-
category of methods, scPLS models both control and target genes jointly
to infer the confounding factors. Like the second subcategory of methods,
scPLS is capable of taking advantage of a control set to guild the inference of
confounding factors. scPLS builds upon the partial least squares regression
model and relies on a key modeling assumption that only target genes con-
tain the primary effects of interest or other systematic biological variations.
By incorporating such systematic variations in the target genes only, we can
jointly model both control and target genes to infer the confounding effects
while avoiding mis-removing the primary effects of interest. Therefore, sc-
PLS has the potential to make full use of the data to improve the inference
of confounding factors and the removal of confounding effects.

3. Details of scPLS. We provide modeling details for scPLS here. Our
scPLS is generally applicable to both sequencing- and array-based genomic
studies, but we focus on its application in scRNAseq. The scRNAseq data
resembles that of the bulk RNAseq data and consists of a gene expression
matrix on n cells and p + q genes. We consider dividing the genes into
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6 MENGJIE CHEN AND XIANG ZHOU

two sets: a control set that contains q control genes and a target set that
contains p genes of primary interest. The control genes are selected based
on the purpose of the analysis. For example, the control set would contain
ERCC spike-ins if we want to remove technical confounding factors, and
would contain cell cycle genes if we want to remove cell cycle effects. We use
the following partial least squares regression to jointly model both control
and target genes:

xi = Λxzi + εxi, εxi ∼ MVN(0,Ψxi)(3.1)

yi = Λyzi + Λuui + εyi, εyi ∼ MVN(0,Ψyi)(3.2)

where for i’th individual cell, xi is a q-vector of expression levels for q control
genes; yi is a p-vector of expression levels for p target genes; zi is kz-vector
of unknown confounding factors that affect both control and target genes;
the coefficients of the confounding factors are represented by the q by kz
loading matrix Λx for the control genes and the p by kz loading matrix
Λy for the target genes; ui is a ku-vector of unknown factors in the target
genes and potentially represents the predictors of interest or other structured
variations (see below); Λu is a p by ku loading matrix; εxi is a q-vector
of idiosyncratic error with covariance Ψxi = diag(σ2x1, · · · , σ2xq); εyi is a p-
vector of idiosyncratic error with covariance Ψyi = diag(σ2y1, · · · , σ2yp); MVN
denotes the multivariate normal distribution. We assume zi ∼ MVN(0, I)
and ui ∼ MVN(0, I). We model transformed data instead of the raw read
counts. We also assume that the expression levels of each gene have been
centered to have mean zero, which allows us to ignore the intercept.

scPLS includes two types of unknown latent factors. The first set of fac-
tors, zi, represents the unknown confounding factors that affect both control
and target genes. The effects of zi on the control and target genes are cap-
tured in the loading matrices Λx and Λy, respectively. We call zi the con-
founding factors throughout the text, and we aim to remove the confounding
effects Λyzi from the target genes. The second set of factors, ui, aims to cap-
ture a low dimensional structure of the expression level of p target genes.
The factors ui can represent the unknown predictor variables of interest,
specific experimental perturbations, gene signatures or other intermediate
factors that coordinately regulate a set of genes. Therefore, the factors ui

can be interpreted as cell subtypes, treatment status, transcription factors
or regulators of biological pathways in different studies [7, 35, 30, 3, 33].
Although ui could be of direct biological interest in many data sets, we do
not explicitly examine the inferred ui here. Rather, we view modeling ui in
the target genes as a way to better capture the complex variance structure
there and to facilitate the precise estimation of confounding factors zi. For
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Fig 1. Illustration of scPLS. We model the expression level of genes in the control set
(X) and genes in the target set (Y) jointly. Both control and target genes are affected
by the common confounding factors (Z) with effects Λx and Λy in the two gene sets,
respectively. The target genes are also influenced by biological factors (U) with effects Λu.
The biological factors represent intermediate factors that coordinately regulate a set of
genes, and are introduced to better capture the complex variance structure in the target
genes. Ex and Ey represent residual errors. scPLS aims to remove the confounding effects
ZΛy in the target genes.

simplicity, we call ui the biological factors throughout the text, though we
note that ui could well represent non-biological processes such as treatment
or environmental effects. Thus, the expression levels of the control genes
can be described by a linear combination of the confounding factors zi and
residual errors; the expression levels of the target genes can be described
by a linear combination of the confounding factors zi, the biological fac-
tors ui and residual errors. For both types of confounding factors, we are
interested in inferring the factor effects Λyzi and Λuui rather than the in-
dividual factors zi and ui. Therefore, unlike in standard factor models, we
are not concerned with the identifiability of the factors. Figure 1 shows an
illustration of scPLS.

scPLS is closely related to the two subcategories of unsupervised methods
described in Section 2. Specifically, without the biological effects term Λuui,
scPLS effectively reduces to the first subcategory of methods that treat all
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genes in the same fashion for inferring the confounding factors. Without the
Equation 3.2 term, scPLS effectively reduces to the second subcategory of
methods that use only control genes for inference. (Note that, after inferring
the confounding factors zi from Equation 3.1, the second subcategory of
methods still use a reduced version of Equation 3.2 without the biological
effects term Λuui to remove the confounding effects.) By including both
modeling terms, scPLS can robustly control for confounding effects across a
range of scenarios. Therefore, scPLS provides a flexible modeling framework
that effectively includes the two subcategories of unsupervised methods as
special cases and has the potential to outperform these previous methods.

4. EM Algorithms for scPLS. We develop an expectation-maximization
(EM) algorithm for inference in scPLS. Specifically, we first initialize the
factor loading matrices (Λx,Λy,Λu) based on sequential single value de-
compositions on the gene expression matrices (X = (x1, · · · ,xq),Y =
(y1, · · · ,yp)) (Algorithm 1). Afterwards, we treat the latent factors (wi =
(zi

T ,ui
T )T ) as missing data, use an iterative procedure to compute the

expectation of the factors conditional on each individual cell data (vi =
(xi

T ,yi
T )T ) in turn in the E-step, and then update the factor loading ma-

trices (Λ = (Λx,Λy,Λu)) by merging information across all individuals in
the M-step (Algorithm 2). We list the EM algorithm below, with detailed
derivation provided in Appendix A.

Algorithm 1: Initializer of EM algorithms for scPLS

Input: Data matrices X, Y, and the number of latent factors kz and
ku.

Output: Λ(0), the initial value for Λ.
Apply SVD on X, obtain U,D,V;

Calculate Z = U(ku)D
1/2
(kz)

and standardize the elements in Z to have

mean 0 and variance 1;

Use least squares to estimate Λ
(0)
x = (ZTZ)−1ZTX and

Λ
(0)
y = (ZTZ)−1ZTY;

Obtain the residuals of X after removing the confounding effects, or

R = X− ZΛ
(0)
x ;

Similarly, apply SVD on R, obtain U′,D′,V′;

Calculate S = U′(ku)D
′1/2
(ku)

and standardize elements in S so that all

elements have mean 0 and variance 1;

Use least squares to estimate Λ
(0)
u = (STS)−1STR;
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Algorithm 2: Naive EM algorithm for scPLS

Input: Data w.
Output: v̂, Λ̂.
Initialize Λ(0) using Algorithm 1 ;

Initialize ψ(0) = I ;

E step: Compute E(vi|wi)
(t) and E(vivi

T |wi)
(t), given Λ(t),ψ(t);

M step:

(ΛT
x )(t+1) =

(∑n
i=1 xi(E(zi|wi)

T )(t)
)(∑n

i=1E(zizi
T |wi)

(t)
)−1

;

(ΛT
y )(t+1) =

(∑n
i=1 yi(E(zi|wi)

T )(t) −∑n
i=1(Λ

T
u )(t)E(uizi

T |wi)
(t)
)(∑n

i=1E(zizi
T |wi)

(t)
)−1

;

(ΛT
u )(t+1) =

(∑n
i=1 yi(E(ui|wi)

T )(t) −∑n
i=1(Λ

T
y )(t+1)E(ziui

T |wi)
(t)
)(∑n

i=1E(uiui
T |wi)

(t)
)−1

;

Λ(t+1) =

(
Λ

(t+1)
x Λ

(t+1)
y

0 Λ
(t+1)
u

)
;

ψ(t+1) = 1
ndiag{

∑n
i=1(wiwi

T − (ΛT
x )(t+1)E(vi|wi)

(t)wi
T )} ;

Stop when ||(ΛT )(t+1)Λ(t+1) − (ΛT )(t)Λ(t)||2F is below a threshold;

We refer to the above algorithm (Algorithm 2) as the naive EM algorithm.
The naive EM algorithm is computationally expensive: it scales quadrati-
cally with the number of genes and linearly with the number of cells/samples.
To improve the computational speed, we develop a new EM-in-chunks al-
gorithm (Algorithm 3). Our algorithm is based on the observation that the
expression levels of the target genes are determined by the same set of un-
derlying factors and that these factors can be estimated accurately even with
a small subset set of target genes. This allows us to randomly divide target
genes into dozens of chunks, compute the expectation of the factors in each
chunk separately in the E-step, and then average these expectations across
chunks. With the averaged expectations, we then update the factor loading
matrices in the M-step. Thus, our new algorithm modifies the E-step in the
naive algorithm and becomes K times faster than the naive one, where K
is the number of chunks. Simulations (detailed in Section 5) show that our
EM-in-chunks algorithm yields almost comparable results to the naive EM
algorithm with respect to estimation errors, but can be close to an order of
magnitude faster (Table 1). Therefore, we apply the EM-in-chunks algorithm
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with chunk size 500 throughout the rest of the paper.

Algorithm 3: EM-in-chunks algorithm for scPLS

Input: Data W .
Output: V̂ , Λ̂.
Initialize Λ(0) using Algorithm 2 ;

Initialize ψ(0) = I ;

Initialize E(vi|wi)
(0) and E(vivi

T |wi)
(0) using E step in Algorithm 1 ;

M step:

((Λk
x)T )(t+1) =

(∑n
i=1 xi(E(zi|wi)

T )(t)
)(∑n

i=1E(zizi
T |wi)

(t)
)−1

;

((Λk
y)T )(t+1) =

(∑n
i=1 yi

k(E(zi|wi)
T )(t) −∑n

i=1((Λ
k
u)T )(t)E(uizi

T |wi)
(t)
)(∑n

i=1E(zizi
T |wi)

(t)
)−1

;

((Λk
u)T )(t+1) =

(∑n
i=1 yi

k(E(ui|wi)
T )(t) −∑n

i=1((Λ
k
y)T )(t+1)E(ziui

T |wi)
(t)
)(∑n

i=1E(uiui
T |wi)

(t)
)−1

;

(Λk)(t+1) =

(
(Λk

x)(t+1) (Λk
y)(t+1)

0 (Λk
u)(t+1)

)
;

(ψk
x)(n+1) = 1

ndiag{
∑n

i=1(wiwi
T − ((Λk

x)T )(t+1)E(vi|wi)
(t)wi

T )} ;
E step;
for k = 1 to K do

Compute E(zi
k|zik) and E(zi

k(zi
k)T |wi

k), given Λk,ψk;
end

Average among K chunks and obtain E(zi|wi) = 1
kE(zi

k|wi
k),

E(zizi
T |wi) = 1

kE(zi
k(zi

k)T |wi
k);

Iterate between M and E step until last cycle;
Given E(zi|wi) and E(zizi

T |wi) from the last cycle, the final estimate
of Λ and ψ are calculated using one M step in Algorithm 1 ;

Finally, we use the Bayesian information criterion (BIC) to determine the
number of confounding factors kz and the number of biological factors ku.
Specifically, we evaluate the likelihood on a grid of kz (1 to 3) and ku values
(1 to 10) and choose the optimal combination that minimizes the BIC. After
estimating the model parameters on the optimal set of kz and ku, we use
the residuals ŷi = yi− Λ̂yẑi as the de-noised values for subsequent analysis.
Note that the residuals are only free of the confounding effects Λyzi but still
contain the biological effects Λuui.

5. Simulations. We performed a simulation study to compare scPLS
with other methods. Specifically, we simulated gene expression levels for 50
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Table 1
Comparison of the naive EM algorithm and the EM-in-chunks algorithm in terms of

accuracy and speed. The EM-in-chunks algorithm uses either a chunk size of 500 genes
or a chunk size of 1,000 genes. Accuracy is measured by the estimation error of the

loading matrix in terms of the normalized Frobenius norm (i.e.

√
||Λx − Λ̂x||F /n). Speed

is measured by CPU time in minutes. Standard deviations across 10 replicates are listed
inside parenthesis. s: number of genes per chunk. n: the number of cells. p: the number of

genes in the target set. The number of genes in the control set is q = 50 in all
simulations.

n p
Naive EM EM-in-chunks (s = 1, 000) EM-in-chunks (s = 500)

Accuracy CPU time Accuracy CPU time Accuracy CPU time
200 2000 67.29 (5.33) 66.77 (12.72) 73.32 (6.09) 31.70 (7.95) 75.6 (6.52) 15.37 (3.28)
200 4000 135.07(10.48) 190.06 (23.30) 144.00 (13.38) 61.76 (15.43) 148.57 (14.11) 26.39 (5.04)
400 2000 72.96(5.58) 107.05 (63.66) 66.98 (5.15) 63.66 (18.39) 53.48 (4.61) 26.87 (3.00)
400 4000 95.5 (7.41) 296.16 (18.55) 101.8(9.46) 121.73 (23.65) 105.05 (9.97) 39.52 (3.84)

control genes and 1,000 target genes for 200 cells. These 200 cells come from
two equal-sized groups, representing two treatment conditions or two sub-
cell types. Among the 1,000 target genes, only 100 of them are differentially
expressed (DE) between the two groups and thus represent the signature
of the two groups. The effect sizes of the DE genes were simulated from
a normal distribution, and we scaled the effects further so that the group
label explains a fixed percentage of phenotypic variation (PVE) in expression
levels in the DE genes (ranging from 1% to 20%, with 1% increment). In
addition to the group effects, we set kz = 2, ku = 5 and simulated each
element of zi and ui from a standard normal distribution. We simulated each
element of Λx from N(−0.25, σ2l ) and each element of Λy from N(0.25, σ2l ).
Note that Λx and Λy were simulated differently to capture the fact that
the effect sizes of the confounding factors could be different for control and
target genes. We simulated each element of Λu from N(0, σ2b ). We simulated
each element of εxi and εyi from a standard normal distribution. We set
σ2l = 0.4 and σ2b = 0.6 to ensure that, in non-DE genes, the confounding
factors zi explain 20% PVE in either the control or the target genes; the
biological factors ui explain 30% PVE of the target genes; and the residual
errors to explain the rest of PVE. After we simulated gene expression levels,
we further converted these continuous values into count data by using a
Poisson distribution: the final observation for ith cell and jth gene cij is from
cij ∼ Poi(N exp(µ + wij)), with wij being the continuous gene expression
levels simulated above and N = 500000, µ = log(10/500000). Note that,
because of the residual errors, the resulting count data are over-dispersed
with respect to a Poisson distribution.

We considered three different simulation scenarios. In scenario I, the con-
founding factors zi are independent of group labels. In scenario II, the con-
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founding factors are correlated with group labels. To simulate correlated
data, we simulated each element of zi from N(0, 1) if the corresponding
sample belongs to the first group, but from N(−0.25, 1) if the corresponding
sample belongs to the second group. Finally, we also considered a scenario
III where there is no biological factor (i.e. data were simulated effectively
under the PCA modeling assumption and all genes could be used to infer
the confounding factors). We performed 10 simulation replicates for each
scenario.

We compared our method to four different methods: (1) PCA and (2)
LMM (implemented in GEMMA [56, 57]) all genes used to infer the con-
founding effects; while (3) RUVseq (version 1.2.0); which we simply refer
to as RUV in the following text) and (4) scLVM (version 0.99.1) only con-
trol genes used to infer the confounding effects. We used default settings in
all the above methods. We used the count data directly for RUV and used
log transformed data (i.e. log(cij + 1)) for all other methods. For PCA and
RUV, we set the number of latent factors to be the true number (i.e. 2).
Such number is determined automatically by the software itself for scLVM,
and is not needed for LMM. Our goal on the simulated data is twofold: we
want to identify these differentially expressed genes and to classify the 200
cells into two groups. Therefore, we compared the performance of various
methods based on two criteria: the power to identify the DE genes and the
power to classify cells into two groups. We permuted group labels to con-
struct an empirical null and compared methods based on either power given
5% false discovery rate (FDR) for identifying DE genes.

It is useful to point out that the three simulation scenarios are designed
to highlight the hybrid nature of scPLS. In particular, in the presence of
biological factors (i.e. scenarios I and II), the methods that use all genes
to remove confounding effects, such as PCA and LMM, may incorrectly
remove the primary effects of interest. Therefore, we would expect RUV and
scLVM to outperform PCA and LMM in scenarios I and II. In the absence
of biological factors (i.e. scenarios III), the methods that only use control
genes to remove confounding effects, such as RUV and scLVM, may fail to
utilize all information contained in the data. Therefore, we would expect
PCA and LMM to outperform RUV and scLVM in scenario III. Because of
the hybrid nature of scPLS, we would expect it to perform well across all
scenarios.

Simulation results confirm our expectations. Specifically, in scenario I
(Figure 2a), scPLS outperforms the other four methods in identifying DE
genes across a range of PVEs. Among the rest of the four methods, RUV and
scLVM outperform PCA and LMM. Similarly, in scenario II (Figure 2b),
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b

a

Scenario 2 :  correlated confounding effects    
  (q = 50) 

Scenario 1 :  uncorrelated confounding effects    
   

c 

Fig 2. Method comparison in simulations. Identifying differentially expressed genes using
scPLS-corrected data achieves higher power than using LMM-, PCA-, RUV- and scLVM-
corrected data or uncorrected data in both scenario I (a) and scenario II (b) across a range
of effect sizes. Power is evaluated at an empirical false discovery (FDR) rate of 0.05 and is
averaged across ten simulation replicates. x-axis shows the effect sizes, which are measured
as the percentage of phenotypic variation (PVE) in expression levels explained by the group
label (ranges from 1% to 20%). (c) Sensitivity analysis shows that, compared with other
methods, scPLS has the least percentage reduction in power (y-axis) when a smaller subset
of control genes are used (q =10, 20, 30 or 40 instead of 50).
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scPLS performs the best, followed by RUV and scLVM. PCA and LMM
perform the worst. Compared with RUV and scLVM, scPLS is also more
robust with respect to the number of control genes used in the analysis
(Figure 2c). In particular, because scPLS does not completely rely on the
information contained in the control genes, it achieves good performance
even if we only use a much smaller subset of control genes. In contrast, the
performance of RUV and scLVM compromises more quickly when a reduced
number of control genes is used (especially when using q = 10). The higher
power of scPLS to detect DE genes in scenario I and II also translates to
a better performance of classifying single cells (Figure 3a). To quantify the
classification performance, we applied the support vector machine (SVM) to
classify the cells. We performed a five-fold cross-validation, training SVM
with 80% of the samples and evaluating the prediction accuracy with the
rest of the samples. All methods achieve similarly high power in the easiest
case when PVE is greater than 10%. However scPLS outperforms the other
four methods when PVE is low and the classification task is difficult. For
example, in scenario I, when PVE = 1%, scPLS achieves an average accuracy
of 77% across 10 replicates, while LMM, PCA, RUV and scLVM achieve
71.2%, 71.2%, 73.5%, 70.5%, respectively.

On the other hand, in scenario III, scPLS performs as well as PCA and
LMM, and all these three methods outperform RUV and scLVM (Figure 3b).
Importantly, scPLS is not sensitive with respect to the number of biological
factors used in fitting the model, and achieves similar power for a range of
reasonable ku values when the truth is 0 in scenario III (Figure 3c). As it is
often unknown whether a low-rank structural variation exists in a real data
set, our simulation suggests that we can always include the biological factors
ui in the model even in the absence of such factors.

Therefore, the simulation results highlight the hybrid nature of scPLS.
scPLS works robustly well across a range of scenarios while the other two
subcategories of methods work preferentially well only in scenarios that most
favor their modeling assumptions.

6. Real Data Applications. Next, we applied scPLS to two real data
sets. The first dataset is used to demonstrate the effectiveness of scPLS in
removing the technical confounding effects by using ERCC spike-ins. Re-
moving technical confounding effects is a common and important task in
transcriptome analysis. The second dataset is used to demonstrate the ef-
fectiveness of scPLS in removing cell cycle effects by using a known set
of cell cycle genes. Removing cell cycle effects can reveal gene expression
heterogeneity that is otherwise obscured.
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c Robustness to pre-specified ku 

ku 

ku 

ku 
ku 

b

a

Scenario III: Mis-specified Model 

Fig 3. Method comparison in simulations (continued). (a) scPLS corrected expression data
can be used to better classify cells into the two known clusters than LMM-, PCA-, RUV-
and scLVM-corrected data or uncorrected data in both scenario I and scenario II across a
range of effect sizes. Classification is based on support vector machine (SVM) with five-
fold cross-validation. Accuracy is computed as the mean percentage of true positives in
the test set across replicates. (b) Identifying differentially expressed genes using scPLS-
corrected data achieves similar power as using LMM-, PCA-corrected data, all of which are
more powerful than RUV- and scLVM-corrected or uncorrected data in scenario III across
a range of effect sizes. (c) scPLS is robust with respect to ku, as the power to identify
differentially expressed genes remains similar when a different number of biological factors
is used (ku=2, 4, 6, 8) in scenario III where in turth ku = 0. x-axis shows the effect sizes,
which are measured as the percentage of phenotypic variation (PVE) in expression levels
explained by the group label (ranges from 1% to 20%).
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6.1. Removing Technical Confounding Factors. The first dataset consists
of 119 mouse embryonic stem cells (mESCs), including 74 mESCs cultured
in a two-inhibitor (2i) medium and 45 mESCs cultured in a serum medium
[13]. We obtained the raw UMI counts data directly form the authors and
the data contains measurements for 92 ERCC spike-ins and 23,459 genes.
Due to the low coverage of this dataset (median coverage equals one), we
filtered out lowly expressed genes and selected only genes that have at least
five counts in more than a third of the cells. This filtering step resulted in a
total of 17 ERCC spike-ins that were used as the controls and 2,772 genes
that were used as the targets. As in the simulations, we log transformed
the count data and centered the transformed values for scPLS, PCA, LMM
and scLVM. We used the count data for RUV. In this data, scPLS infers
kz = 1 confounding factors and ku = 1 biological factors. In the target
genes, the confounding factors and structured biological factors explain a
median of 20% and 19% of gene expression variance, respectively. The PVE
by the confounding and biological factors can be as high as 86.2% and 76.9%,
respectively, in the target genes.

We applied scPLS and the other four methods to remove confounding
effects in the data. To compare the performance of different methods in the
real data, we performed a clustering analysis. We reason that if method is
effective in removing confounding effects, then the corrected data from the
method could be used to separate the mESCs into the two known clusters
(i.e. 2i medium vs serum medium). For the clustering analysis, we applied
the k-means method, an unsupervised method, with the number of clusters
set to two, on uncorrected data and data corrected by different methods.
Consistent with our simulations, scPLS outperforms all other methods based
on a variety of clustering performance measurements (Table 2).

6.2. Removing Cell Cycle Effects. Our method can also be used to re-
move cell cycle effects. To demonstrate its effectiveness there, we applied
scPLS and several other methods to a second dataset [6]. This dataset con-
tains gene expression measurements on 9,570 genes from 182 embryonic
stem cells (ESCs) with pre-determined cell-cycle phases (G1, S and G2M).
The uncorrected data we obtained are already pre-processed by the original
study to remove the technical effects and are thus continuous. Therefore,
we did not apply RUV here. To remove cell cycle effects, we used 629 an-
notated cell-cycle genes as controls and the other genes as targets. scPLS
infers kz = 1 cell cycle confounding factors, and ku = 1 biological factors.
These factors explain a median of 0.4% and 0.1% of gene expression vari-
ance, respectively. The PVE by cell cycle factors and biological factors can
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Table 2
A number of clustering measurements show that the corrected data by scPLS can be used
to better reveal the two known clusters than the other four methods in the first data set.

A k-means algorithm (with two clusters) is applied to the uncorrected data and data
corrected by different methods. Clustering performance is measured by Rand Index,

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
mutual information (Mutual) or adjusted Rand Index (RandIndexAdj). Blue color labels
the best performer by each criterion. All performance measurements are averaged across

10 runs and are multiplied by a factor of 100.

RandIndex Sensitivity Specificity PPV NPV Mutual RandIndexAdj

uncorrected 74 50 50 53 48 0 0
scPLS 84 70 69 71 68 14 39
RUV 76 55 45 52 48 0 0
LMM 74 50 51 53 49 1 2
PCA 74 50 51 53 49 1 2

scLVM 73 50 50 53 48 0 1

be as high as 7% and 2%, respectively. We visualized the uncorrected data
and scPLS corrected data on a PCA plot (Figure 4). In the uncorrected
data, there is a clear separation of cells according to cell-cycle stage. Such
separation of cells is not observed in the corrected data, indicating that the
cell cycle related expression signature is effectively removed.

We compared scPLS and the other three methods in their effectiveness
in removing cell cycle effects. Following the original study [6], we evaluated
method performance based on the following criteria. Specifically, we com-
puted for each gene the proportion of expression variance explained by the
cell cycle factor. We denote this quantity as PVEi, which stands for inferred
PVE. Because the cell-cycle stage of each cell had been experimentally de-
termined in this data set, we further computed the variance explained by the
true cell cycle labels. We denote this quantity as PVEt, which stands for true
PVE. For scPLS, PVEi and PVEt are highly correlated (r2 = 0.94), demon-
strating the efficacy of scPLS. The correlation remains the same whether
we use the full control set or with a subset of 300 controls. The correla-
tion between PVEi and PVEt in scPLS is slightly higher, with statistical
significance, than scLVM (r2 = 0.92; p-value < 10−16 comparing scPLS vs
scLVM), LMM (r2 = 0.92; p-value < 10−16 comparing scPLS vs LMM),
and PCA (r2 = 0.92; p-value < 10−16 comparing scPLS vs PCA). In addi-
tion, as an alternative measurement, the median of the absolute difference
between PVEi and PVEt across genes from scPLS, scLVM, LMM and PCA
are 0.018, 0.023, 0.019 and 0.019, respectively, again supporting a small ad-
vantage of scPLS. Therefore, the results suggest that scPLS works slightly
better than the other three methods, though all methods work reasonably
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Raw Data scPLS Corrected 

Fig 4. PCA plots for the uncorrected data and scPLS corrected data in the second dataset.
In the uncorrected data, there is a clear separation of cells by cell-cycle stage. Such sepa-
ration of cells is no longer observed in the scPLS corrected data.

well in removing cell cycle effects in this data set (which is consistent with
the low variance explained by the confounding factors).

7. Discussion. We have presented scPLS for removing hidden con-
founding effects in scRNAseq studies. scPLS models both control and target
genes jointly to infer the confounding factors and shows robust performance
across a range of application scenarios. With simulations and applications
to two real data sets, we have demonstrated its effectiveness for removing
technical confounding effects or cell cycle effects in scRNAseq studies.

Although we have focused on its applications to scRNAseq studies, scPLS
can be readily applied to other genomic sequencing studies. For instance,
our method can be used to remove confounding effects from gene expression
levels in bulk RNAseq studies [48] or from methylation levels in bisulfite
sequencing studies [25]. The main requirement of our method is a set of
pre-specified control genes that are measured together with the target genes
in the sequencing studies. It is often straightforward to obtain such control
genes. For example, many scRNAseq studies include a set of ERCC spike-in
controls that could be used to model and remove technical confounding ef-
fects [17]. Even when such ERCC spike-in controls are not present or when
they are unreliable [37], we can select a known set of house-keeping genes as
controls to remove technical confounding [37]. Similarly, we can use a set of
known cell cycle genes to remove cell cycle effects. Importantly, the perfor-
mance of scPLS is robust to the number of genes included in the control set
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and yields comparable results even when a much smaller number of control
genes is used. This is because scPLS not only uses information from control
genes but also relies on information from target genes. Insensitivity to the
control set makes scPLS especially suited to removing confounding factors
in studies where a control set is not clearly defined. Because of its effective-
ness and robustness, we expect scPLS to be useful in removing confounding
effects in a wide variety of sequencing studies.

One important feature of scPLS is that it includes a low-rank component
to model the structured biological variation often observed in real data.
By decomposing the (residual) gene expression variation into a low-rank
structured component that is likely to be contributed by a sparse set of bi-
ological factors, and an unstructured component that reflects the remaining
variation, scPLS can better model the residual error structure for accurate
inference of confounding effects. Although here we have focused on using
the biological factors to better infer the confounding effects, we note that
the low-rank biology factors themselves could be of direct interest. In fact,
low-rank factors inferred from many data sets using standard factor models
have been linked to important biological pathways or transcription factors
[7, 35, 30, 3, 33]. Inferring the biological factors using scPLS is not feasible
at the moment, however: because of model identifiability, scPLS can only be
used to infer the biological effects (i.e. Λuui) but not the biological factors
(i.e. ui). That said, additional assumptions can be made on the structure of
the factors or the factor loading matrices to make factor inference possible
[52]. For example, we could impose sparsity assumptions on the low-rank
factors to facilitate the inference of a parsimonious set of biological factors.
Exploring the use of biological factors in scPLS is an interesting avenue for
future research.

Like many other methods for scRNAseq [5] or bulk [24, 38] RNAseq stud-
ies, scPLS requires a data transformation step that converts the count data
into quantitative expression data. Different transformation methods can af-
fect the interpretation of the data and are advantageous in different sit-
uations [43]. Because scPLS does not rely on a particular transformation
procedure, scPLS can be paired with any transformation methods to take
advantage of their benefits. One potential disadvantage of scPLS is that it
does not model raw count data directly. However, despite the count nature of
sequencing data, it has been show that there is often a limited advantage of
modeling the raw read counts directly, at least for RNAseq studies [42, 40].
Statistical methods that convert and model the quantitative expression data
have been shown to be robust [24, 38] and most large scale bulk RNAseq
studies in recent years have used transformed data instead of count data
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[23, 34, 2, 32]. However, we note that, unlike bulk RNAseq studies, single
cell RNAseq data often come with low read depth. In low read depth cases,
modeling count data while accounting for over-dispersion or dropout events
in single cell RNAseq studies may have added benefits [20, 50]. Therefore,
extending our framework to modeling count data [26, 58] is another promis-
ing avenue for future research.

APPENDIX A: EM ALGORITHMS FOR SCPLS

To derive the EM algorithm, we first integrate out the latent variables zi
and ui

P (xi|Λx,ψx) = MVN(0,ψx + ΛT
xΛx),(A.1)

P (yi|Λy,Λu,ψy) = MVN(0,ψy + ΛT
y Λy + ΛT

uΛu).(A.2)

The latent variable yi and zi follow a joint normal distribution

(A.3)
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)
∼MVN

((
0
0

)
,
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x I

)
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)
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(
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)
, and ψ =

(
ψx 0
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)
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re-write wi =

(
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)
as wi = ΛTvi + ψ. The variables wi and vi then

follow a joint normal distribution

(A.4)
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ΛT I
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We view the latent factors vi as the missing data. In the E step, we
calculate the expectation of the log likelihood function for complete data.
The expectation is taken with respect to the conditional distribution of vi

given wi

E(logl(v,w)|w) = −1

2

n∑
i=1

E[vi
TΛψ−1ΛTvi − 2vi

TΛψ−1wi|wi]−
n

2
log|ψ| − 1

2

n∑
i=1

wi
Tψ−1wi

= −1

2

n∑
i=1

E[tr(Λψ−1ΛTvivi
T )|wi] +

n∑
i=1

E(vi|wi)
TΛψ−1wi −

n

2
log|ψ| − 1

2

n∑
i=1

wi
Tψ−1wi.(A.5)
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In the M step, we maximize the above expectation. To do so, we take
derivatives of the log-likelihood function with respect to Λx, Λy and Λu,
and obtain

∂Elogl

∂Λx
=

n∑
i=1

ψ−1x ΛT
xE(zizi

T |wi)−
n∑

i=1

ψ−1x xiE(zi|wi)
T ,(A.6)

∂Elogl

∂Λy
=

n∑
i=1

ψ−1y ΛT
y E(zizi

T |wi) +
n∑

i=1

ψ−1y ΛT
uE(uizi

T |wi)−
n∑

i=1

ψ−1y yiE(zi|wi)
T ,(A.7)

∂Elogl

∂Λu
=

n∑
i=1

ψ−1y ΛT
uE(uiui

T |wi) +
n∑

i=1

ψ−1y ΛT
y E(ziui

T |wi)−
n∑

i=1

ψ−1y yiE(ui|wi)
T ,(A.8)

where the conditional expectations are

E(vi|wi) = Λ(ψ + ΛTΛ)−1wi,(A.9)

Var(vi|wi) = I−Λ(ψ + ΛTΛ)−1ΛT(A.10)

E(vivi
T |wi) = Var(vi|wi) + E(vi|wi)E(vi|wi)

T .(A.11)

The above equations form the basis of our EM algorithms.
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