
  

 
Figure 1: Boolean Implications illustrated using data from 

gene expression arrays.  (A) LOLO (if CCND1 is low, then 

CHN2 is high) (B) HILO (if GABBR2 is high, then JUP is 

low) (C) LOHI (if HOXD3 is low, then HOXB7 is high) (D) 

HIHI (if GABBR2 is high, then ABAT is high) 

 

Boolean implications (if-then rules) provide a conceptually 

simple, uniform and highly scalable way to find associations 

between pairs of random variables. In this paper, we describe 

their usage in mining associations from large, heterogeneous 

cancer data sets. Next, we illustrate how Boolean implications 

were used to discover a new causal association between a 

mutation and aberrant DNA hypermethylation in acute 

myeloid leukemia as well as the therapeutic implications of this 

discovery. We conclude with a brief description of how Boolean 

implications can be extracted from a given data set.  

I. MINING ASSOCIATIONS IN LARGE CANCER DATA 

SETS  

Large-scale cancer genome projects including The Cancer 
Genome Atlas (TCGA) (http://cancergenome.nih.gov/) are 
generating an unprecedented amount of multidimensional 
data using high-resolution microarray and next-generation 
sequencing platforms. There are opportunities for mining 
these data sets that can yield insights that would not be 
apparent from smaller, less diverse data sets. Obtaining the 
full value of these data requires the ability to find 
associations between heterogeneous data types. 

In this paper, we describe the use of Boolean implications 

[1] to find pairwise associations in heterogeneous cancer 

data sets.  Boolean implications are if-then rules. The 

distribution of points in a scatterplot of two variables in a 

Boolean implication is L-shaped instead of linear (Fig 1). 

There are four Boolean implications : (1) if A is low, then B 

is low (LOLO), (2) if A is high, then  B is low (HILO), (3) if 

A is low, then B is high (LOHI), (4) if A is high, then B is 

high (HIHI). Boolean implications can also be interpreted 

according to set theory. The HIHI Boolean implication “if A 

is high, then B is high” means that “the set of samples where 

A is high is a subset of the set of samples where B is high”. 

The HILO implication “if A is high, then B is low” means 

that “the set of samples where A is high is mutually 

exclusive with the set of samples where B is high”. Previous 

work [1] showed that a large number of Boolean 

implications are present in gene expression data. Previous 

applications of Boolean implications in biology were mainly 

to understand development [2, 3].  

We hypothesized that Boolean implications would be 

useful in the context of mining heterogeneous cancer data 

sets because (1) they can expose subset and mutual 

exclusion relationships, both of which have L-shaped 

scatterplots between related variable pairs; and (2) they can 
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expose relationships between variables from different 

assays. Accordingly, we extracted Boolean implications 

between mutation, copy number alteration, DNA 

methylation and gene expression for several large TCGA 

data sets. Our experiments show that large numbers of 

implications exist. Experimental comparisons with existing 

commonly used methods to identify pairwise associations in 

biological data such as the t test, correlation and Fisher's 

exact test revealed that many Boolean implications are 

missed by other methods [4]. Furthermore, many of the 

relationships found by Boolean implications captures key 

aspects of cancer biology.  

II. APPLICATION OF BOOLEAN IMPLICATIONS TO 

DERIVE NEW INSIGHTS IN CANCER BIOLOGY   

Boolean implications can be used to derive insights for a 

variety of problems in cancer biology. Boolean implications 

from the TCGA data have revealed cis relationships between 

copy number alteration, DNA methylation and expression of 

genes, a new hierarchy of mutations and recurrent copy 

number alterations, loss-of-heterozygosity of well-known 

tumor suppressors, and the association between mutations 

and aberrant DNA hypermethylation in cancer. Below, we 

describe the application of Boolean implications to infer 

mutation-specific DNA methylation signatures. 

Aberrant changes in DNA methylation are known to play a 

major role in the evolution of multiple cancers, but the 

molecular events responsible for perturbing methylated 

genomic landscapes have not been completely characterized. 

In order to identify somatic mutations in cancer that are 

directly linked to DNA CpG methylation, we developed a 

Boolean-implication based algorithm to systematically 

analyze the TCGA mutation and DNA methylation data (Fig 

2A). As a first step, we applied the algorithm to the 16 

recurrent mutations in acute myeloid leukemia (AML), 
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which is known to have several molecular drivers of DNA 

methylation. Consistent with previous findings [4, 5], the 

algorithm identified relationships between mutations in 

IDH2 and CEBPA and DNA hypermethylation in AML. 

Interestingly, we found that the WT1 mutation was 

associated with a predominance of HIHI Boolean 

implications with DNA methylation, suggesting a new 

association between mutation in the Wilms’ Tumor 1 

(WT1mut) gene and CpG hypermethylation (Fig 2B). 

Introduction of WT1mut into wildtype THP1 AML cells 

induced DNA hypermethylation in the same set of genes, 

confirming WT1mut to be causally associated with DNA 

hypermethylation in AML (Fig 2C). Methylated genes in 

WT1mut AML cells were highly enriched for polycomb 

repressor complex 2 (PRC2) targets, which were also 

aberrantly repressed in WT1mut primary patient samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, treatment of primary WT1mut AML cells with 

PRC2/EZH2 inhibitors (GSK-126) promoted myeloid 

differentiation, suggesting EZH2 inhibitors may be active in 

this AML subtype (Fig 2D). More details on this work can 

be found in [6]. The Boolean implication-based analysis is 

generalizable and can be applied to analyze mutation-

specific DNA methylation signatures in other cancers as 

well. Application of the method to other TCGA cancers - 

bladder, breast, head and neck squamous, renal clear cell, 

lower grade glioma, lung adenocarcinoma, lung squamous, 

ovarian and uterine - revealed new associations between 

somatic mutations and aberrant DNA hypomethylation 

including (i) STAG2 (a member of the cohesin complex) in 

bladder cancer and AML, (ii) DNMT3B (an alternative de-

novo DNA methyltransferase) in lung adenocarcinomas and 

(iii) KDM5C (a histone demethylase) clear cell cancer. 

In summary, Boolean implication-based analysis can be 

used to identify mutation-specific DNA methylation 

signatures in cancer. Furthermore, we demonstrate that 

deciphering mutation-specific methylation patterns can lead 

to therapeutic insights 

 

III. QUICK GUIDE TO EXTRACTING BOOLEAN 

IMPLICATIONS 

The first step in the extraction of Boolean implications is to 

convert all attributes to Boolean variables. In our analysis, 

gene expression and DNA methylation data were discretized 

using StepMiner [7]. Subsequently, Boolean implications 

were detected using a statistical test consisting of two parts: 

(1) an independence test (Fisher’s exact test) to detect 

nonrandom associations, (2) then the sparsity test checked 

for sparseness of a specific quadrant using a maximum-

likelihood estimate of the error rate for the points in the 

sparse quadrant [1]. An implication was considered 

significant if the first statistic was greater than a cutoff 

threshold and the error rate was less than 0.1. Note that the 

sparsity test (step 2) distinguishes a Boolean implication 

from simple non-independence of variables.   

Given the large number of attributes and even larger 

number of potential relationships, it was necessary to 

evaluate the significance of the relationships discovered by 

the above algorithm.  An estimate of the false discovery rate 

(FDR) was obtained by randomly permuting the values for 

each attribute independently, and then extracting the 

Boolean implications as above. This analysis was repeated 

50 times to compute the average number of Boolean 

implications in the randomized data. The FDR was the ratio 

of the average number of Boolean implications in the 

randomized data and the original data. The cutoff thresholds 

for the Boolean implication test were set to obtain an 

acceptable FDR. 

B.  Type of settings in which these methods are useful 

Boolean implications can be used to extract pairwise 

relationships, in particular subset and mutual exclusion 

relationships, in any large heterogeneous data. 
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Figure 2: Mutant WT1 is Causally Associated with DNA 

Hypermethylation in Acute Myeloid Leukemia (A) Boolean 

Implication-Based Analysis of Somatic Mutation and DNA 

Methylation Data (B) WT1 mutation  (C) Introduction of WT1 

mutation in THP1 cells induces increase in methylation ; 

Statistically significant overlap exists between genes methylated 

in WT1mut TCGA samples and WT1mut THP1 cells.  (D) 

Summary of fold increase in CD15 antigen expression after 

GSK-126 treatment in vitro compared to DMSO for WT1mut+ 

AMLs and nine WT1 wildtype AMLs. 
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