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Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quanti-
tative understanding of of evolution. Using whole genome deep sequencing data on longitudinal samples during
untreated HIV-1 infection, we estimated mutation rates and the distribution of fitness costs in HIV-1 from the
temporal dynamics of genetic variation. At approximately neutral sites, mutations accumulate with rates similar
to those measured in cell cultures. Genetic diversity at other sites saturates and we estimated the fitness costs
at those sites from the time and level of saturation. About half of all non-synonymous mutations have fitness
costs greater than 10%, while half of synonymous mutations have costs below 1% such that they are essentially
neutral over the course of a year. Fitness costs of mutations that are synonymous in one gene but affect proteins in
other reading frame or important RNA structures are distributed similarly to non-synonymous mutations. Within
patient fitness landscape explains a large fraction of global HIV-1 group M diversity.

Due to the error-prone HIV-1 reverse transcriptase and to
a lesser degree human RNA polymerase II, mutations com-
monly occur during the replication cycle of HIV-1 (Abram
et al., 2010; Cuevas et al., 2015; Mansky and Temin, 1995).
These mutations are the source of genetic diversity, while se-
quence changes that accumulate and spread are filtered by se-
lection. The key factors determining the rate and pattern of
sequence evolution are (i) the mutation rate matrix, that is the
rate at which the 12 nucleotide substitutions (e.g. A→ G) are
generated per replication and (ii) the landscape of fitness ef-
fects of these mutations, i.e. the amounts by which individual
mutations increase or decrease the replication capacity of the
virus. Mutations can be divided in three classes depending on
their effect on viral evolution: the majority of mutations are
deleterious and impair virus replication, some mutations are
neutral and have little or no effect, and a minority of muta-
tions are beneficial.

While beneficial mutations are expected to increase in fre-
quency and spread through the population, strongly deleteri-
ous single nucleotide polymorphisms (SNP) will settle into a
noisy balance at low frequency: they are continuously gen-
erated by new, recurrent mutations, but they are also purged
from the virus population by virtue of their negative effect on
replication.

Deleterious mutations are expected to be largely shared
across patients as they mainly impair general biological pro-
cesses such as enzymatic activity and protein folding. This
expectation is confirmed by deep sequencing data from un-
treated HIV-1 patients: minor SNPs at are found at similar
frequencies in different patients, indicating a similar fitness
cost independent of the host (Zanini et al., 2016). In contrast,
beneficial mutations are often patient-specific because they al-
low escape from adaptive immune responses, i.e. cytotoxic
T-lymphocytes (CTL) and neutralizing antibodies, where the
former depends on the HLA-type of the patient. Alternatively,
if an escape mutation has spread in a previous host, the muta-
tion might revert in the new host if that site is not targeted by
the new immune system (Friedrich et al., 2004; Leslie et al.,

2004; Li et al., 2007; Zanini et al., 2016).

The rate and spectrum of mutations during the replication
cycle of HIV-1 has been measured using lacZ reporter assays
(Abram et al., 2010; Mansky and Temin, 1995), whereas fit-
ness costs of individuals mutations are quantified by compet-
ing mutant and wild-type viruses (Martinez-Picado and Mar-
tinez, 2008; Parera et al., 2007). Such measurements of repli-
cation capacity are done routinely for drug resistance test-
ing (Petropoulos et al., 2000) and have been used to infer
fitness costs of mutations (Hinkley et al., 2011). Recently,
high-throughout methods have been developed to identify the
amino acid preferences or fitness costs at every position in a
protein (Acevedo et al., 2014; Thyagarajan and Bloom, 2014).

Since mutation rates and fitness effects in cell culture sys-
tems might differ from their values in vivo, several approaches
have been developed to estimate these quantities indirectly
form diversity in large alignments of large global collections
of HIV-1 sequences (Dahirel et al., 2011; Ferguson et al.,
2013). Sites at which one amino acid predominates are in-
ferred to be under strong purifying selection. A priori, it
is unclear whether cross-sectional diversity reflects the intra-
patient fitness landscape or whether it is influenced by trans-
mission biases or by immune escape and distribution of HLA
types. Furthermore, such methods can infer the relative fitness
of different sequences, but do not allow to estimate absolute
fitness costs.

Here, we use recent whole-genome deep sequencing data
from longitudinal HIV samples (Zanini et al., 2016) to infer
in vivo mutation rates and the distribution of fitness costs. In
that study, HIV RNA from 6-12 samples from 9 patients was
amplified in six overlapping fragments and sequenced at high
coverage on an Illumina MiSeq. Depending on template input,
minor variation at frequencies down to 0.3% could be detected
and frequencies could be reliably measured down to about 1%.
The deep and longitudinal diversity data enable us to estimate
the absolute values of the mutation rates and fitness costs.
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Neutral mutation rate matrix

Mutations at neutral sites accumulate freely and the average
genetic distance from the founder sequence of later samples
increases linearly with the time since infection. This rate of
divergence at neutral sites is precisely the in vivo mutation rate
(Kimura, 1968). Since the frequency of any particular muta-
tion is subject to large stochastic effects due to genetic drift
or physical linkage to other SNPs in the genome under se-
lection, precise estimates of the divergence require averaging
over many sites in the genome and ideally several independent
evolutionary trajectories, e.g. HIV-1 evolution in different in-
dividuals.

To estimate the mutation rate, we defined an approximately
neutral set of positions in the HIV-1 genome as those where
mutations are synonymous and that are variable in a global
sample of group M HIV-1 sequences. Fig. 1A and B show
the average divergence from the approximate virus founder
sequence in this neutral set across the nine patients, for all
12 nucleotide substitutions. The data confirm that divergence
increases linearly and we can estimate the mutation rate ma-
trix by linear regression – indicated by straight lines. Tran-
sition rates are about 5-fold higher than transversions, while
the total mutation rate per site is about 1.2 · 10−5 per site and
day. The highest rate is G→A, while the lowest rates are es-
timated to be those between Watson-Crick binding partners.
The smallest rates cannot by measured accurately because the
corresponding mutations are hardly observed in the data. If
the human RNA pol II has similar error rates as its C. elegans
homologue (error rate 4 × 10−6 per site (Gout et al., 2013))
roughly a fifth of all mutations observed in HIV are due to the
RNA polymerase (assuming an HIV generation time of 1-2
days).

The estimated matrix (Fig. 1C) agrees well with previous
estimates of HIV-1 mutation rates obtained using lacZ assays
in cell culture (Abram et al., 2010), see Fig. S1. This quan-
titative agreement suggests that the average properties of mu-
tations to HIV-1 depend little on the host cell. Because we
measure the rate averaging across many sites, however, we
cannot rule out that mutation rates depend on local sequence
context (Abbotts et al., 1993; Lewis et al., 1999).

Fitness costs of weakly conserved sites

In contrast to neutral mutations, deleterious mutations re-
duce the replication rate of viruses carrying them. As a result,
they accumulate less rapidly. The temporal dynamics of their
frequency x(t) is roughly described by

d

dt
x(t) = µ− sx(t) + ξ(x, t) (1)

where µ and s are the mutation rate and fitness cost specific
to the SNP in question, respectively. The last term ξ(x, t)
describes stochastic effects including genetic drift and selec-
tion on linked SNPs at other loci in the genome. Depend-
ing on whether linked selection or genetic drift dominates the
stochastic component, the absolute value of ξ(x, t) is in av-
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FIG. 1 Accumulation of approximately neutral mutations. Pan-
els A&B show the accumulation of mutations at approximately neu-
tral sites over time averaged over 9 patients, for transitions (A) and
transversions (B). (C) The slope of the individual regression lines
in panel A&B provide estimates of the in vivo mutation rates. Er-
ror bars for the estimates, indicated in parenthesis as uncertainties
over the last significant digit, are standard deviations over 100 pa-
tient bootstraps.

erage proportional to x or
√
x, respectively (Kimura, 1955;

Neher, 2013). By definition, the average of ξ is zero.
Starting with a genetically monomorphic population, the

average trajectory of a SNP frequency is given by

〈x〉 =
µ

s
(1− e−st) (2)

and saturates at x̄ = µ/s after a time of order s−1. Linear
accumulation of neutral mutations is recovered for s→ 0.

While the average trajectory is expected to follow this sim-
ple form, the trajectories of individual SNPs are noisy. For
large s saturation is rapid and this noise can be overcome by
averaging multiple samples. We will use this strategy below
to obtain site specific estimates of s for most of the HIV-
1 genome. To estimate typical fitness costs of weakly con-
strained sites, we average over sites with putatively similar
properties.

Specifically, we group sites in the HIV-1 genome by global
diversity in group M (i.e. we define quantiles of conservation)
since sites with similar levels of conservation are expected to
have similar fitness costs. Instead of estimating fitness costs
for all three possible mutations at a given site, we estimated
one fitness cost parameter for each site as the cost of the typ-
ical mutation away from the founder virus sequence (a more
elaborate model that includes the 12 different mutation rates is
described in Fig. S2). We denote the combined frequency of
all three mutations by x. For each conservation quantile, we
average the frequencies x over all sites and patient samples in
7 time bins. These average diversities are indicated by dots in
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Fig. 2A along with a nonlinear least square fit of Eq. (2) to the
data of each quantile. We fit a single fit parameter per line, the
fitness cost s, and set µ = 1.2·10−5 per site per day consistent
with our estimate of the neutral mutation rate. The resulting
fitness costs and their error bars from 100 bootstraps over pa-
tients are shown in Fig. 2B as a blue line (”Sat”). To avoid
confounding by CTL escape and reversions, we excluded a
site if the major allele changed during the infection or if the
initial allele of the patient did not agree with the HIV-1 group
M consensus.

To extract additional information that is not accessible by
looking at the average trajectory, we devised a method that
accounts for correlations in diversity between time points.
Similar to the initial saturation behavior, these correlations
decay on a time scale s−1. We parameterize the multivari-
ant Gaussian distribution by the means and covariances calcu-
lated from Eq. (1) (see Methods). We estimate s and the noise
parameter D by minimizing the Kullback-Leibler divergence
between this distribution and an empirical distribution based
averages and covariances inferred from the data (Konishi and
Kitagawa, 2007). The average result and its standard devia-
tion in 100 patient bootstraps is shown in Fig. 2B as a green
line (“KL”).

Both methods yield similar estimates with average fitness
costs increasing from about 10−3 or less per day for the most
variable sites in the genome to above 0.01 for the most con-
served half of the genome. Both methods effectively report
an harmonic mean of fitness costs within each entropy quan-
tile since SNP frequencies (proportional to the inverse selec-
tion coefficient) are averaged first and then used to calculate
the average fitness cost. Harmonic averages put most empha-
sis on small selection coefficients, such that even in the most
conserved regions the average is below 10%.

For strongly conserved sites, corresponding to fitness costs
s > 0.01, saturation of diversity happens in less than 100
days, that is less than the typical interval between successive
samples. We use a separate modelling approach for those con-
served sites.

Fitness costs of strongly conserved sites

The rapid saturation of frequencies at sites where mutations
carry a large cost implies that frequencies of minor variants
at these sites are uncorrelated and that more accurate esti-
mates of their frequencies can be obtained by averaging mul-
tiple samples. These more accurate frequency estimates from
pooled samples allow direct estimation of s from the relation
x̄i = µi/si at each site i.

From each patient, we calculated the average of SNP fre-
quencies over all samples at least two year post infection
weighted by the estimated template input. The average fre-
quency of nucleotide or amino acid α at position k is then
given by

x̂k,α =
1∑
i wi

∑
i

wix(ti)k,α (3)

where x(ti)k,α is the frequency at time point ti and wi is
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FIG. 2 Average intra-patient fitness cost in six quantiles of global
HIV-1 group M variability. (A) Average derived SNP frequen-
cies (1 - frequency of the ancestral state) saturate fast at positions
in the conserved quantiles (blue), while intra-patient diversity keeps
increasing in variable quantiles (yellow and red). The initial slope is
the mutation rate 1.2 · 10−5 per site per day. The solid lines show
fits of Eq. (2) to the binned data, from which we estimate average
selection coefficients shown in panel (B) labeled “saturation”. KL
refers to the probabilistic Kullback-Leibler inference method, while
“pooled” refers to harmonic averages of site specific cost estimates
(see main text for details). Error bars indicate 100 bootstraps over
patients. The Sat and KL method are not applicable in the most con-
served third of the genome. Note that while error bars are small, there
is substantial variation of fitness costs within each diversity quantile.
Positions at which putatively adaptive mutations have swept through
the population have been excluded.

the weight calculated from the template input Ti as wi =
Ti

1+Ti/500
, where 500 is the inverse of the error rate.

To further reduce the noise in the minor SNP frequency es-
timates, we combine data from different patients. As above,
we only include data from a particular sample if the majority
nucleotide agrees with the global consensus and at which no
potential sweep was observed. We will denote the minor fre-
quency of non-consensus nucleotides or amino acids simply
by x̂i.

Minor diversity within patients correlates strongly with
global HIV-1 group M diversity (rank correlation ρ ≈ 0.7 for
per site diversity measured by entropy), even though each of
these measurements of minor SNP frequency is conditioned
on the majority variant being equal to the consensus vari-
ant. The correlation increases as intra-patient variation is es-
timated using more patients (see Fig. S4), suggesting that fit-
ness costs at individual sites is largely conserved between pa-
tients. After pooling samples from different patients, the esti-
mates of minor variation are accurate enough to calculate fit-
ness costs for individual sites via si ≈ µi/x̂i, where µi is the
total mutation rate at site i. Since sequencing depth and the
number of available samples is substantially lower in env, we
will base this analysis mostly on positions in the genes gag,
pol, vif, vpr, vpu, and nef and include env only when looking
at variation of constraint along the genome.

Fig. 3A and C show the distributions of estimated selection
coefficients for synonymous and non-synonymous positions.
We observe marked differences between these distributions:
about half of all non-synonymous mutations have estimated
fitness costs in excess of 10%, while the majority of synony-
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mous mutations have fitness costs below 1%. The distribution
of fitness costs of mutations that are synonymous in one gene,
but that affect another gene in a different reading frame or
overlap with RNA structures (e.g. RNA stems at the begin-
ning of gag), resembles that of non-synonymous mutations
Fig. 3B. The harmonic average of selection coefficients in dif-
ferent quantiles of global diversity reproduces the above es-
timates, see “pooled” in Fig. 2B. To assess the accuracy of
our estimates, in Fig. 3D we show the variation in the fitness
cost estimate after bootstrapping of patients. The variation is
approximately 2-fold in each direction, so fitness costs above
5% are clearly separated from costs of 1% or less.

Fig. 4A shows fitness costs of mutations at most positions
along the HIV-1 genome (including env) separately for syn-
onymous and non-synonymous mutations. Fig. 4B shows
their distribution for different genes. In gag and pol, the con-
trast between synonymous and non-synonymous mutations is
greatest. Synonymous mutations are costly in the RNA stem
at very beginning of gag and in overlaps between genes, con-
sistent with Fig. 3B. Overall, synonymous mutations are es-
timated to be more costly in env, where the overlap with the
tat/rev exon and the rev responsive element (RRE) constrain
synonymous mutations.

Non-synonymous mutations are strongly enriched among
sites that are globally variable (entropy above 0.1) but
monomorphic within patients (odds ratio 5). This enrich-
ment is most pronounced in pol, gag and nef (odds ratios
> 20). This observation is consistent with host-specific selec-
tion pressures (CTL selection) that result in costly adaptations
that revert quickly when transmitted to a new host (Friedrich
et al., 2004; Leslie et al., 2004; Li et al., 2007; Zanini et al.,
2016). Such patient-specific selection has the potential to blur
the relationship between fitness cost and diversity.

Fitness costs are weakly correlated with disorder and
solvent accessibility

Perturbations to protein structure are expected to reduce
virus fitness. Hence mutations that increase the folding en-
ergy, occur in tightly packed regions, or are deeply buried in
the protein are expected to incur the greatest fitness costs. Dis-
order scores and solvent accessibility have been compared to
cross-sectional diversity in (Li et al., 2015). We correlated
these in silico derived scores with intra-patient diversity, find-
ing rank correlation coefficients of about 0.2-0.4 for disor-
der scores and solvent accessibility. While highly statistically
significant, the fraction of variation in diversity explained by
these scores is low and be far the best correlate of intra-patient
diversity (and hence fitness cost estimates) is cross-sectional
conservation, see Table I.

Frequencies and fitness costs of drug resistance
mutations

Of particular interest are the fitness costs of mutations that
confer resistance against anti-retroviral drugs. The most com-
monly administered drugs are nucleoside analog reverse tran-
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FIG. 3 Distribution of fitness costs. (A-C) Distributions of (A)
synonymous mutations, (B) mutations that are synonymous in one
gene but affect another protein in a different reading frame or known
RNA structures and (C) non-synonymous mutations. The extremal
bins include all points larger or smaller than the axis boundary. (D)
Variation in our estimates of selection coefficients with the same me-
dian (indicated by the vertical lines) after bootstrapping patients. The
upper graph includes sites in gag, pol, vif, vpu, vpr, the lower graph
uses data for gag only (see Fig. S3 for other genomic regions).

scriptase inhibitors (NRTI), non-nucleoside analog reverse
transcriptase inhibitors (NNRTI), and protease inhibitors (PI).
Resistance mutations against these drugs are well known
(Johnson et al., 2011).

Pre-existing low frequency drug resistance mutations have
been associated with failing therapy (Johnson et al., 2008; Li
JZ et al., 2011) Some earlier deep-sequencing studies have
characterized such pre-existing variation in treatment-naive
patients and found that drug-resistance mutations are usually
below the detection limit, suggesting relatively high fitness
costs (Gianella et al., 2011; Hedskog et al., 2010; Li JZ et al.,
2011). Fig. 5 shows estimated frequencies of several drug re-
sistance mutations in the different patients. The majority of
mutations are not seen at all, while most of the remainder is
observed in one or two patients (pooled across all time points
of each patient). Only the protease mutation M46I and RT
G190ASEQ are observed consistently across several patients.

The frequency of drug resistance mutations is expected to
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gene group M subtype B disorder accessibility

gag 0.50 0.61 0.27 0.27
pol 0.52 0.59 0.08 0.26
nef 0.52 0.57 0.35 0.25
env 0.42 0.41 0.06 -0.07
vif 0.65 0.73 0.15 0.10

TABLE I Spearman’s correlation coefficients of pooled intra-patient
diversity with cross-sectional diversity (measured as entropy in group
M and subtype B alignments) and disorder scores and solvent acces-
sibility values obtained from (Li et al., 2015). Fig. S4 shows how
intra-patient/global diversity correlations improve when basing intra-
patient estimates on larger numbers of patients.

be inversely proportional to their fitness cost in absense of
treatment and of some these costs have been measured in cell
cultures (see e.g. Chow et al. (1993); Cong et al. (2007);
Martinez-Picado and Martinez (2008)). Many resistance mu-
tations quickly revert upon treatment interruption suggesting
high fitness costs (Deeks, 2003; Hedskog et al., 2010; Joos
et al., 2008). Indeed, for most drug resistance mutations, we
estimate fitness costs in excess of 10% (sites where minor
variation is not or only sporadically observed).

Discussion

Sequence evolution of HIV-1 is the determined by the rate
and spectrum of mutations as well as their phenotypic effects.
Mutations that increase the replication rate of the virus (at
least transiently) spread through the population: their effect
on replication can be estimated from the speed at which they
rise in frequency (Asquith et al., 2006; Ganusov et al., 2011;
Kessinger et al., 2013; Neher and Leitner, 2010). The ma-
jority of mutations, however, are deleterious and stays at low
frequencies within hosts. Their contribution to sequence evo-
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FIG. 5 Pre-existing drug resistance mutations. Each point shows
the time averaged frequency of minor amino acids in individual pa-
tients. The bottom row indicates in how many out of 9 patients each
mutation is not observed. Most mutations are observed only in a
minority of patients suggesting high fitness costs. The following
mutations were never found at frequencies above 0.1% in any sam-
ple: PI: L24I, V32I, I54VTAM, L76V, N88S, L90M; NRTI: M41L,
K70ER, L74VI, Y115F, T215YF, K219QE; NNRTI: L100I, K103N,
V106AM, E138K, V179DEF, Y188LCH, M230L.

lution can nevertheless be substantial due to their large num-
ber: if 5000 sites accumulate deleterious variation at frequen-
cies of 1%, the typical HIV-1 genome will contain 50 such
mutations. Selection is constantly pruning deleterious vari-
ation from the population to maintain a functional genome.
Here, we used longitudinal whole genome deep sequencing
data from (Zanini et al., 2016) to quantify the in vivo mutation
rates of HIV-1 and the fitness costs of deleterious mutations.

The accumulation of mutations at approximately neutral
sites is consistent with the mutation rates of HIV-1 measured
in cell culture using lacZ assays (Abram et al., 2010; Mansky
and Temin, 1995). This concordance suggests that the muta-
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tion rate of HIV-1, which is the joint rate of the HIV-1 RT and
the human DNA-dependent RNA polymerase II, is largely in-
dependent of cell type. Because the cell culture studies used
an exogenous template while we monitor mutations on the
HIV-1 genome itself, it appears also that the mutation rate
does not depend, in average, on the nature of the template. The
mutation rate at specific genomic sites, however, is likely to
depend on the sequence context, similar to other polymerases
and as indicated by previous studies (Abbotts et al., 1993;
Lewis et al., 1999). The highest rate is G → A with tran-
sitions being about 5-fold faster than transversions; the low-
est rates are between base pairing partners, e.g. G ↔ C,
see Fig. 1. While consistent with cell culture estimates, the
rates we estimate differ from those reported by (Cuevas et al.,
2015). Cuevas et al. (2015) counted mutations in proviral
DNA integrated into host cell genomes and estimated that the
combined mutation rate due to reverse transcription errors and
hypermutation by enzymes of the APOBEC family (Malim,
2009) is 4 × 10−3 per site and replication – more than 100
times higher than our estimate. The primary reason for this
discrepancy is the fact that our estimate effectively excludes
the APOBEC contribution to mutation which almost always
results in non-functional virus (Armitage et al., 2012). Since
virus production typically results in cell death on the order of
a day, proviral DNA is enriched for hypermutated or other-
wise deactivated viruses that accumulates in long lived CD4+
cells. A mutation estimate based on proviral DNA therefore
does not reflect mutations in the typical replication cycle.

In agreement with our earlier results, we found that diver-
sity within patients is well predicted by cross-sectional di-
versity (Zanini et al., 2016). Here, we report that average
fitness costs increase from 10−3 or less for non-conserved
sites to above 0.1 for the most conserved third of the genome.
Intra-patient diversity explains to about half of the diversity
in global alignments of HIV-1 sequences. A subset of po-
sitions is diverse globally, but shows little diversity within
patients. Consistent with the hypothesis that these sites are
globally diverse because of costly adaptation to host-specific
selection pressures, this subset is strongly enriched for non-
synonymous mutations. Such host-specific adaptations have
the potential to confound estimation of fitness landscapes
from cross-sectional data (Dahirel et al., 2011; Ferguson et al.,
2013).

Our approach based on accumulation and saturation of mi-
nor variation within patients is complementary to cell cul-
ture based experiments(Martinez-Picado and Martinez, 2008;
Thyagarajan and Bloom, 2014). Because of the short but
dense temporal sampling, cell culture experiments are sensi-
tive to large fitness costs, typically above > 5%, while es-
timates from natural variation are most accurate for effects
below a few percent. The longitudinal nature of the data al-
lowed us to compare different methods of estimating fitness
costs, either from the saturation time or the saturation fre-
quency of deleterious mutations. By pooled SNP frequency
data from over 60 samples, we obtained accurate estimates
of minor variation, that enabled us to estimate explicit fitness
costs for most positions in the HIV genome. These estimates
are based on the assumption of a balance between mutations

and selection at the level of individual positions. This as-
sumption is justified for sites with fitness costs above 0.002,
where SNP frequencies are expected to equilibrate in about
one year. While the data on frequencies of rare minor vari-
ants are noisy even after averaging many samples, bootstrap
resampling indicated that the accuracy of per site fitness cost
estimates is about 2-fold in either direction, i.e. we can clearly
tell apart fitness effects of 1% and 5%. Furthermore, esti-
mates between different types of mutations (e.g. synonymous,
non-synonymous, synonymous in reading frame overlaps) are
clearly distinct.

We find that a minority of synonymous mutations are
strongly constrained by selection (mostly in overlaps between
reading frames), about 50% have intermediate selection co-
efficients around 1%, while the remainder is free to vary on
the time scale of a few years. These observations are con-
sistent with comparative analysis of RNA secondary structure
that concluded that pairing patterns evolve rapidly in most of
the genome (Pollom et al., 2013) but conserved in isolated re-
gions (Lavender et al., 2015). While the sampling depth and
hence the accuracy of the inferences is lower in env, our re-
sults nevertheless suggest that constraint on synonymous mu-
tations is stronger and more prevalent in env than in gag or
pol, consistent with earlier results that many synonymous mu-
tations in gp120 tend to be weakly deleterious (Zanini and
Neher, 2013). About half of non-synonymous mutation have
deleterious effects large enough that we rarely or never ob-
served these mutations above 0.2% frequencies in about 60
late, deeply sequenced samples. Our mutation rate estimates
imply that these positions have selection coefficients in excess
of 10%.

Variations in fitness costs and evolutionary rates across sites
in proteins are partly explained by characteristics such as sol-
vent accessible area, intrinsic disorder scores, or estimates of
changes in folding free energy (Echave et al., 2016). While
we find strong correlation between fitness costs and conser-
vation in global sample of HIV-1 sequences, disorder scores
of solvent accessible area only explain a small fraction of the
variation, consistent with (Meyer and Wilke, 2015).

Understanding the fitness landscape of HIV-1 is an impor-
tant part of understanding how the virus evolves under chang-
ing selection by the immune system or drug treatment. The
almost perfectly linear accumulation of diversity at approx-
imately neutral sites (synonymous and globally diverse) can
be used estimate the time since infection from diversity in
individual samples (Kouyos et al., 2011). The pol region in
particular accumulates diversity without much interference by
selective sweeps (Zanini et al., 2016).

As whole genome deep sequencing becomes more com-
mon, this type of analysis could be extended to a much large
number of samples, giving more accurate estimates of minor
SNP frequencies and their associated fitness costs.
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Materials and Methods

Code and data availability

The sequences from the longitudinal sam-
ples were taken from Zanini et al. (2016) and
analyzed using the library hivevo access
(https://github.com/neherlab/HIVEVO access) and cus-
tom scripts (see supplementary material). The nucleotide
and amino acid cross-sectional alignments of HIV-1 group M
were downloaded from the Los Alamos National Laboratory
HIV database and filtered for short or otherwise problematic
sequences and are available as supplementary material.

Disorder and solvent accessibility scores amino acids for
different HIV proteins were provided by the authors of (Li
et al., 2015). These scores were mapped to homologous posi-
tions in the virus populations via alignments to the reference
sequence NL4-3. Positions without scores were discarded.

Mutation rate estimation

For each patient, a set of nucleotide sites is identified, for
which (i) the entropy in a group M alignment is higher than
0.1 bits and (ii) the consensus nucleotide of the earliest sam-
ple corresponds with the HIV-1 group M consensus. Derived
alleles at those sites are considered if (i) they are translated
in a single reading frame, (ii) they are synonymous changes,
(iii) they are outside of known RNA structures or overlapping
reading frames. The frequencies of these variable synony-
mous changes are grouped by mutation (e.g. A → G) and
averaged across the genome and different samples with the
following time bins: [0, 500, 1000, 1750, 3000]. Variations
of the parameters have been tested and yielded similar results.
The time-binned average frequencies are modeled by a linear
fit with zero intercept, so the inferred rate µ̂ is:

µ̂ =

∑
i ti · xi∑
i t

2
i

,

where (ti, xi) are the time and frequency of each point (see
Fig. 1A&B). Different mutations are estimated (indepen-
dently) to obtain the entire mutation rate matrix. The whole
procedure is repeated for 100 bootstraps over patients to esti-
mate the uncertainty of the rates, shown as± errors in Fig. 1C.
An error of±0.0 means an uncertainty smaller than±0.1. See
the supplementary script mutation rate.py for the esti-
mate implementation.

Estimation of selection coefficients

The selection coefficients were estimated using three differ-
ent approaches, called “‘Sat”, “KL”, and “Pooled” in Fig. 2B.

Nonlinear least squares on saturation curves

To estimate the fitness costs as in the “Sat” curve of Fig. 2B,
we considered all sites in genomes from viral populations of

all patient at which (i) the majority nucleotide at the earli-
est time point equals the global HIV-1 group M consensus
and (ii) the majority nucleotide does not change during the
infection. The latter criterion is necessary to ensure we ex-
clude sites under positive selection. At each site, instead of
modeling the whole set of 4 possible nucleotides, we used a
simplified 2-state model: the subtype M consensus state and
the sum of the derived mutations. We collected the frequen-
cies of the derived states from all sites and patients and av-
eraged into two-dimensional bins, by entropy category and
time since Estimated Date of Infection (EDI). The averages in
each entropy group are shown in Fig. 2A as dots: each color
indicates a different entropy group (from blue to red, low to
high). We fitted those points via nonlinear least squares to
equation (2) with a single fit parameter, s. See the supple-
mentary script fitness cost saturation.py for the
implementation. The resulting fits are shown in Fig. 2A and
the fitness costs s in Fig. 2B.

Kullback-Leibler divergence minimization

The “KL” estimates in Fig. 2B result from a different mod-
eling approach. The basic idea is to exploit the correlations in
SNP frequency between samples at short temporal distance.
These correlations are not accounted for in the “Sat” fitting
procedure which simply fits average values for each bin.

We capture the correlation structure of the SNP frequency
trajectories via a probabilistic model. We combine all SNP
trajectories (summed minor derived states) of all sites within
one conservation quantile into x, separately for each patient.
We model the joint probability distribution P (x) by a theo-
retical distribution W (x) that is the solution of the stochas-
tic equation (1) with a simplified constant noise term η(t) to
make it mathematically tractable. The solution is a multivari-
ate Gaussian distribution: and covariances is a Gaussian dis-
tribution of the form

W (x) =
exp

[
− 1

2 (x− 〈x〉)TK−1(x− 〈x〉)
]√

(2π)N detK
, (4)

where Ki,j = K(ti, tj) = 〈x(ti) x(tj)〉 − 〈x(ti)〉 〈x(tj)〉 is
the expected covariance matrix of SNP frequency trajectories
that for the simplified Eq. (1) is given by

K(t, t′) =
D

s

[
e−s|t−t

′| − e−s(t+t
′)
]
, (5)

where parameter D defines the noise intensity. The obtain
estimates of the parameters of the model (s andD while fixing
µ at the values estimated above), we need to compare this
distribution to the data.

To this end, we construct an empirical distribution of SNP
frequency trajectories as a multivariate Gaussian with mean
and covariances obtained by averaging the data across sites:

x̂(t) =
1

L

∑
k

xk(t), (6)

κ(ti, tj) =
1

L− 1

∑
k

[xk(ti)− x̂(ti)] [xk(tj)− x̂(tj)] .
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Here k is the site/position index, the x̂ designates average mi-
nor SNP frequency in the conservation quantile analysed, ti
and tj are time points along the trajectory, and L is the num-
ber of sites used in the average.

A convenient measure of the divergence between the two
distributions is so-called Kullback-Leibler divergence, de-
fined as

KL =

∫
...

∫
P (x) log

[
P (x)

W (x)

]
dx1...dxN , (7)

where P (x) and W (x) are respectively the empirical and
the theoretical distributions. We minimize the Kullback-
Leibler divergence with respect to parameters of the theoreti-
cal model: s, µ and D.

Averaging over the empirical distribution P (x) is now
equivalent to averaging over sites, which allows to write the
Kullback-Leibler divergence as

KL = C − 1

L
logW (x) = C + log

√
(2π)N detK

+
1

2

∑
i,j

{
[x̂(ti)− 〈x(ti)〉] (K−1)ij [x̂(tj)− 〈x(tj)〉] + (K−1)ijκji

}
. (8)

Eq.(8) has to be minimized with respect to the parameters
of the theoretical distribution: s, µ and D. This procedure can
be performed numerically and allows straightforward general-
ization to several site categories with different fitness param-
eters s: the Kullback-Leibler divergences for these categories
are additive.

Pooled SNP frequencies from late samples

To obtain site specific estimates, we averaged SNP frequen-
cies at individual sites according to Eq. (3). The average is
weighted to ensure that samples contribute approximately pro-
portionally to the number of template molecules present in the
sample. The weight saturates as Ti/(Ti + 500) as sequenc-
ing and PCR errors dominate start to become relevant at fre-
quencies of about 0.2%. The weighted average is performed
within patient. To average SNP frequencies further over pa-
tients, we use the alignment of each patient to the NL4-3 ref-
erence sequence to identify homologous positions to average.
As before, we exclude sites that don’t agree with the global
HIV-1 consensus and sites that sweep (i.e. where the ma-
jority state changes during infection). These exclusions are
particularly important, since sites from different patients are
combined and minor frequencies are only meaningful when
measured relative to the same reference nucleotide or amino
acid. To determine uncertainties, bootstrap distributions are
constructed by resampling the patients contributing the aver-
age. Estimates of fitness costs for nucleotide and amino acid
mutations where done in very similar ways using the scripts
combined af.py and combined af aa.py.

Selection coefficients are estimates via µ/x̂, where µ is the
sum of mutation rates away from the consensus nucleotide
or amino acid estimated above. Amino acid mutation rates
are calculated specifically for each patient on the bases of
the codon coding for the amino acid in the founder sequence
of that patient (amino acid changes requiring two nucleotide
changes were ignored).

To determine the uncertainty of fitness cost estimates, we
picked sites within small slices of the distribution of selection
coefficients and constructed bootstrap distributions for the es-
timates at each of the positions. Fig. 3D shows the combined
distributions for each of the positions contained in these initial
slices.
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Appendix: Supplementary material
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FIG. S1 Comparison to previously published in vitro measurements of the mutation rate matrix by Abram et al. (2010). Error bars for the
estimates are standard deviations over 100 patient bootstraps. Error bars for the values from Abram et al. (2010) are standard deviations of
binomial sampling noise (low-frequency mutations were observed 1-2 times only in that study).
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FIG. S2 Fitness cost estimates from saturation curves similar to Fig. 2 but separate for each of the 12 mutations. The general picture is the
same like shown in Fig. 2, but some mutations appear to be slightly more or less suppressed than the average.
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FIG. S3 Bootstrap confidence on fitness costs, like Fig. 3D but for other regions of the genome. Panel A: pol, B: env, C: nef, D: vif, E: vpu,
F: vpr.
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FIG. S4 Correlation of intra-patient diversity with global cross-sectional diversity vs the number of patients from which virus populations are
used to estimate typical intra-patient variability (only at sites without sweeps where majority state agrees with the consensus state). Panels A
and B show correlation at the nucleotide level, while panels C and D show correlations at the amino acid level. A and C include patients from
all subtypes and compare against diversity in group M, while panels B and D are restricted to subtype B.
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