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Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quanti-
tative understanding of evolution. Using whole genome deep sequencing data from longitudinal samples during
untreated HIV-1 infection, we estimated mutation rates and fitness costs in HIV-1 from the temporal dynamics
of genetic variation. At approximately neutral sites, mutations accumulate with a rate of 1.2 x 1072 per day, in
agreement with the rate measured in cell cultures. The rate from G to A is largest, followed by the other transitions
Cto T, T to C, and A to G, while transversions are more rare. At non-neutral sites, most mutations reduce virus
replication; using a model of mutation selection balance, we estimated the fitness cost of mutations at every site
in the HIV-1 genome. About half of all nonsynonymous mutations have large fitness costs (greater than 10%),
while most synonymous mutations have costs below 1%. The cost of synonymous mutations is especially low in
most of gag and pol, while much higher costs are observed in important RNA structures and regulatory regions.
The intrapatient fitness cost estimates are consistent across multiple patients, suggesting that the deleterious part

of the fitness landscape is universal and explains a large fraction of global HIV-1 group M diversity.

Introduction

HIV-1 evolves rapidly within individual hosts: mutations
allow it to evade immune predation but can also impair viral
replication. Genetic changes arise during reverse transcrip-
tion, during forward transcription by the human RNA poly-
merase II, or are caused by the innate immune system (Abram
et al.l 2010; |Cuevas et al.l [2015; [Malim, [2009; [Mansky and
Temin, |1995). These changes are the source of genetic di-
versity, from which selection amplifies beneficial variants and
filters deleterious mutations. Characterization of the mutation
rate matrix and the genome wide landscape of fitness effects is
a prerequisite a quantitative understanding of the evolutionary
dynamics of HIV and for rational design of both vaccines and
resistance proof drugs.

The majority of mutations are deleterious, some mutations
are neutral and have little or no effect, and a minority of muta-
tions are beneficial. While beneficial mutations rapidly spread
through the virus population within a patient, deleterious mu-
tations stay at low frequency in a balance between mutation
and selection. Beneficial mutations are often patient-specific
and mediate escape from cytotoxic T-lymphocytes (CTL) and
neutralizing antibodies (Bar ef al.| [2012; |Goonetilleke et al.,
2009; [Walker and McMichael,, [2012)). At the same time, sub-
stitutions in response to immune selection are expected to
lower intrinsic viral fitness; host-specific adaptation is a trade-
off between immune evasion and fitness costs of escape mu-
tations.

Since HIV-1 proteins serve the same function in different
hosts, the landscape of fitness costs might be expected to be
similar in different hosts. However, the effect of a partic-
ular mutation can depend on other sites in the genome — a
phenomenon known as epistasis (de Visser and Krug| [2014).
Epistasis and interaction between mutation has been observed
as compensatory evolution after CTL escape (Schneidewind
et al.| [2009) or as covariation of amino acids (Carlson et al.|

2008; [Dahirel et al., 2011). While epistasis is clearly an im-
portant aspects of protein fitness landscapes, it is expected to
be only a weak effect at short evolutionary distances: [Doud
et al.| (2015) have shown that the majority of mutation effects
tend to be conserved in mildly diverged influenza virus pro-
teins. Since sequences from the same HIV-1 subtype differ at
only about 10% of amino acids (Li ef al.| 2015]), the majority
of residues with which a given amino acid interacts will be
conserved and the fitness effects of mutations are expected to
be similar across HIV strains. Consistent with such a univer-
sal fitness landscape, reversion of CTL escape mutations upon
transmission to a new host is common (Friedrich et al., 2004}
Leslie et al., [2004; [Li et al., 2007) and has been quantified
during transmission (Carlson ef al.| 2014) and during chronic
infection (Zanini et al.| 2016).

Two main approaches to estimate fitness costs have been
pursued. First, the cost of individual mutations can be quanti-
fied by competing mutant and wild-type viruses in cell culture
(Martinez-Picado and Martinez, 2008; |Parera et al.l [2007).
Similar measurements of replication capacity are done rou-
tinely for drug resistance testing (Petropoulos er al., [2000)
and have been used to infer the fitness landscape of the HIV-
1 protease and reverse transcriptase (Hinkley ez al. 2011).
Recently, high-throughout methods have been developed to
identify the amino acid preferences or fitness costs at every
position in a protein (Acevedo et al., 2014; Rihn et al., 2015}
Thyagarajan and Bloom| 2014). An alternative approach is
to estimate the fitness landscape indirectly from large global
collections of sequences (Dahirel ef al.l 2011} Ferguson et al.,
2013)), under the key assumption that high fitness variants are
at high frequency in the global HIV-1 population. Either ap-
proach has limitations: whereas cell culture experiments are
not sensitive to small costs (below 5%), models based on
cross-sectional data are confounded by immune escape be-
cause they cannot differentiate between selective sweeps and
absence of functional constraints.
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Here, we estimate the fitness landscape and the rates and
spectrum of mutations of HIV-1 using whole genome deep se-
quencing data from longitudinal samples (Zanini et al.,|2016).
In contrast to previous efforts, we determine fitness costs
from the in vivo intrapatient balance of mutation and selection
against deleterious variants. Our estimates are most sensitive
for small and moderate costs (between 0.1% and 10%), not
affected by patterns of immune escape, and not restricted to
one single protein: we estimated fitness costs at almost every
position of the HIV-1 genome. This direct analysis from intra-
patient diversity data can be used to quantify the relationship
between sequence conservation across the HIV-1 pandemic
and direct fitness costs of mutations.

Results

We previously reported whole genome deep sequencing
of HIV-1 RNA from 6-12 samples from 9 untreated patients
(Zanini et al.l, 2016). RNA was reverse transcribed and am-
plified in six overlapping fragments and sequenced to high
coverage on an Illumina MiSeq. Depending on template in-
put, minor variation at frequencies down to 0.3% could be
detected and frequencies could be reliably measured down to
about 1% (see [Zanini et al.|(2016) and Methods below). For
some of the analyses below, we include one additional patient
(p7) described in (Brodin et al.,|2016), for a total of 82 plasma
samples. Eight of the ten patients were infected with subtype
B, one with subtype C, and one with subtype CRFO1_AE.

We first discuss how we estimated the in-vivo mutation rate
matrix of HIV-1 from the accumulation of mutations at ap-
proximately neutral sites. We then show how these rates can
be used to establish a quantitative correspondence between fit-
ness costs and global diversity at non-neutral sites, and present
site specific fitness cost estimates of mutations at almost every
site in the HIV-1 genome.

Neutral mutation rate matrix

Mutations at neutral sites accumulate freely over the time
of infection and the average genetic distance from the founder
sequence of later samples increases linearly with the time
since infection. This rate of divergence at neutral sites is pre-
cisely the in vivo mutation rate (Kimura, |1968). (Deleterious
mutations, in contrast, accumulate more slowly and we will
use this saturation to estimate their fitness costs.)

To estimate the neutral mutation rate, it is crucial to identify
a set of positions at which mutations are approximately neu-
tral — otherwise the mutation rate will be underestimated. We
selected a set of synonymous mutations that (i) are not part
of known RNA secondary structures or overlapping reading
frames, (ii) are globally unconserved (diversity > 0.3 bits),
(iii) are outside gp120 which has been shown to be sensitive
to synonymous mutations and recoding (Vabret et al., [2014;
Zanini and Neher, 2013)), and (iv) align to HXB2. Fig.|l/A and
B show the average divergence from the approximate virus
founder sequence in this neutral set, for all 12 nucleotide sub-

stitutions. We pooled data from patients pl, p2, p5, p6, pS,
P9, pl1 (those with early samples and without suspected dual
infection); the error bars indicate standard deviations over pa-
tient bootstraps. The data confirm that divergence increases
linearly, suggesting that our criteria for approximate neutral-
ity succeed to identify a set of sites that are not strongly af-
fected by selection. We can estimate the mutation rate ma-
trix by linear regression — indicated by straight lines. Tran-
sition rates are about 5-fold higher than transversions, while
the total mutation rate per site is about 1.2 - 1072 per site and
day. The highest rate is G—A, while the lowest rates are es-
timated to be those between Watson-Crick binding partners.
The smallest rates cannot by measured accurately because the
corresponding mutations are hardly observed. The estimated
rates are insensitive to the exact criteria used to select the set
of neutral positions (see Fig.[S2).

The estimated matrix (Fig. [I|C) agrees well with previous
estimates of HIV-1 mutation rates obtained using lacZ assays
in cell culture (Abram et al.,2010; Mansky and Temin,|1995),
see Fig.[ST] This quantitative agreement suggests that the av-
erage properties of mutations to HIV-1 depend little on the
host cell. To obtain sufficient statistics, we measure the rate
averaging across many sites; the mutation rates at single sites
are known to depend on local sequence context (Abbotts et al.,
1993 [Lewsis et al. [1999).

The high G—A rate might be partially due to the effect of
human deaminases such as APOBEC3G. But the G—A rate is
consistent with the rate estimated by |[Abram e al.|(2010) who
produced virus with an APOBEG3G negative cell line such
that APOBEG3G probably only makes a minor contribution.
We do not observe rates as high as estimated from integrated
proviral DNA (Cuevas et all 2015). The high rate is likely
due to the contribution of heavily hypermutated genomes and
is discussed below.

Similarly, the functional latent reservoir of HIV-1 is un-
likely to bias our estimates of mutations rates. In a recent
study of proviral DNA in the same patients, we found that
the latent reservoir is an accurate snapshot of the HIV-1 diver-
sity circulating in the year prior to the sample (Brodin et al.}
2016). Hence we don’t expect that the accumulation of di-
versity is delayed in substantial ways by contributions from
reactivated latent virus.

Landscape of fithess costs in the HIV-1 genome

In contrast to neutral mutations, deleterious mutations re-
duce the replication rate of viruses carrying them. As a result,
they accumulate less rapidly. The temporal dynamics of their
frequency x(t) is roughly described by

L att) = p— salt) +€(a,) (M

where 1 and s are the mutation rate and fitness cost specific
to the SNP in question, respectively (Haighl |1978; Haldane,
1937). The last term £(z,t) describes stochastic effects in-
cluding genetic drift and selection on linked SNPs at other loci
in the genome. Frequent recombination within HIV-1 popu-
lations (Neher and Leitner, [2010; [Zanini et al., 2016) reduces
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FIG. 1 Accumulation of approximately neutral mutations over
time. Panels A&B show the accumulation of mutations at approx-
imately neutral sites over time averaged over patients pl, p2, pS,
po, p8, p9, pll, for transitions (A) and transversions (B). EDI: esti-
mated date of infection. (C) The slope of the individual regression
lines in panel A&B provide estimates of the in vivo mutation rates.
Error bars for the estimates, indicated in parenthesis as uncertainties
over the last significant digit, are standard deviations over 100 patient
bootstraps.

the effects of linked selection such that Eq. (I) can be a use-
ful approximation. Depending on whether linked selection or
genetic drift dominates the stochastic component, the abso-
lute value of &(z,t) is in average proportional to = or /z,
respectively (Kimura, 1955 Neher, 2013). By definition, the
average of ¢ is zero.

Starting with a genetically monomorphic population, the
average trajectory of a SNP frequency is given by

(z) ==(1—e*) )

and saturates at = /s after a time of order s~1 (Haldane,
1937). If an appropriate average of the data is available, the
fitness cost s can be estimated both from the approach to sat-
uration and the level of saturation p/s. Linear accumulation
of neutral mutations is recovered in the limit s — 0. This
approach has been generalized to complex fitness landscapes
(Seifert et al.,2015)).

Eq. (@) describes the average trajectory, but trajectories of
individual SNPs are noisy. To make progress, trajectories at
many sites or in many samples need to be averaged in ways
that preserves important features of the fitness landscape.

Relationship of global conservation and fitness costs

In first approximation, conservation of a site across global
HIV-1 diversity is expected to be a proxy for high fitness cost

of mutations at that site, while mutating a site that is observed
in many different states probably doesn’t affect fitness much.
To quantify the relationship between conservation and fitness
cost s, we group sites in the HIV-1 genome by global diversity
in group M (measured by Shannon entropy of an alignment
column, see Methods). We chose six groups of equal size,
i.e., quantiles of global diversity. Instead of estimating fitness
costs for all three possible mutations at a given site, we esti-
mated one fitness cost parameter for each site as the cost of
the typical mutation away from the founder virus sequence (a
more elaborate model that includes the 12 different mutation
rates is described in Fig.[S3). For each conservation group, we
average the frequencies of non-founder nucleotides over all
sites and patient samples in 7 time bins. These average diver-
gences are indicated by dots in Fig.[2JA along with a nonlinear
least square fit of Eq. (Z) to the data of each quantile (each
color indicates a conservation group, blue to red by increas-
ing diversity). The least conserved group accumulates diver-
gence linearly — this is consistent with our mutation rate esti-
mates above. With increasing conservation, divergence satu-
rates more rapidly and at lower levels. We set u = 1.2 - 107°
per site per day according to our estimate of the neutral muta-
tion rate and fit a single parameter, the fitness cost s, for each
group. The estimated average costs and their error bars from
100 bootstraps over patients are shown in Fig. as a blue
line (“Sat”).

The fitness cost of mutations in the least conserved 1/6 of
the genome is undetectably small, consistent with neutrality.
More conserved sites have higher costs, up to about 1% for
sites where the group M alignment entropy of 0.03 bits. For
even more conserved sites, saturation is very fast and we es-
timated the fitness cost using a different averaging procedure
(see below).

Notice that for Eq. @I) to hold, it is essential that the infec-
tion is founded by a single founder sequence. For this reason,
patients p3 and p10 were excluded from this part of the anal-
ysis since there is evidence indicating that they were infected
by more than one viral variant. Furthermore, it is important
to exclude sites subject to immune selection and sites where
the initial nucleotide differs from the global consensus. Other-
wise, rapid rise of beneficial mutations driven by CTL escape
or reversion increase divergence and result in underestimation
of the fitness costs.

Site-specific fithness costs in the HIV-1 genome

In addition to averaging mutation trajectories across multi-
ple sites, we also estimated site-specific fitness costs by aver-
aging data from multiple samples during late infection. Av-
erage frequencies at sites where mutations carry large costs
saturate rapidly after a time 1/s. Frequencies of minor vari-
ants in different samples are therefore uncorrelated and can
be averaged to increase the accuracy of frequency estimates,
which then allows direct estimation of site specific costs s;
from the relation Z; = p/s;.

Specifically, we calculate a weighted average frequency
from the samples from each patient. The average frequency
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FIG.2 Average intrapatient fitness cost within quantiles of global
HIV-1 group M diversity. (A) Average derived SNP frequencies (1
- frequency of the ancestral state) saturate fast at positions in the con-
served quantiles (blue), while intrapatient diversity keeps increasing
in variable quantiles (yellow to red). The initial slope is the muta-
tion rate 1.2 - 107> per site per day. The solid lines show fits of
Eq. (@) to the binned data, from which we estimate average selection
coefficients shown in panel (B) labeled “Sat” (this method is not ap-
plicable in the most conserved third of the genome). The “Pooled”
line refers to harmonic averages of site-specific cost estimates. Error
bars indicate 100 bootstraps over patients: note that while error bars
are small, there is substantial variation of fitness costs within each
diversity quantile. Positions at which putatively adaptive mutations
have swept through the population have been excluded.

of nucleotide or amino acid « at position ¢ is then given by

1
fﬁi,a - WEZTk,io (3)
S 2=

where ;o is the frequency in sample k (k runs over all
plasma samples from the patient at least 2 years after infec-
tion). The weight wy accounts for the variable number of
HIV-1 genomes that contributed to the sequencing library as
estimated by limiting dilution (see methods below and |[Zanini
et al| (2016))). From individual samples, frequencies above
the error rate of 0.002 are assumed to avoid inflation by se-
quencing and PCR errors (we never observed errors above
this level in our control samples). After averaging samples
within patients, we average &; . over patients and sum all
non-consensus nucleotides or amino acids to obtain the av-
erage non-consensus frequency z; for each position ¢ in the
HIV-1 genome; the cost at that position is then given by p/;
where £ is the mutation rate at that position.

As above, we only include data from a particular sample
if the majority nucleotide agrees with the global consensus
and at which no potential sweep was observed. Without this
restriction, the estimated fitness costs would be biased down-
ward by reversions and immune selection.

Notice that although the combined sequencing and PCR er-
ror can be up to 0.002 and we don’t use counts below this
threshold for any single sample, pooling many samples allows
to estimate much smaller average frequencies: if a mutation
is present at frequency 0.005 in 10% of samples, its average
frequency is 0.0005. This type of averaging works precisely
because frequencies of individual costly mutations are noisy
and rare variants are brought to measurable frequencies occa-

A —— nonsynonymous
- - - synonymous
101
=
T
k]
D
=
=
@
<}
o
0
3
c 102 )
.:E' n
1 n o
1 n 1
v nl
i1
iy
o
il
PR p15 vpr rev
e T Y B B
p17 706 DI!:I
i -z i i e
Us  PBS
ponA_ UE stem PSI SL1-4 frameshift CET Al [12 PPT
101 I . . - e — R
=
T
k]
=
Q
Q102
o
12
1%
14}
=4
=
&
103 | .
LTRS' 039 gagemebd IN Vil nef B3
O S L s} L S L S LH s} L L S N S
S F & E L E S o N s >

Position in HIV-1 reference (HXB2) [bp]

FIG. 3 Fitness costs along the HIV-1 genome. Panel (A) shows
fitness costs of synonymous and nonsynonymous mutations in gag,
pol, vif, vpu, env, and nef as a geometric sliding average with win-
dow size 30. Note that frequency estimates in gp120 are expected to
be less accurate due to consistent difficulties amplifying this part of
the genome. Panel (B) shows fitness costs in selected regions of the
genome that contain important regulatory elements. Blue dots show
estimates for individual bases, blue lines show running averages over
8 bases and red lines show running averages excluding bases where
mutations cause amino acid changes. PBS: tRNA primer binding
site. US5: unique 5’ region. SL 1-4 PSI: stem loops of the PSI pack-
aging signal. (c)PPT: (central) poly purine tract. Al, D2: splice
sites.

sionally by linked selection and sampling.

Fig. BJA shows fitness costs of mutations at most positions
along the HIV-1 genome (including env) separately for syn-
onymous and nonsynonymous mutations: the numerical esti-
mates are available for all sites in the Supplementary Materi-
als. The costs of synonymous and nonsynonymous mutations
are clearly different, and distinct peaks are observed at several
locations across the genome. Before analyzing these patterns
in details (see below), as a consistency check we compared in
Fig.[2B the average estimates (“Pooled” line) to our previous
estimates “Sat”, which take into account the explicit time in-
formation of the samples. We found good agreement between
the two approaches. To further assess the accuracy of our es-
timates, in Fig. [S5] we show the variation in the fitness cost
estimate after bootstrapping over patients. The variation is ap-
proximately twofold in each direction, so fitness costs above
5% are clearly separated from costs of 1% or less.

Fitness costs estimated from within patient diversity data
correlate strongly with global HIV-1 group M diversity (rank
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FIG. 4 Distributions of fitness costs. Distributions of (A) synony-
mous mutations, (B) mutations that are synonymous in one gene but
affect another protein in a different reading frame and (C) nonsyn-
onymous mutations (includes codons in gag, pol, vif, vpu, vpr). The
extremal bins include all points larger or smaller than the axis bound-
ary.

correlation p ~ 0.7 for per site diversity measured by entropy,
see Fig.[S4). Importantly, a particular site contributes to the
estimate only if the founder and majority nucleotide in that
sample equals the consensus variant. This condition removes
any direct signal of cross-sectional diversity. The correlation
increases as intrapatient variation is estimated using more pa-
tients (see Fig. [S4), suggesting that fitness costs at individual
sites is largely conserved between patients. Fig.[S4]also shows
scatter plots of global diversity vs fitness costs.

Distributions of fitness costs

We observe marked differences between the distributions of
fitness costs of synonymous and non-synonymous mutations
(see Fig.[): about half of all nonsynonymous mutations have
estimated fitness costs in excess of 10%, while the majority
of synonymous mutations have fitness costs below 1%. The
distribution of fitness costs of mutations that are synonymous
in one gene, but that affect another gene in a different read-
ing frame, resembles that of nonsynonymous mutations (see
Fig. @B). We estimate about 10% of synonymous mutations
outside env to be highly deleterious; we discuss the specific
costs of synonymous mutations in more detail below.

Fig. [S6| shows the distribution of fitness costs for differ-
ent genes. In gag and pol, the contrast between synonymous
and nonsynonymous mutations is greatest. Synonymous mu-
tations are costly in several isolated regions discussed below
but have low fitness effects in much of pol and gag.

The distribution of fitness costs is consistent with those
found in other viruses, where typically about 20-40% of mu-
tations are lethal and another ~ 40% are strongly deleterious
with about 30% being weakly deleterious or neutral (Sanjuan,
2010).

Fitness costs peak at functional RNA elements

The HIV-1 genome contains a number of well characterized
RNA elements that regulate different stages of the replica-
tion cycle. Many of these elements are embedded in protein-
coding sequence and because selection reduces genetic diver-
sity (Mayrose et al.l |2013; Ngandu et al.l [2008) we expect
to estimate higher fitness costs in these regions. Indeed, in
Fig. BB important regulatory elements are clearly visible as
well defined peaks in the running averages of fitness costs
along the genome. In the 5° LTR the largest fitness costs over-
lap with the hairpin containing the poly-A signal, the US5 se-
quence (Lu et all 2011), the base of the following hairpin,
the primer binding site (PBS) and the 1-4 for the PSI element
(LANL HIV sequence data basel|2016)). The frameshift region
(slippery sequences plus hairpin), the splice acceptor site Al,
and the polypurine tracts (PPT) in integrase and at the 3° LTR
show similarly high fitness costs (the TAR element is only par-
tially covered by the sequencing data set and hence not shown
here). Mutations within the fourth stem loop of PSI are al-
most never observed, while synonymous sites are almost free
to vary beyond the end of the stem. Synonymous mutations
in the RRE are costly, but not as deleterious as those in PPT,
the splice acceptor site Al, or the PSI element, indicating a
higher evolutionary plasticity. Among the more striking pat-
terns is also the drop in synonymous cost at the beginning of
gag. Beyond these known elements, the correlation of fitness
costs at synonymous mutations with cross-sectional diversity
suggests that there are a number of additional regions with
important function on the RNA level, for example a double
peak in p24 and three more peaks in pol. While well char-
acterized RNA elements correspond to clear patterns in the
estimated fitness costs, RNA secondary structure prediction
correlate poorly with fitness costs (see Fig. [ST1]and discus-
sion below).

Fitness costs and immune selection

Among sites that are globally variable (Shannon entropy
above 0.1 bits), nonsynonymous mutations are enriched de-
spite having a high fitness cost (cost > 0.03 per day, odds
ratio 15). This enrichment is most pronounced in pol, gag and
nef with little enrichment in env. This observation is consis-
tent with host-specific selection pressures (CTL selection) at
sites with a large fitness cost; the resulting adaptations revert
quickly when transmitted to a new host (Friedrich et al.,2004;
Leslie et al., 20045 L1 et al., 2007; Zanini et al.,{2016)).

Such patient-specific selection has the potential to blur the
relationship between fitness cost and diversity, as shown in
Fig. [5JA for nef (see Fig. [S4] for other genes). The majority
of sites with high fitness costs and high cross-sectional diver-
sity (upper right corner) have been reported to be associated
with HLA type ((Carlson et all |2012), shown in red) or with
low viral load ((Bartha et al., 2013)), annotated dots). HLA-
associated sites that fall into the top right corner of Fig.[5|A are
of particular interest since they are expected to result in virus
control (Pereyra et al. [2014).
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FIG.5 CTL selection blurs the relationship between fitness costs
and diversity. (A) The majority of sites in nef with high diversity
despite high fitness costs are associated with HLA types (red) (Carl-
son et al.,|2012) or with low viral load (annotated dots) (Bartha et al.}
2013). (B) Quantification of the fraction of HLA associated sites in
bins of increasing diversity and fitness costs (indicated by straight
grey lines in (A) with o = 2). This figure uses data from subtype B
patients only.

To quantify the overrepresentation of HLA associated sites
among diverse positions where mutations incur large fitness
costs, we plotted the fraction of HLA associated sites in bins
indicated by diagonal straight lines in Fig. [5]A for the genes
gag, pol, vif, env, and nef. Bin boundaries are defined by
alog(fitness) + log(diversity) = const. with a = 2. For all
genes test other than env, the fraction of HLA associated sites
increases strongly in bins corresponding to high diversity and
fitness cost indicating that CTL selection pressure is responsi-
ble for global diversity that is deleterious to virus replication.

HLA associations can only be detected for sites with some
global variation. Hence there is a strong ascertainment bias
and almost all HLA associated are found in the top half of
Fig. 5]A. Without independent characterization of this bias, a
statistical assessment of the relation between CTL selection
pressure, fitness cost, and global diversity remains challeng-
ing.

Fitness costs are weakly correlated with protein disorder and
solvent accessibility

Perturbations to protein structure are expected to reduce
virus fitness. Hence mutations that decrease stability, occur
in tightly packed regions, or are deeply buried in the pro-
tein are expected to incur the greatest fitness costs. Disorder
scores and solvent accessibility have been compared to cross-
sectional diversity by |Li et al.|(2015). We correlated these in-
silico derived scores with intrapatient diversity, finding rank
correlation coefficients of about 0.2-0.4 for disorder scores
and solvent accessibility. While highly statistically signifi-
cant, the fraction of variation in diversity explained by these
scores is low; this is consistent with previous observations by
Meyer and Wilke| (2015). By far the best correlate of fitness
cost is cross-sectional conservation, see Table

The distribution of fitness costs depends strongly on the
consensus amino acid. Mutations of cysteins (C), histidines
(H), prolines (P), tryptophans (W), and tyrosines (Y) tend to

’ gene ‘ group M ‘ subtype B ‘ disorder ‘ accessibility ‘ RNA‘

gag | -0.51 -0.59 -0.23 -0.26 0.13
pol | -0.56 -0.59 -0.13 -0.31 0.09
nef | -0.54 -0.59 -0.30 -0.19 0.11
env | -0.47 -0.46 0.00 0.07 0.09
vif -0.57 -0.69 -0.08 -0.16 0.06

TABLE I Spearman’s correlation coefficients of fitness estimates
with cross-sectional diversity (measured as entropy in group M and
subtype B alignments), disorder scores and solvent accessibility val-
ues obtained from (Li et al., [2015). The column “RNA” contains
rank correlation coefficients of fitness at synonymous mutations with
the pairing probability predicted by (Siegfried et al[2014). Fig.[S4]
shows how intrapatient/global diversity correlations improve when
basing intrapatient estimates on larger numbers of patients.
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FIG. 6 Pre-existing drug resistance mutations. Each point shows
the time averaged frequency of minor amino acids in individual pa-
tients. The bottom row indicates in how many out of 10 patients each
mutation is not observed. Most mutations are observed only in a mi-
nority of patients suggesting high fitness costs. The top panel shows
the estimated fitness costs associated with the mutations. The fol-
lowing mutations were never found at frequencies above 0.1% in any
patient, indicating a large fitness cost: PI: L241, V32I, IS4VTAM,
L76V, N88S, L90M; NRTI: M41L, K70ER, L74VI, Y115F, T215YF,
K219QE; NNRTI: L100I, K103N, V106AM, E138K, V179DEF,
Y188LCH, M230L; INI: E92Q, N155H.

be most costly, while mutations of glutamic acid (E), lysine
(K), aspartic acid (D) and arginine (R) are less often very dele-
terious. These patterns are consistent in gag, pol, and env, see

Fig.

Most drug resistance mutations have a large fitness cost

Of particular interest are the fitness costs of mutations that
confer resistance against anti-retroviral drugs. The most com-
monly administered drugs are nucleoside analog reverse tran-
scriptase inhibitors (NRTI), non-nucleoside analog reverse
transcriptase inhibitors (NNRTTI), protease inhibitors (PI), and
integrase inhibitors (INI). Resistance mutations against these
drugs are well known (Johnson ez al. 201 1}).
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Pre-existing low frequency drug resistance mutations have
been associated with failing therapy (Johnson et al., 2008}
Li et all 2011). Some deep-sequencing studies have char-
acterized such pre-existing variation in treatment-naive pa-
tients and found that drug-resistance mutations are usually be-
low the detection limit, suggesting relatively high fitness costs
(Gianella et al.| 2011; Hedskog et al., 2010; |Li et al. |2011).
Fig. [6] shows estimated frequencies of several drug resistance
mutations in the different patients. The majority of mutations
are not seen at all, while most of the remainder is observed
in only one or two patients (pooled across all time points of
each patient). Only the protease mutation M46I is observed
consistently across several patients.

The frequency of drug resistance mutations is expected to
be inversely proportional to their fitness cost in absence of
treatment and of some these costs have been measured in cell
cultures (see e.g. (Chow et al| (1993); |Cong et al| (2007);
Martinez-Picado and Martinez (2008)). Many resistance mu-
tations quickly revert upon treatment interruption suggesting
high fitness costs (Deeks, [2003; |Hedskog et al., |2010; Joos
et al., 2008). Indeed, for most drug resistance mutations, we
estimate fitness costs in excess of 5% (sites where minor vari-
ation is not or only sporadically observed), see top panel in
Fig.[6] Note that the costs of very deleterious mutations tend
to be underestimated if the mutations are only observed in a
small number of patients. For instance, G48VM in the pro-
tease and K101PEH in the reverse transcriptase are attributed
a low cost but are only observed in one patient, so their actual
cost might be larger.

Discussion

Sequence evolution of HIV-1 is the determined by the rate
and spectrum of mutations as well as their phenotypic effects.
Many studies have focused on beneficial mutations that sweep
across the intrapatient HIV-1 population (Asquith ef al.,2006;
Ganusov et al.,|2011}; [Kessinger ef al., 2013; Neher and Leit-
ner, 2010), and we observe similar patterns in our study sub-
jects (see Fig. [S§ and Fig.[S9). The majority of mutations,
however, are deleterious and stay at low frequencies within
hosts; selection is constantly pruning deleterious variation
from the population to maintain a functional genome. Delete-
rious mutations contribute substantially to sequence evolution
due to their large number: if 5000 sites accumulate deleterious
variation at frequencies of 1%, the typical HIV-1 genome will
contain 50 such mutations. Here, we used longitudinal whole
genome deep sequencing data from (Zanini et al.| 2016) to
quantify the in vivo mutation rates of HIV-1 and the fitness
costs of deleterious mutations.

The accumulation of mutations at approximately neutral
sites is consistent with the mutation rates of HIV-1 measured
in cell culture using lacZ assays (Abram et al.| 2010; Mansky
and Temin, |1995). This agreement suggests that the mutation
rate of HIV-1, which is the joint rate of the HIV-1 RT, muta-
genesis by the innate immune system, and the human DNA-
dependent RNA polymerase II, is largely independent of cell
type. Because the cell culture studies used an exogenous tem-

plate while we monitor mutations on the HIV-1 genome itself,
it appears also that the mutation rate does not depend, in av-
erage, on the nature of the template. The mutation rate at
specific genomic sites, however, is likely to depend on the se-
quence context, similar to other polymerases and as indicated
by previous studies (Abbotts et al., {1993} |Lewis et al.,|1999).
The highest rate is G — A and transitions are about 5-fold
faster than transversions; the lowest rates are between base
pairing partners, e.g. G <> C, see Fig.[Il If the human RNA
pol IT has similar error rates as its C. elegans homologue (er-
ror rate 4 x 10~ per site (Gout ez al.l2013)) roughly a fifth of
all mutations observed in HIV are due to the RNA polymerase
(assuming an HIV generation time of 1-2 days).

While consistent with cell culture estimates, the rates we es-
timate are incompatible with those reported by |Cuevas et al.
(2015). Whereas we measure mutations in the population of
RNA virions, |Cuevas et al.| (2015) counted nonsense muta-
tions in proviral DNA integrated into host cell genomes and
estimated a rate of 4 x 10~3 per site and replication — more
than 100 times higher than our estimate. Unlike in circulat-
ing viral RNA, a large fraction of proviral HIV DNA is heav-
ily hypermutated by enzymes of the APOBEC family (Malim,
2009). Hypermutation is approximately an all-or-nothing phe-
nomenon in which either a sequence contains dozens of stop
codons or none (Armitage et al.|, [2012; (Cuevas et all 2015}
Delviks-Frankenberry et al.,[2016).

Because of this bimodal nature, hypermutation and reverse
transcriptase mutation can not be meaningfully described by
one mutation rate matrix. In the former case, a sequence with
dozens of stops integrates into the host genome as a defec-
tive virus, the in the latter rare independent mutations (about
0.2 per genome) can lead to gradual evolution and adaptation.
Sporadic deamination by APOBEG enzymes might still con-
tribute to the G—A mutation rate and is included in our es-
timate, but heavily hypermutated sequences are likely “dead
on arrival” and make a minor contribution to genetic diver-
sity, as also argued by others (Armitage ef al.| [2012; Delviks-
Frankenberry et al.,[2016).

Furthermore, proviral HIV DNA is enriched for hypermu-
tated sequences. While functional proviruses rapidly lead to
death of the infected cell, hypermutated proviruses tend to ac-
cumulate latently in HIV-1 target cells over the many months
a T-cell can live. This accumulation likely results in a multi-
fold overrepresentation of hypermutated sequences compared
to the probability at which hypermutation happens in a single
reverse transcription. Because we measure mutations from
RNA data from plasma, our estimates are not affected by this
accumulation bias.

With the time calibrated mutation rate estimates, we esti-
mated absolute fitness costs from mutation selection balance
and quantify the relationship between group M diversity and
fitness cost. Overall, fitness costs explains about half of the
diversity in global alignments of HIV-1 sequences, while the
remainder might be linked to patient-specifc processes such as
immune escape. The relationship between logarithmic group
M diversity (measured as entropy) and logarithmic fitness
costs is approximately linear.

Our site-specific fitness landscape highlights a number of
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known functional elements across the HIV-1 genome, includ-
ing regulatory elements at the RNA level. Constraints on syn-
onymous mutations appear to be stronger and more preva-
lent in env than in gag or pol, consistent with earlier results
that many synonymous mutations in gp120 tend to be weakly
deleterious (Zanini and Neher, |2013) and that env recoding
results in non-infectious virus (Vabret et al., 2014). How-
ever, comparison of our fitness cost estimates with genome
wide RNA structure predictions by Siegfried et al.|(2014) and
Suikosd et al.|(2015) show little correlation. While mutations
in validated RNA structure elements are associated with high
fitness costs, genome wide predictions of RNA structure ex-
plain little variation in fitness costs of synonymous mutations
(see Fig. and Tab. [[). This lack of strong correlation is
consistent with the observation that (predicted) pairing pat-
terns evolve rapidly in most of the genome (Pollom et al.,
2013) or might reflect inaccuracies in RNA structure predic-
tion: only a minority of pairings agree between the predictions
by Siegfried et al.|(2014) and |Siikosd ef al.|(2015)).

Several groups have estimated fitness costs within HIV-1
proteins using experimental approaches (Martinez-Picado and
Martinez, 2008; Rihn et al., 2015} [Thyagarajan and Bloom,
2014). Our estimates presented here are complementary to
those studies in two ways. First, because of the short but dense
temporal sampling, cell culture experiments are sensitive to
large fitness costs, typically above > 5%, while estimates
from natural variation are most accurate for effects below a
few percent. Second, ex vivo estimates are not affected by the
specific conditions of cell culture systems.

Computational methods to estimate fitness landscapes from
cross-sectional data have also been proposed (Dahirel ef al.,
2011; |[Ferguson et al., 2013), including a recent effort to
include intrapatient diversity via shallow sequencing (Hartl
et al| 2016). The relationship between fitness cost and di-
versity, however, might be blurred since sites that are costly
to mutate might still be globally diverse due to frequent es-
cape from CTL pressure. Indeed, we have shown in Fig. [3]
that globally polymorphic sites that we estimate to have high
fitness costs are over-represented among sites known to be
HLA associated (Carlson et al., 2012). |Barton et al.| (2016)
have shown that the rate of CTL escape depends on fitness
costs. More generally the cross-sectional inferences and our
intra-patient inferences reinforce the notion that HIV-1 evo-
lution is governed by a fitness landscape that consists of a
universal component determining the replicative capacity of
the virus, and a host specific component responsible of es-
cape mutations (Shekhar er all 2013). Our approach based
on longitudinal deep intrapatient data allows to explicitly dis-
entangle these two contributions, since we can condition on
the founder sequence and the absence of host-specific selec-
tive sweeps. Purely cross-sectional inferences of the fitness
landscape likely underestimate the fitness cost of mutations at
HLA associated positions.

In the future, as whole genome deep sequencing becomes
more common, estimates of mutation rates and the fitness
landscape could be extended to a higher number of samples. A
much larger sample pool might allow site-specific inference of
the mutation rates. Furthermore, by providing more accurate

minor SNP frequencies, estimates of their associated fitness
costs will improve, leading to a deeper understanding of the
selective forces that shape viral evolution.

Materials and Methods

Code and data availability

The sequences from the longitudinal  sam-
ples were taken from [Zanini et al.| (2016) and
analyzed using the library hivevo_access

(https://github.com/neherlab/HIVEVO_access) and  cus-
tom scripts.

The nucleotide and amino acid cross-sectional alignments
of HIV-1 group M were downloaded from the Los Alamos
National Laboratory HIV database and filtered for short or
otherwise problematic sequences and are available as supple-
mentary material.

Disorder and solvent accessibility scores amino acids for
different HIV proteins were provided by the authors of (Li
et al., 2015) (available at www.virusface.com). These
scores were mapped to homologous positions in the virus pop-
ulations via alignments to the reference sequence NL4-3. Po-
sitions without scores were discarded.

Our analysis scripts, as well as the resulting data for the
mutation rate and fitness cost estimates, are available online
at https://github.com/iosonofabio/HIV fitness_landscape.

Mutation rate estimation

For each patient, a set of nucleotide sites is identified, for
which (i) the entropy in a group M alignment is higher than
0.1 bits and (ii) the consensus nucleotide of the earliest sam-
ple corresponds with the HIV-1 group M consensus. Derived
alleles at those sites are considered if (i) they are translated
in a single reading frame, (ii) they are synonymous changes,
(iii) they are outside of known RNA structures or overlapping
reading frames. The frequencies of these variable synony-
mous changes are grouped by mutation (e.g. A — () and
averaged across the genome and different samples with the
following time bins: [0, 500, 1000, 1750, 3000]. Variations
of the parameters have been tested and yielded similar results.
The time-binned average frequencies are modeled by a linear
fit with zero intercept, so the inferred rate [ is:

= doiti '2%‘7
>t

where (¢;,x;) are the time and frequency of each point (see
Fig. [IA&B). Different mutations are estimated (indepen-
dently) to obtain the entire mutation rate matrix. The whole
procedure is repeated for 100 bootstraps over patients to esti-
mate the uncertainty of the rates, shown as + errors in Fig. .
An error of 0.0 means an uncertainty smaller than +0.1. See
the supplementary script mutation_rate.py for the esti-
mate implementation.
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Estimation of selection coefficients

The selection coefficients were estimated using two differ-
ent approaches, called “Sat” and “Pooled” in Fig.[2B.

Nonlinear least squares on saturation curves

To estimate the fitness costs as in the “Sat” curve of Fig. @]B,
we considered all sites in genomes from viral populations of
all patient at which (i) the majority nucleotide at the earliest
time point equals the global HIV-1 group M consensus and
(ii) the majority nucleotide does not change during the infec-
tion. The latter criterion is necessary to ensure we exclude
sites under positive selection. At each site, instead of mod-
eling the whole set of 4 possible nucleotides, we used a sim-
plified 2-state model: the subtype M consensus state and the
sum of the derived mutations. We collected the frequencies of
the derived states from all sites and patients and averaged into
two-dimensional bins, by entropy category and time since Es-
timated Date of Infection (EDI). The averages in each entropy
group are shown in Fig.[2|A as dots: each color indicates a dif-
ferent entropy group (from blue to red, low to high). We fitted
those points via nonlinear least squares to equation (2)) with a
single fit parameter, s. The resulting fits are shown in Fig. 2JA
and the fitness costs s in Fig.[2B.

Pooled SNP frequencies from late samples

To obtain site specific estimates, we averaged SNP frequen-
cies at individual sites according to Eq. (3). The average is
weighted to ensure that samples contribute approximately pro-
portionally to the number of template molecules present in the
sample. This weight is calculated from the estimated tem-
plate input 7 as wy = (0.002 + 1/T%) ™!, where 0.002 is
the combined error rate of RT-PCR and sequencing. Samples
contribute proportionally to the number of RNA templates is
small if T} is small, while for large T} the sequencing er-
ror rate is limiting and the per sample contribution is capped
at 500. The weighted average is performed within each pa-
tient. To average SNP frequencies further over patients, we
use the alignment of each patient to the NL4-3 reference se-
quence to identify homologous positions to average. As be-
fore, we exclude sites that don’t agree with the global HIV-1
consensus and sites that sweep (i.e. where the majority state
changes during infection). These exclusions are particularly
important, since sites from different patients are combined and
minor frequencies are only meaningful when measured rela-
tive to the same reference nucleotide or amino acid. To deter-
mine uncertainties, bootstrap distributions are constructed by
resampling the patients contributing the average. Estimates of
fitness costs for nucleotide and amino acid mutations where
done in very similar ways.

Selection coefficients are estimates via p/Z, where p is the
sum of mutation rates away from the consensus nucleotide
or amino acid estimated above. Amino acid mutation rates
are calculated specifically for each patient on the bases of

the codon coding for the amino acid in the founder sequence
of that patient (amino acid changes requiring two nucleotide
changes were ignored).

To determine the uncertainty of fitness cost estimates, we
picked sites within small slices of the distribution of selection
coefficients and constructed bootstrap distributions for the es-
timates at each of the positions. Fig. D shows the combined
distributions for each of the positions contained in these initial
slices.
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FIG. S1 Comparison of our estimates for the neutral mutation rates to in vitro estimates by (2010). Error bars for the estimates
are standard deviations over 100 patient bootstraps. Error bars for the values from Abram et al. (2010) are standard deviations of binomial
sampling noise (low-frequency mutations were observed 1-2 times only in that study).
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FIG. S2 Sensitivity of mutation rate estimates on the criteria used to define the set of approximately neutral positions. (A) Mutation rate
estimates depend only weakly on the threshold used to define the approximately neutral set of positions or whether gp120 is included or not.
(B) The positions chosen to estimate the neutral mutation rate are among the most neutral positions as estimated by the saturation of intrapatient
frequencies. Note that frequencies of neutral mutations don’t saturate and can be less diverse than expected due to linked selection and drift;
this is not a problem for our estimates as we do not infer site-specific mutation rates.
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12 mutations. The general picture is the same like shown in Fig. 2] but some mutations appear to be slightly more or less suppressed than the
average.
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FIG. S4 Correlation of fitness cost with global cross-sectional diversity. The left panels show how correlation improves as fitness costs are
estimates using data from more and more patients. The right panels show a scatter plot of fitness cost vs cross-sectional diversity using data
from all patients for one of the proteins. The top panels show costs for nucleotide mutations, the bottom panels for amino acid mutations (and

highlight HLA associated of protective sites, (Bartha et al.| 2013}, [Carlson et al}, 2012)).
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FIG. S6 Fitness costs in different genes. Distribution of fitness costs of synonymous and nonsynonymous mutations in different genes. Note
that frequency estimates in gp120 are expected to be less accurate due to consistent difficulties amplifying this part of the genome.
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are colored according to the diagonal of the BLOSSUMS80 matrix, from blue to white to red, indicating a fair degree of agreement, especially
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FIG. S8 Many mutations sweep across the viral population at the same time. Each panel shows the trajectories of putative selective sweeps
in a study patient, i.e. mutations that reach 90% frequency at least at one time point. These trajectories include not only driver mutations, i.e.
beneficially selected for, but also linked passenger mutations, e.g. synonymous mutations or mutations that carry little additional cost. The
number of sweeps observed across a whole infection in our patients is as follows: p1, 145; p2, 95; p3, 147; p5, 95; p6, 94; p8, 41; p9, 111;
pll, 63. p7 did not yield early samples and is not shown.


https://doi.org/10.1101/045039
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/045039; this version posted July 1, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

18

1.0

o
o

o
fo)

o
~

Fraction dy > threshold

Interval [days]
—— 9 = 300
= 105 = 450

= 200 675 |~k
0.0

0.0 0.2 04 0.6 0.8 1.0
Threshold

o
N

FIG. S9 Most sweeps suggest a fitness benefit around 1% per day. The increase in allele frequency between two consecutive samples is termed
dy, and the fraction of sweeps with an increase larger than a threshold is shown for different thresholds (x axis) and for pairs of samples at
different temporal distance (each line refers to one temporal distance category, as shown in the legend). Around 10% of sweeps happen in
much faster than 200 days (fraction *), around 10% are much slower than 400 days (fraction +), and 80% of sweeps take around 300 days,
which suggests a fitness benefit of around 1 to 2% per day, in agreement with previous estimates about chronic infection
[2010). A similar result is obtained if only nonsynonymous changes are considered.
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FIG. S10 Fitness costs in integrase are correlated with published in vitro experiments (Rihn ez al.,|2015). The rank correlation coefficient is
0.24 (P-value = 0.002), which indicates a partial agreement between our results and Rihn et al. (2015). There are three reasons why no perfect
correlation is expected. First, cell culture fitness determinations are sensitive to costs above 3-5% whereas our in vivo method is accurate
between 0.1% and 10% approximately. This makes the two approaches nicely complementary in scope. Second, cell cultures are not perfect
models of the viral dynamics in a patient, hence some selective pressures might differ. Third, one limitation of our study is that for each site
we do not test for a specific mutation, so a few discrepancies might be due to this methodological difference. In cases when |Rihn ez al.|(2015)
tested more than one mutation at a site, the same cost from our table was reused. To further test the significance of the correlation, we repeated
the correlation analysis several times after reshuffling sites and costs and found no significant correlation in those cases.
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FIG. S11 Fitness estimates are at synonymous™ sites are well correlated (in sliding 100 bp windows) with group M diversity, but correlation
with RNA structure prediction by [Siegfried ef all| (2014) and [Siikosd e al] (2013)) is weaker and limited to a few regions. Pronounced peaks of
the correlation between diversity and fitness costs at synonymous positions coincide with overlapping reading frames (marked in black in the
top part of the figure) and known regulatory elements (marked in red). The strongest correlation is observed in the central and 3’ poly purine
tracts, around the overlap of gag and pol, and in the 3° LTR. The genome wide correlation (given in the legend) is highly significant in all cases
but low for RNA structure predictions. * synonymous sites are defined here as those at least the transition does not result in in an amino acid
change in gag, pol, vif, vpu, env, and nef.
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FIG. S12 Fitness cost estimates based on temporal correlations of allele frequencies are consistent with the saturation and the pooled estimates.
The ”Sat” and “Pooled” curves are like in Fig. [2] the "KL” curve uses the estimate method based on minimization of Kullback-Leibler

divergence (see below). The arithmetic mean of the "Pooled” estimate is higher than the harmonic mean, as expected; this quantity basically
describes the fraction of polymorphisms within each group of sites.
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Estimation of selection coefficients by Kullback-Leibler divergence minimization

In addition to the two modelling methods presented in Fig. 2] ”Sat” and "Pooled”, we tested a third approach that exploits the
time information of samples (like the ”Sat” method) but also models the temporal correlations of SNP frequencies (see Fig.[ST2).
These correlations are not accounted for in the “Sat” fitting procedure which simply fits average values for each bin.

We capture the correlation structure of the SNP frequency trajectories by modelling the full probability distribution P(x) of
observing all SNPs from all times at a certain combination of frequencies:

x=(Tei-..),

where ¢ indicates each time point and ¢ each conservation group. We combine all SNP trajectories (summed minor derived states)
of all sites within one conservation quantile into x, separately for each patient. We approximate the joint probability distribution
P(x) by a theoretical distribution W (x) that is the solution of the stochastic equation (I)) with a constant diffusive noise term
7n(t) to make it mathematically tractable

(n*(t)) o Dt.

where D defines the noise intensity. The solution of eq. (I)) under these simplifying assumptions is a multivariate Gaussian
distribution:

exp [—5(x — (x))"K ! (x — (x))]

W(x) = , “4)
) (2m)N det K
where K is the covariance matrix of SNP frequencies. Mean and covariance of W (x) are given respectively by
H —s
@) = E@-e),
K(t,tl) — 2 [e—s‘t—t/‘ _ e—s(t+t/):| , (5)
5

We now want to estimate the parameters s and D from the data while keeping p, the mutation rate, fixed at the measured value
1.2 - 107° per day per site. To this end, we construct an empirical distribution of SNP frequency trajectories as a multivariate
Gaussian with mean and covariances obtained by averaging the data across sites:

() = %Zxk(t), 6)
k

1

K(tisty) = T O lon(t) = #(t) loa(ty) — (1),
k

Here £ is the site/position index, the & designates average minor SNP frequency in the conservation quantile analysed, ¢; and ¢;
are time points along the trajectory, and L is the number of sites used in the average.

Mean and covariance fully determine the empirical Gaussian distribution, so we can extract the best model parameters by
minimizing the distance of this distribution and the theoretical one. A convenient measure of the divergence between the two
distributions is so-called Kullback-Leibler divergence, defined as

P(x) } dx. )

KL:/P(X) log |:VV(X)

Averaging over the empirical distribution P(x) is now equivalent to averaging over sites, which allows us to write the Kullback-
Leibler divergence (KL) as

KL = C—%logW(x):C—i—log (2m)N det K

+% > 1@t = @) (K1) [#(t) — (@) + (K )ijhji} - ®)

Finally, we notice that for different conservation groups, the KL is additive. We can thus sum over all conservation groups to
esitmate all s and D parameters simultaneously (one s and one D per group). The resulting values for s are shown in Fig. [ST2]
as the "KL” curve and is in good agreement with the two previous methods used to estimate average fitness costs.
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