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Abstract 11 

In theory, sensory perception should be more accurate when more neurons contribute to the 12 

representation of a stimulus. However, psychophysical experiments that use larger stimuli to 13 

activate larger pools of neurons sometimes report impoverished perceptual performance. To 14 

determine the neural mechanisms underlying these paradoxical findings, we trained monkeys to 15 

discriminate the direction of motion of visual stimuli that varied in size across trials, while 16 

simultaneously recording from populations of motion-sensitive neurons in cortical area MT. We 17 

used the resulting data to constrain a computational model that explained the behavioral data as 18 

an interaction of three main mechanisms: noise correlations, which prevented stimulus 19 

information from growing with stimulus size; neural surround suppression, which decreased 20 

sensitivity for large stimuli; and a read-out strategy that emphasized neurons with receptive 21 

fields near the stimulus center. These results suggest that paradoxical percepts reflect tradeoffs 22 

between sensitivity and noise in neuronal populations.  23 
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Introduction 24 

Perception relies on the spiking responses of sensory neurons. Indeed, individual neurons can 25 

exhibit exquisite selectivity for specific stimulus features. However, this single-neuron 26 

selectivity is of limited utility for stimulus encoding for two reasons. One is that neuronal 27 

responses are modulated by multiple stimulus dimensions, so that identical responses can be 28 

associated with very different stimuli. Another reason is that single-neuron responses can be 29 

quite variable, so that the response to the same stimulus can differ from one presentation to the 30 

next. 31 

Some of this variability can be reduced by combining the responses of multiple neurons. 32 

If the variability is independent across neurons, it can be eliminated by simply averaging the 33 

responses of many neurons. In this case, the available information about the stimulus 34 

theoretically increases with neuronal population size (1, 2). However, in reality neuronal noise is 35 

usually correlated across nearby neurons, and such noise correlations are thought to greatly 36 

influence on the fidelity of a population code (3-7). Still, current theories predict the stimulus 37 

information will increase or saturate as the size of the corresponding neuronal pool increases. 38 

One simple way to manipulate the neuronal pool size is to change the physical size of a 39 

visual stimulus. Because neurons in early visual structures have small receptive fields, large 40 

stimuli recruit more neurons, potentially leading to more effective coding of stimulus properties 41 

and correspondingly better behavioral performance. It is therefore surprising that behavioral 42 

studies in humans have sometimes found that larger stimuli are associated with diminished 43 

perceptual performance (8). Moreover, this psychophysical suppression of behavioral 44 

performance in human subjects is strongly correlated with various markers of mental function, 45 

including schizophrenia, major depression, and even I.Q (9-11). These results have previously 46 
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been hypothesized to reflect the strength of neuronal surround suppression in individual cortical 47 

neurons (8, 12), but it is unclear how such suppression affects neuronal populations, particularly 48 

in the presence of noise correlations. 49 

To address this issue, we recorded from small populations of neurons in visual cortical 50 

area MT, in macaque monkeys trained to report the perceived direction of a moving stimulus. 51 

We varied stimulus size randomly from trial to trial, and found, as reported in human studies (8), 52 

that increased stimulus size led to a drastic deterioration of behavioral performance. Our 53 

neurophysiological recordings revealed that the magnitude of the neuronal surround suppression 54 

of individual neurons is too small to account for psychophysical suppression. However, analysis 55 

of multi-electrode recordings revealed a novel aspect of neuronal noise correlations that further 56 

suppressed population coding for large stimuli: those neurons with the smallest surround 57 

suppression, and hence the ones most sensitive to large stimuli individually, also had noise 58 

correlations most closely aligned with signal correlations; such correlations are damaging to the 59 

total information carried by the population (3, 6). These mechanisms, combined with 60 

conservative assumptions about the animals’ behavioral strategies (13-15), provided a full 61 

account of the observed psychophysical suppression. These results further our understanding of 62 

the relationship between neural activity and perception, in normal and pathological states. 63 

 64 

Results 65 

In the standard model of perceptual decision-making (16), the responses of a population of 66 

sensory neurons are assumed to be read out by a decision-making area. For a linear read-out, this 67 

system is well-understood, and the key drivers of psychophysical performance are the 68 

sensitivities of the individual sensory neurons to the task-relevant stimulus dimension, their 69 
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response variability, and the correlation structure in the population (1, 3, 4, 7, 17). Since these 70 

quantities generally depend on the particular stimulus used for the task (18) and the demands of 71 

the task itself (19), we performed simultaneous recordings from populations of MT neurons 72 

while two monkeys performed a task for which psychophysical surround suppression has 73 

previously been demonstrated in humans (8). 74 

In the remainder of this section we will first describe the psychophysical results, followed 75 

by our neurophysiological measurements. We then use the neurophysiological data to constrain a 76 

comprehensive model that can account for the observed pattern pf psychophysical suppression. 77 

 78 

Psychophysical measurements 79 

We examined neuronal responses and behavioral performance during a task in which the visual 80 

stimulus size was varied across trials (Fig. 1A, C) (8). During the task, monkeys viewed drifting 81 

Gabor grating stimuli and reported their percepts of visual motion direction (20, 21) (Fig. 1C). 82 

As in most human studies, we used a very brief stimulus duration (50 ms) (8) in order to increase 83 

the difficulty of the task. In preliminary behavioral experiments we also compared 84 

psychophysical performance using Gabor patches of low (4%) and high (100%) contrast. Based 85 

on the dependency of the density of receptive fields on eccentricity in early visual structures (22, 86 

23), we calculated that the number of visual cortical neurons activated by our stimulus should 87 

increase with stimulus size (Fig. 1B). 88 

Consistent with previous findings in humans (8), we found that increasing the size of a 89 

low-contrast stimulus improved behavioral performance (Fig. 1D, dashed lines), while under 90 

high-contrast conditions, behavioral performance worsened at larger sizes (Fig. 1D, solid lines). 91 

Thus, paradoxically, psychophysical performance was best for stimuli of medium intensity, with 92 
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performance declining as contrast and size were increased (Fig. 1D, Wilcoxon rank sum test, P < 93 

0.001). 94 

To quantify this effect, we computed a psychophysical suppression index (SIpsy) (Fig. 1D 95 

and Material and Methods), which captures the decrease in performance (on a scale from 0 to 1, 96 

with 0 corresponding to no suppression, and 1 to complete suppression) for large stimuli relative 97 

to the best performance across all stimuli. At 100% contrast, the SIpsy of the psychometric 98 

function (mean ± s.d.) was 0.42 ± 0.25 for monkey C and 0.54 ± 0.19 for monkey Y, indicating 99 

that monkeys were approximately half as likely to accurately perceive the motion of a large 100 

stimulus, compared to a small one. 101 
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 102 
Fig. 1. Stimuli, sequence of events, and behavioral performance in the task. (A) Receptive fields 103 

from an example recording session, shown as black ovals, relative to lines of different visual 104 

eccentricity (gray circles) commensurate with the stimulus sizes used in the experiments. (B) The 105 

estimated neuron pool size as a function of stimulus size, for the eccentricities and stimulus sizes 106 

used in the experiments (top). Cortical mapping of visual space from (A), showing that larger 107 

stimuli projected onto larger extents of cortical space (bottom). The sizes of the shaded areas 108 

correspond to the estimated cortical footprint (see Materials and Methods). (C) Behavioral task. 109 

The animals were required to maintain fixation in a 2° window for 300 ms, after which a drifting 110 

Gabor appeared briefly. Animals were then required to fixate for another 300 ms until the 111 

fixation spot disappeared. The animals then indicated their motion percept with an eye 112 

movement to one of two targets within 700 ms. (D) Examples of the animals’ psychometric 113 

functions for high contrast (solid line, circles) and low contrast (dashed line, triangles) stimuli. 114 

Error bars represent 95% binomial proportion confidence interval. 115 

  116 
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Neurophysiological measurements 117 

We recorded from small populations of neurons in MT using linear electrode arrays, while 118 

monkeys performed the high-contrast motion discrimination task described above. Area MT is 119 

thought to be causally involved in behavioral decisions for motion direction (24), and it contains 120 

many neurons with responses that are modulated by stimulus size and contrast (25, 26). To 121 

maximize the number of stimulus repetitions per recording session, we fixed the stimulus 122 

contrast at 100% and varied stimulus size across trials. We analyzed data from 165 single units, 123 

with 2-8 cells being available on any given day. 124 

 125 

Relationship between single-neuron selectivity and behavior 126 

The responses of an example MT neuron to stimuli centered on the receptive field are shown in 127 

Fig. 2A. Here the red and blue dots show the responses to the preferred and null direction 128 

stimuli, and these responses decrease slightly with increasing stimulus size. The distributions of 129 

these responses across trials can be converted into a single measure of neuronal selectivity, d’, 130 

which is plotted as a function of stimulus size in Fig. 2B. Based on this neurometric function, we 131 

can compute a neural measure of suppression, SIneu, which is defined analogously to SIpsy. The 132 

value of SIneu for this neuron was 0.18, which indicates a modest suppression of motion signaling 133 

by large stimuli. 134 

The decrease in neuronal selectivity with stimulus size resembles the psychophysical 135 

performance of the monkey (Fig. 2B). However, the strength of neuronal surround suppression is 136 

substantially less than that of the simultaneously measured psychophysical suppression (0.54). 137 

This was often the case in our data: For the MT population, the mean neuronal d’ (SIneu = 0.27) 138 

was much less suppressed than the mean psychometric d’ (SIpsy = 0.48, Fig. 2D). Moreover, 139 
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many neurons exhibited no surround suppression at all, even for stimuli extending beyond their 140 

receptive fields (27), and the selectivity of these neurons to large stimuli routinely exceeded that 141 

of the monkeys (Fig. 2B, C). This was especially clear in neurons with receptive fields near the 142 

edges of the larger stimuli (Fig. 2-figure supplement 1B); in these neurons responses increased 143 

with stimulus size (Fig. 2-figure supplement 1C). Together these results suggest that the 144 

psychophysical performance is not solely driven by typical single-neuron selectivity, as only a 145 

small fraction of neurons showed suppression comparable to that of the behavior. 146 

One caveat to this conclusion is that subjects might have relied more heavily on a 147 

subpopulation of MT neurons to form their perceptual decisions. Indeed, if neurons with strong 148 

surround suppression exerted a greater influence on perception, perhaps by virtue of anatomical 149 

connectivity (28, 29), then psychophysical suppression would presumably increase accordingly. 150 

However, using choice probability analysis (21, 30, 31), we found no evidence that neurons with 151 

strong surround suppression were more correlated with the animals’ behavior choices; indeed the 152 

correlation between SIneu and choice probability was modestly negative (Fig. 2E; r = -0.14, P = 153 

0.04).  154 
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 155 
Fig. 2. Quantification of single neuron selectivity for an example MT neuron, and the summary 156 

for the population. (A) Size tuning curves, plotting the firing rate (mean ± s.e.m.) for the 157 

preferred (red) and null (blue) direction stimuli as a function of Gabor patch size. The lines 158 

indicate difference of error functions fits. (B) Neurometric function (filled symbols) for the 159 

example neuron plotting the d’ value as a function of stimulus size. The corresponding 160 

psychometric function is superimposed (open symbols). Solid and dashed lines indicate 161 

difference of error functions fits. The psychophysical performance differs from Fig. 1D since the 162 

stimulus was tailored to the neural population measured on any one day. (C) Scatter plot of the 163 

psychophysical d’ against the neuronal d’ at the largest stimulus size. Filled circles represent 164 

monkey C (n = 105), and open squares represent monkey Y (n = 60). Red represents neurons 165 

with weak surround suppression, and blue represents neurons with strong surround suppression. 166 
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The distribution of d’neu-d’psy is shown at the diagonal. (D) The mean d’psy as a function of size 167 

from all sessions (monkey C: n = 28, monkey Y: n = 11) superimposed with the mean single 168 

neuron d’neu from all MT neurons (165 single neurons). Error bars denote s.e.m. (E) Population 169 

summary of choice probability (CP). Scatter plot of CP against the suppression index of the 170 

neurometric function. Filled symbols represent CP values that are significantly different from 0.5 171 

(P < 0.05, permutation test). Solid line indicates linear fit (r = -0.14, P = 0.04). The marginal 172 

distributions of SIneu and CP are shown on the top and the right. Filled and open bars indicate 173 

neurons with significant and non-significant choice probabilities, respectively. 174 

 175 

 176 
Fig. 2-figure supplement 1. (A) RF positions of the neurons recorded. The dots are RF centers 177 

for the MT neurons from each animal. The circles indicate the average placement of the stimulus 178 

centers. Maximal stimulus radius is 15°. (B) The dots represent the centers of the RFs of off-179 

stimulus center neurons simultaneously recorded using the foveal stimulus for the motion 180 

direction discrimination task (black circle), and when the stimulus was centered on the RFs (blue 181 

circle). (C) Single neuron selectivity of peripheral neurons when the foveal stimulus was not 182 

centered on the RFs (black), and when the stimulus was centered on the RFs (blue).  183 
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 184 
Fig. 2-figure supplement 2. Quantification of choice probability (CP) of single neurons and the 185 

time course of CP. (A) Distributions of firing rates of an MT neuron, grouped according to the 186 

monkey’s choice of preferred or null direction motion. (B) The ROC curve of the distributions 187 

yielded a significant choice probability of 0.63 (P = 0.010, permutation test). (C) Mean CP 188 

across the population was calculated in 20 ms bins. CP was significantly above 0.5 from 189 

approximately 100 to 200 ms after stimulus onset (P < 0.01, permutation test). (D) Scatter plot of 190 

CP against eccentricity of the neurons. Solid line indicates linear fit (r = -0.48, P = 0.05). (E) 191 

Mean d’ across the population was calculated in 20 ms bins. 192 

 193 

Noise correlation measurements 194 

The mean levels of noise correlations were typically on the order of 0.1 (0.099 ± 0.007), 195 

compatible with previous reports (1, 32, 33). Their strength was independent of motion direction 196 

or stimulus size (Wilcoxon rank sum test for direction, 94% of experiments with P > 0.05; for 197 

smaller and larger sizes, P = 0.55 Fig. 4-figure supplement 1A). 198 
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Next, we considered the relationship between noise correlations and tuning curve 199 

similarity; these have been found to correlate in previous studies (32, 33). Fig. 3A shows the 200 

responses of two example neurons that were recorded simultaneously; each dot represents the 201 

mean response to a preferred (red) or null (blue) direction stimulus, with different dots 202 

corresponding to responses to different stimulus sizes. The responses of these neurons exhibit a 203 

clear signal correlation (rsignal = 0.61). Fig. 3B shows trial-by-trial data from the same pair of 204 

neurons; here the responses have been z-scored to remove changes in the mean due to different 205 

stimulus sizes or directions (1). The remaining dependency reflects noise correlations in the 206 

responses of the two neurons (rnoise = 0.21). The relationship illustrated by this example pair is 207 

characteristic of the population (Fig. 4A), across which noise correlations and signal correlation 208 

are significantly correlated (r = 0.32, P < 0.001). 209 
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 210 
Fig. 3. Quantification of noise correlation (rnoise) and signal correlation (rsignal) between neuron 211 

pairs. (A) The mean responses of the two simultaneously recorded neurons across both directions 212 

and sizes. rsignal (0.61) is the Pearson correlation coefficient of the mean responses for the 213 

conditions. (B) The responses for each stimulus condition were z scored across the repetitions, 214 

and each point represents a response from one trial. rnoise (0.21) is the Pearson correlation 215 

coefficient of the entire dataset. The dashed lines represent linear fits. (C, D) Response 216 

correlations for an NS-NS pair and an SS-SS pair for one example stimulus size (1°). 217 

 218 

Interestingly, we find that this correlation structure appears to be different for pairs of 219 

neurons with different levels of surround suppression. This is apparent in the examples shown in 220 

Fig. 3. To study this relationship across the population (N = 370 pairs), we classified neurons as 221 

surround suppressed (SS) or not (NS), based on a simple median split of the SIneu distribution 222 

(34) (Fig. 2C). This yielded three types of neuron pairs: both suppressed (SS-SS), both non-223 

suppressed (NS-NS), and mixed (SS-NS). Across the population, the magnitudes of rnoise were 224 
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not significantly different across types of neuron pairs (Wilcoxon rank sum tests, P > 0.86). 225 

However, the correlation structure differed substantially for different cell classes: For the NS-NS 226 

pairs, rnoise and rsignal tended to be correlated (Fig. 4A, red dots). By contrast pairs of SS neurons 227 

showed less of a dependency of noise correlation on signal correlation (Fig. 4A, blue dots). The 228 

difference in the slopes of the lines relating signal and noise correlations was significantly lower 229 

for the SS pairs than for the NS pairs (ANCOVA, P = 0.03, multiple comparison test) (Fig. 4A, 230 

red and blue lines). For NS-SS pairs, this dependency was intermediate (Fig. 4A, black line). 231 

We performed several control analyses to verify that these results reflected a genuine 232 

difference in correlation structure across cell types. First, we recalculated rsignal using direction 233 

tuning curves that were measured for a fixed stimulus size. This controlled for any variation in 234 

rsignal that arose from differences in the size-tuning functions of NS and SS neurons. The results 235 

(Fig. 4-figure supplement 1D) were similar to those in Fig. 4A (ANCOVA, P = 0.04, multiple 236 

comparison test). Second, we verified that these results were not due to changes in firing rate 237 

across the different cell types, as the mean firing rates of NS-NS pairs (median = 39.1) and SS-238 

SS pairs (median = 36.4) were not significantly different (Wilcoxon rank sum test, P = 0.45). 239 

Also, sampling from rate-matched sub-distributions of SS-SS and NS-NS pairs (Materials and 240 

Methods) yielded significantly higher rnoise vs. rsignal slopes for the NS-NS sub-distributions (Fig. 241 

4B; Wilcoxon rank sum test, P < 0.001). Finally, the reduction of this rnoise dependency did not 242 

depend on the categorical classification of SS and NS neurons, as we obtained similar results 243 

using continuous values of the joint SIneu for pairs of neurons (Fig. 4-figure supplement 1C; 244 

linear correlation: (r = -0.232, P < 0.0001). This finding suggests that the correlated variability 245 

between two neurons with similar stimulus preferences may largely arise from the same inputs 246 

that are responsible for surround suppression in those neurons. 247 
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Differential correlations (17) between neurons i and j are those that are proportional to 248 

fi’fj’, where fi denotes the tuning function of neuron i, and the prime denotes the derivative with 249 

respect to the task-relevant direction in stimulus space; such correlations will limit the 250 

information carried even for arbitrarily large neural populations (17). We calculated differential 251 

correlations for all neuronal pairs, and found that there is indeed a positive relationship between 252 

noise correlations and f’f’ (Fig. 4-figure supplement 1E). Furthermore, we find the same 253 

difference between SS-SS and NS-NS pairs as reported above (Fig. 4A): the magnitude of the 254 

information-limiting correlations is greater between NS-NS pairs than between SS-SS pairs (Fig. 255 

4-figure supplement 1E, rNS-NS = 0.48, rSS-SS = 0.23, P = 0.08). In brief, while NS neurons are 256 

individually more informative for large stimuli than SS neurons, as a population they are more 257 

limited by their correlation structure than SS neurons. 258 

 259 
Fig. 4. Relationship between noise correlation (rnoise) and signal correlation (rsignal). (A) Scatter 260 

plot of rnoise versus rsignal for pairs of SS and SS (blue), SS and NS (black), and NS and NS (red) 261 

neurons. Lines represent linear regression fits. Marginal distributions of rnoise are also shown 262 

(right panel). Lines and numbers mark the mean values of rnoise for each combination of neuron 263 

pairs. (B) Sampling from rate matched sub-distributions of SS-SS and NS-NS pairs gives similar 264 

differences in rnoise vs. rsignal slope. 265 

 266 
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 267 

Fig. 4-figure supplement 1. Effects of stimulus conditions, firing rate, and tuning similarity on 268 

the rnoise on rsignal dependency. (A) Box-whiskers plots of the value of rnoise across stimulus 269 

conditions. The value of rnoise is not significantly different between the preferred and null 270 

directions (Wilcoxon rank sum test, P = 0.07), and smaller and larger sizes (Wilcoxon rank sum 271 

test, P = 0.55). (B) Population selectivity as a function of number of neurons include. Only the 272 

single neuron selectivity at the smallest stimulus size is considered with the mean noise 273 

correlation structure observed. (C) The joint SI for each neuron pair (n = 370), determined as the 274 

sum of the individual SIs, plotted against the product of rnoise and rsignal for the pair. For the latter, 275 

we first subtracted off the mean rnoise and rsignal to isolate the covariance of the two measures. 276 

Large positive values correspond to neuron pairs in which rnoise and rsignal have the same sign, as 277 

expected for NS-NS pairs (Fig. 4A). Small values indicate no consistent relationship between 278 

rnoise and rsignal, as expected for the SS-SS pairs (Fig. 4A). A linear regression (solid line) 279 

confirms a negative relationship between joint SI and the dependency of noise correlations on 280 

signal correlations (r = -0.232, P < 0.001). (D) A similar rnoise vs. rsignal relationship was observed 281 

when rsignal was calculated using separately measured direction tuning curves. (E) A similar rnoise 282 

vs. f’f’ relationship was observed when f’ was calculated using the difference between the 283 

preferred and null direction responses. 284 

 285 

Modeling results 286 

Based on our empirical measurements described above, we devised a model to investigate to 287 

which degree each aspects of the neural data contributed to the observed psychophysical 288 
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behavior. Such modeling is naturally limited by the impossibility of measuring the relevant 289 

properties of all the sensory neurons involved in processing the stimuli. Thus we accounted for 290 

this uncertainty explicitly by examining a large number of models from a joint probability 291 

distribution over parameters corresponding to the properties of the MT population response (e.g, 292 

firing rates, noise correlations, direction tuning bandwidth, etc.). From each model, we extracted 293 

a prediction of behavioral performance for different stimulus sizes, so that for each model we 294 

could compute its predicted psychophysical suppression. A detailed description of the modeling 295 

approach is given in the Methods (see also Fig. 5-figure supplement 1).  296 

In order to relate our simulated neural responses to behavioral performance (Fig. 5A) we 297 

used a standard linear read-out in which a weighted average of the responses is compared to a 298 

decision-threshold (2, 16, 31, 35, 36). We made the assumption of a factorial decoder (Fig. 5B), 299 

in which the read-out weight for each neuron only depends on the properties of that neuron itself, 300 

for two primary reasons: First, such a set of read-out weights can be learned easily since each 301 

weight only depends on the properties of the individual neuron itself (37), and second, it has 302 

recently received empirical support (36). (We also performed our analysis using an optimal 303 

linear read-out, as well as one in which each neuron’s weight depended only on its sensitivity to 304 

the stimulus and not its variability, and obtained qualitatively similar results – see Supplementary 305 

Information, Fig. 5-figure supplement 2). Since the stimulus size in our experiment is 306 

randomized, and since the duration is extremely brief (50 ms), we furthermore assume that the 307 

read-out is fixed and does not adjust dynamically to the stimulus size. We initially limited the 308 

read-out to neurons with receptive fields within 5o of the stimulus center; we examine the impact 309 

of this choice below. 310 
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Figure 5C shows the average performance over 100 runs of this model. As in the 311 

behavioral data, we find that performance decreases for larger stimuli. The suppression shown by 312 

the model is of the same magnitude as the empirical behaviour (Fig. 5E, black), with the model 313 

SI being 0.48 (Fig. 5C, E cyan). To understand the source of this suppression, we performed 314 

additional analyses in which key components of the model were removed: Specifically, we 315 

considered models in which (1) noise correlations were absent; (2) correlations were as 316 

measured, but surround suppression was absent; and (3) correlations and surround suppression 317 

were on average as measured, but the observed relationship between them (Fig. 4A) was 318 

missing. We found that both the noise correlation structure and surround suppression were 319 

necessary to account for the decreased performance as a function of size, since models (1) and 320 

(2) did not show any psychophysical suppression at all (SI = 0; data not shown). However, these 321 

components together were not sufficient to account for the observed behavioral results, since 322 

model (3) exhibited only modest psychophysical suppression (SI = 0.28; Fig 5C, E magenta). 323 

Thus the relationship between surround suppression and correlation structure appears to have 324 

important consequences for motion perception. 325 

From Figure 5C (cyan) it is apparent that the surround-suppression-dependent correlation 326 

structure has two separate effects on performance: One is a suppression of motion signal for 327 

large sizes. Perhaps more surprising is an increase in performance seen for small stimuli (Fig. 328 

5C, E). This suggests that the combined effect of correlation structure and surround suppression 329 

is an increase in the capacity of the MT population to discriminate the direction of very small 330 

stimuli, at the expense of large stimuli (see Discussion). 331 

The preceding analyses suggests that psychophysical suppression is due to a combination 332 

of two known aspects of neural coding, surround suppression and noise correlations. Equally 333 
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important is novel interaction between these two factors, wherein the correlation between 334 

neurons depends on their respective surround suppression (Fig. 4A). To arrive at these 335 

conclusions, we assumed that the animals used a fixed read-out, focusing on neurons with 336 

receptive fields near the center of the stimuli. To determine the importance of this assumption, 337 

we ran model simulations in which the integration radius was varied (Fig. 5D). Unsurprisingly 338 

the SI decreased with increasing integration radius, dropping to 0.26 when the radius was 15o, 339 

which is significantly less than that exhibited psychophysically by the monkeys (Fig. 5E green, 340 

Wilcoxon rank sum test, P < 0.001). The overall model performance, obtained by summing the 341 

performance across all sizes, was, however, unaffected by this parameter (ANOVA, P = 0.25). 342 

This is due to the fact that a larger integration radius increases the performance at large sizes, 343 

while decreasing the performance at small sizes (Fig. 5C). This suggests that behavioral SI could 344 

vary substantially according to the internal strategies used by the observer. 345 

 346 

 347 
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 348 

Fig. 5. Simulation of population selectivity and model comparisons. (A) Schematic of the 349 

population selectivity simulation. The preferred and null responses were sampled from the 350 

distribution of parameters recorded. We tested combinations of different correlation structures 351 

and readout weights. (B) Calculation of the population selectivity. Each point represents the 352 

response from a trial from n neurons (here, n = 2). The one-dimensional distributions for the 353 

preferred and null direction responses were generated by projecting the points onto the 354 

normalized axis that connects the mean responses in n-dimensional space (factorial read-out). 355 

The calculation of population d’ then follows the equation in the Materials and Methods. (C) The 356 

predicted population neuronal selectivity plotted as a function of the stimulus size for each 357 

model. Data points represent averages across 100 iterations of the simulation, with each iteration 358 

based on a different re-sampling of the parameter set from the original data sets. Results are 359 

shown for the full model based on all empirical measurements in which surround suppression 360 

modulates noise correlation structure (cyan); a model where correlations and surround 361 
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suppression were on average as measured, but the observed relationship between them was 362 

missing (magenta), and finally the full model again, but with integration radius of 15° (green). 363 

(D) SI of population d’ for simulations where increasing number of neurons with peripheral 364 

receptive fields are included. The x-axis indicates the integration window for including neurons’ 365 

receptive fields relative to the stimulus center. Error bars denote standard deviation. (E) 366 

Comparison of the SI of different simulations: colors as in C. Error bar for the psychophysical 367 

data denotes s.e.m., and error bars for the model predictions denote standard deviation. 368 

 369 

 370 
Fig. 5-figure supplement 1. Distributions of the parameters for the Difference of Error functions 371 

fits. The histograms at the top row are the distribution of the parameters. The scatter plots shows 372 

the correlation of the parameters. The numbers at the top of each scatter plot are the Pearson 373 

correlation coefficients. Together these are used to create a multivariate Gaussian copula that is 374 

subsequently truncated to have only positve parameter values. 375 

 376 
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 377 
Fig. 5-figure supplement 2. Comparison of the SI of different decoders: Surround suppression 378 

modulation of noise correlation structure (cyan), noise correlation structure with no surround 379 

suppression modulation (magenta) from Fig 5E using the factorial versus optimal decoders. Error 380 

bars denote standard deviation. 381 

 382 

Discussion 383 

Using multi-electrode recordings in combination with a behavioral task, we have examined the 384 

effects of stimulus size on population coding. Consistent with previous work (1, 33, 38), we find 385 

that pairs of MT neurons exhibit modest noise correlations, with typical correlation coefficients 386 

near 0.10. We also find that the strength of noise correlations is related to the strength of signal 387 

correlations and that this relationship limits the benefit of increasing stimulus size on population 388 

coding. Moreover, we find that the correlation structure is not constant across MT neuron pairs, 389 

but rather is related to the strength of a seemingly unrelated variable, surround suppression. This 390 

relationship between signal correlations, noise correlations, and stimulus selectivity appears to 391 

have two important effects on visual perception: Large stimuli are encoded poorly because of a 392 

strong decrease in selectivity for surround-suppressed neurons, and undesirable noise 393 

correlations in non-suppressed neurons. Meanwhile small stimuli are encoded more effectively 394 
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because of the combination of strong direction selectivity and advantageous correlation structure 395 

in surround-suppressed MT neurons. Below we suggest that this population size tuning might 396 

have important implications for perception and behavior. 397 

 398 

Comparison to previous studies of noise correlations 399 

Surround suppression has often been hypothesized to reduce correlations in natural inputs (18, 400 

39). We find that neurons with strong surround suppression can exhibit larger or smaller noise 401 

correlations, depending on the strength of their signal correlations. This relationship holds for all 402 

stimuli, even those that do not engage the receptive field surrounds strongly. 403 

Previous studies have shown that the magnitude of rnoise is not fixed, but can be reduced 404 

by adaptation (40), learning (41), and attention (42, 43). The latter is particularly relevant, 405 

because attention increases the effective contrast of the stimulus (44), which also increases 406 

surround suppression (45) and decreases correlations (46). Thus a single mechanism (47) may 407 

account for the effects of attention and surround suppression on noise correlations, as 408 

implemented with divisive normalization (48, 49). Attention is also of interest because, like 409 

surround suppression, it can increase or decrease the strength of noise correlations, depending on 410 

the stimulus encoding of the neuron pairs (50). These differential effects on positive and negative 411 

noise correlations are particularly important in MT, where negative correlations are quite 412 

common (1, 33). Negative correlations likely arise from motion-opponent mechanisms, in which 413 

the outputs of neurons with opposite direction tuning are subtracted. Such effects are stronger in 414 

MT than in V1 (51), and they play an important role in decision-making models (2, 38). 415 

The results shown in Figure 5D suggest that incorporating the responses of a limited 416 

number of the MT neurons also contributed to psychophysical suppression. In a technical sense 417 
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such a strategy is suboptimal (15), as subjects could probably have performed better by making 418 

use of the neurons with receptive fields near the edges of the stimulus. Although we have no 419 

direct measure of the actual readout strategy used by the subjects, we suggest that the limited 420 

sampling used here is a more realistic model of the neural decision process, for several reasons. 421 

First, recall (Fig. 1C) that stimuli sizes were randomly interleaved, so that motion information 422 

was always present in central locations, but for peripheral locations it was only present for large 423 

stimuli. Previous work suggests that subjects allocate resources according to the uncertainty 424 

associated with individual stimulus positions (13), so that monkeys in our task likely made 425 

greater use of neurons with receptive fields positioned near the center of the stimulus. In 426 

addition, although the subjects could have used neurons with receptive fields positioned near the 427 

edge of the stimulus to extract additional information about the motion of large stimuli (52), we 428 

found instead that choice probability decreased with receptive field eccentricity (Fig. 2-figure 429 

supplement 2D; r = -0.48, P = 0.05). This suggests that the monkeys likely based their decisions 430 

on neurons with receptive fields closer to the center of the stimulus, where motion information 431 

was present reliably on every trial. It would therefore be interesting to study psychophysical 432 

suppression in a paradigm in which the stimulus location was unpredictable from trial to trial. 433 

We predict that psychophysical suppression would be reduced in this case, as would overall 434 

performance across sizes (53). 435 

A related possibility is that the subjects made use of a suboptimal decoding strategy (17, 436 

36). Indeed our analyses were based on a standard factorial decoder (3, 4, 7), which ignores 437 

correlation structure and hence loses information. We have reanalyzed our results using an 438 

optimal linear decoder (17, 36, 54), and found that this approach does improve performance in 439 
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general. However, the main conclusions with respect to correlation structure and its dependence 440 

on surround suppression are unchanged (Fig. 5-figure supplement 2). 441 

 442 

Perceptual correlates of surround suppression 443 

The paradoxical decline in motion perception with increasing stimulus size, first observed in 444 

human psychophysics (8), has often been attributed to neuronal surround suppression at the level 445 

of MT. Indeed, transcranial magnetic stimulation (TMS) that targets MT reduces the spatial 446 

suppression effect (55). However, the TMS protocols used to modulate spatial suppression are 447 

inhibitory, and so one might just as easily interpret these results as an effect on noise correlations 448 

(56). This interpretation is consistent with our results, assuming that inhibitory connectivity plays 449 

a role both in generating surround suppression and in regulating noise correlations (48, 57, 58). 450 

 The distinction is important in interpreting a large body of data showing reduced spatial 451 

suppression in certain human populations. Examples include people with schizophrenia (9), and 452 

older individuals (59). Although these subjects may have deficits in GABAergic efficacy (9, 59), 453 

our results suggest that the connection to psychophysical spatial suppression could also be 454 

through noise correlations, as these are necessary to produce any effect of neural surround 455 

suppression at the population level. 456 

 457 

Optimal encoding of small stimuli and pursuit targets 458 

Our simulation results suggest that surround suppression can increase the selectivity of the 459 

neuronal population to the smallest stimulus size in this task, while worsening the selectivity at 460 

larger sizes (Fig. 5C; note performance for the 1° stimulus). Therefore, one benefit of surround 461 

suppression might be in the tracking of small moving stimuli. Indeed, activity in clusters of 462 
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surround-suppressed neurons has been found to be causally linked to the tracking of small targets 463 

in smooth pursuit (28).  464 

The link between MT activity and smooth pursuit initiation has been further strengthened 465 

by the finding that neuronal variability in MT can account for the majority of motor variation in 466 

smooth pursuit (60, 61). These observations have led to the suggestion that correlation structure 467 

in MT might limit the precision of pursuit initiation (33). Our results suggest that such 468 

comparisons should take into account the center-surround properties of individual MT neurons, 469 

as the neurons that seem to contribute most directly to pursuit initiation (28) exhibit more 470 

advantageous correlation structure (Fig. 4A). As a result, the pursuit initiation system might 471 

benefit from averaging the activity of many surround-supressed MT neurons. This would explain 472 

both the weak correlation between single-neuron MT activity and pursuit and the relatively low 473 

choice probability of surround suppressed neurons in our perception task (Fig. 2E).  474 

It is interesting in this regard that some models of smooth pursuit initiation (61) involve 475 

both a motion opponency step and a normalization operation. Normalization in these models 476 

serves the function of computing a vector average of the MT population response, and it also 477 

affects the levels of noise correlations in a manner that accounts for trial-to-trial fluctuations in 478 

behavior. Our results suggest the additional function of reshaping the selectivity of the MT 479 

population response in such a way as to favor the motion of small stimuli, precisely as would be 480 

expected for a system that initiates orienting responses to moving objects in a natural 481 

environment (62).  482 
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Materials and Methods 483 

 484 

Subjects and apparatus 485 

Two adult female rhesus monkeys (Macaca mulatta, both 7 kg) were used for 486 

electrophysiological recordings in this study. Before training, under general anesthesia, an MRI-487 

compatible titanium head post was attached to each monkey’s skull. The head posts served to 488 

stabilize their heads during subsequent training and experimental sessions. For both monkeys, 489 

eye movements were monitored with an EyeLink1000 infrared eye tracking system (SR 490 

Research) with a sampling rate of 1,000 Hz. Visual motion stimuli were displayed at 60 Hz at 491 

1,280 by 800 pixels resolution; the viewing area subtended 60° × 40° at a viewing distance of 50 492 

cm. The sizes of the Gabor patches were defined by 2 standard deviations of the Gaussian 493 

envelope and ranged from 1° to 15° in steps of 2°. All procedures conformed to the regulations 494 

established by the Canadian Council on Animal Care and were approved by the Institutional 495 

Animal Care Committee of the Montreal Neurological Institute. 496 

 497 

Electrophysiological recordings 498 

Area MT was identified based on an anatomical MRI scan, as well as depth, prevalence of 499 

direction-selective neurons, receptive field size to eccentricity relationship, and white matter to 500 

grey matter transition from a dorsal-posterior approach. We recorded single units used linear 501 

microelectrode arrays (V-Probe, Plexon) with 16 contacts. Neural signals were thresholded 502 

online, and spikes were assigned to single units by a template-matching algorithm (Plexon MAP 503 

System). Offline, spikes were manually sorted using a combination of automated template 504 
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matching, visual inspection of waveform, clustering in the space defined by the principle 505 

components, and absolute refractory period (1 ms) violations (Plexon Offline Sorter). 506 

 507 

Stimulus and Discrimination task 508 

Animals were trained to perform coarse motion direction discrimination tasks with Gabor 509 

patches. The structure of an individual trial is illustrated in Fig. 1C. Each trial began with the 510 

onset of a fixation point. The monkey was required to establish and maintain fixation within a 2° 511 

× 2° window for 300 ms, after which a drifting Gabor patch appeared on the receptive field 512 

centers. The parameters of the Gabor patch were matched to the multi-unit preferences for spatial 513 

position, preferred direction, and spatiotemporal frequency (Fig. 1A and Fig. 2-figure 514 

supplement 1A). The range of stimulus sizes (0-15° radius at 2.3 ± 0.5° eccentricity) was chosen 515 

to straddle the receptive field sizes (2.2 ± 1.1° radius at 3.2 ± 1.3° eccentricity) of the recorded 516 

neurons (Fig. 1A and Fig. 2-figure supplement 1A). 517 

The motion stimulus was presented for a brief period (typically 50 ms), after which the 518 

monkey was required to maintain fixation for another 300 ms. The fixation point then 519 

disappeared, and two choice targets appeared, after which the monkey made a saccade to the 520 

corresponding target to report its perceived motion direction (preferred or null relative to the 521 

neuron isolated). The monkey was required to indicate its decision within 700 ms following the 522 

onset of the choice targets. Correct choices were rewarded with a drop of liquid. If fixation was 523 

broken at any time during the stimulus, the trial was aborted. In a typical session, the monkeys 524 

performed 20-40 repetitions of each distinct stimulus. 525 

 526 

Data analysis 527 
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The psychophysical d’ was calculated as 528 

𝑑′
𝑝𝑠𝑦 = 𝑧ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 − 𝑧𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 529 

where the hit and false alarm rates were z-transformed with zero mean and unit variance. 530 

The neuronal d’ was calculated as 531 

𝑑′
𝑛𝑒𝑢 =

𝜇𝑝𝑟𝑒𝑓 − 𝜇𝑛𝑢𝑙𝑙

√𝜎𝑝𝑟𝑒𝑓
2 + 𝜎𝑛𝑢𝑙𝑙

2

2

 532 

where µpref and µnull are the means of the preferred and null direction responses, and 𝜎𝑝𝑟𝑒𝑓
2

 and 533 

𝜎𝑝𝑛𝑢𝑙𝑙
2  are the variances (63). To quantify the neuronal selectivity of both the single neurons and 534 

the population, we used the firing rate during the 100-200 ms interval after stimulus onset to 535 

calculate the d’. This interval was chosen because the firing rates in response to the preferred and 536 

null directions were significantly different (Fig. 2-figure supplement 2E; P < 0.05, t-test), and 537 

spikes during this time window were significantly correlated with the animals’ behavioral 538 

choices (Fig. 2-figure supplement 2C); other time windows between 60-300 ms did not result in 539 

differences in the results reported here. 540 

To quantify surround suppression in both psychophysics and neural responses, we first 541 

calculated d’ for each stimulus size. The resulting size-tuning curves were fitted with the DoE 542 

function (64) (Fig. 2B): 543 

𝐴𝑒𝑒𝑟𝑓 (
𝑥𝑐

𝑠𝑒
) − 𝐴𝑖𝑒𝑟𝑓 (

𝑥𝑐

𝑠𝑒 + 𝑠𝑖
) + 𝑚 544 

where Ae and Ai scale the height of the excitatory center and inhibitory surround, respectively, se 545 

and si are the excitatory and inhibitory sizes, and m is the baseline firing rate of the cell, which is 546 

set to 0 for the psychophysical and neural selectivity functions. 547 
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The suppression index (SIneu) for each neuronal size tuning curve was then calculated as 548 

SIneu = (dm – dL)/dm, where dm is the maximum selectivity across responses to different stimulus 549 

sizes, and dL is the selectivity observed at the largest size. The psychophysical suppression index 550 

SIpsy was calculated analogously, using psychophysical selectivity rather than neuronal 551 

selectivity. Since using the raw responses is sensitive to noise at both the maximum response and 552 

the response at the largest size, we used the values from the DoE fits for SI calculations.  553 

Choice probabilities (CP) were used to quantify the relationship between behavioral 554 

choice and response variability (21). For an identical stimulus, the responses can be grouped into 555 

two distributions based on whether the monkeys made the choice that corresponds to the 556 

neuron’s preferred direction, or the null direction (Fig. 2-figure supplement 2A). As long as the 557 

monkeys made at least five choices for each direction, ROC values were calculated from these 558 

response distributions, and the area underneath the ROC curve was taken as the CP value (Fig. 2-559 

figure supplement 2B). The single CP for each neuron was computed by averaging the CP 560 

across all stimulus conditions. The alternative method of z-scoring the data for each stimulus 561 

conditions and then combining them into a single pair of distributions for preferred and null 562 

choices can underestimate the CP when the number of choices for preferred and null directions 563 

differs across stimulus conditions (65). 564 

 565 

Noise and signal correlations 566 

Noise correlation (rnoise) was computed as the Pearson correlation coefficient (ranging from -1 to 567 

1) of the trial-by-trial responses of two simultaneously recorded neurons (1). For each size and 568 

direction combination, responses were z-scored by subtracting the mean response and dividing 569 

by the s.d. across stimulus repetitions. This operation removed the effect of size and direction on 570 
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the mean response, such that rnoise measured only correlated trial-to-trial fluctuations around the 571 

mean response. To prevent correlations driven by outliers, we only considered trials on which the 572 

responses were within ±3 s.d. of the mean (1). We also normalized for slow changes in the 573 

responses in blocks of 20 trials (1).  574 

 Signal correlation (rsignal) was computed as the Pearson correlation coefficient (ranging 575 

from -1 to 1) between size tuning curves of preferred and null directions for two simultaneously 576 

recorded neurons. Size tuning curves were constructed by plotting mean firing rates as a function 577 

of size for preferred and null directions. In addition, we calculated an alternative measure of 578 

rsignal based on the similarity in direction tuning between the two neurons, and found similar 579 

trends between the neuron pairs (Fig. 4-figure supplement 1D). 580 

 As the measure of rnoise can depend on the firing rates of the neuron pairs (66), we created 581 

matched rate distributions of SS-SS and NS-NS pairs by subsampling from the original 582 

distributions in Fig. 4A. We first created distributions of the geometric means of SS-SS and NS-583 

NS pairs and then resampled randomly to create sub-distributions with equal amounts of data in 584 

each bin (50). We resampled 10,000 times and calculated the slope of the rnoise vs. rsignal fit of 585 

each sub-distribution. The distribution of SS-SS and NS-NS slopes are shown in Fig. 4B. 586 

 587 

Simulations of population selectivity 588 

The data and Matlab code to generate Fig. 5C, D and E are available at 589 

http://packlab.mcgill.ca/suppression data and code.zip. For all simulations, we considered a 590 

population of MT neurons with different receptive field positions and different preferences for 591 

stimulus size. The RF locations were determined by fitting a spatial Gaussian to the neuronal 592 

response over a 5 x 5 grid. For neurons with RFs within 5° radius of the stimulus center, the 593 
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responses to different sizes were taken from the size-tuning curves of the actual MT neurons. For 594 

neurons with RFs that were not within 5° radius of the stimulus center, we shifted the size-tuning 595 

curves by the same proportion as the RF offset, so that a larger stimulus was required to generate 596 

the equivalent level of activation. We estimated that the shift in the size-tuning curve is roughly 597 

proportional to the shift of the stimulus from the RF center. This was determined by measuring 598 

the size-tuning with the stimulus placed at different spatial locations (Fig. 2-figure supplement 599 

1B, C). 600 

The number of neurons activated by each stimulus was determined using the previously 601 

measured cortical magnification in MT, Magnification factor = 6 ∗ eccentricity−0.9 (22, 23). 602 

This maps visual space in degrees into cortical space in millimeters. The integral of cortical 603 

space activation yields the cortical footprint (in square millimeters) as a function of stimulus 604 

size. The absolute number of neurons can then be obtained by multiplying the cortical footprint 605 

by a factor that indicates the number of neurons per millimeter. We set this factor to 20 606 

neurons/mm2, which yielded a range of pool sizes comparable to those used in other studies (2) 607 

(Fig. 1B). The range of pool sizes is in the regime where population sensitivity is saturated (Fig. 608 

4-figure supplement 1B). We verified that our results are robust with respect to this parameter 609 

re-running the simulations with a value of 40 neurons/mm2; the results were qualitatively similar 610 

to those reported here. 611 

 612 

Simulations of population coding 613 

All simulations involved extrapolations from the statistics of our neural recordings. To generate 614 

the size tuning curves for the preferred and null directions, Si(s,θ), for each simulated neuron, we 615 

first used the distributions of DoE parameters from all neurons recorded during the 616 
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discrimination task to estimate the parameters of a multivariate Gaussian distribution. We then 617 

randomly sampled from this distribution to obtain DoE parameters that were subsequently 618 

converted to tuning curves. The variance, Vi(s,θ), for each simulated neuron, was generated by 619 

multiplying the Si(s,θ) with Fano factors randomly sampled from a Gaussian distribution 620 

estimated from the measured Fano factors. For each combination of size and direction in a 621 

simulated trial, the response of the ith neuron was generated by randomly drawing a value from a 622 

Gaussian distribution having the same mean, Si(s,θ), and variance, Vi(s,θ), as the generated 623 

tuning curve 624 

𝑅𝑖(𝑠, 𝜃) = 𝑆𝑖(𝑠, 𝜃) + 𝑥𝑖√𝑉𝑖(𝑠, 𝜃) 625 

where x is a vector of independent random deviates with zero mean and unit variance. This 626 

procedure generated a set of responses in which each neuron’s noise was independent. 627 

To reproduce the relationship between rnoise, rsignal and surround suppression, the 628 

covariance matrix, rnoise between neurons i and j was assigned according to 629 

𝑟𝑛𝑜𝑖𝑠𝑒(𝑖,𝑗) = 𝑆𝐼 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑖,𝑗) × 𝑚 × 𝑟𝑠𝑖𝑔𝑛𝑎𝑙(𝑖,𝑗) + 𝑏 630 

where rsignal represents the signal correlation between size tuning curves of preferred and null 631 

directions for a pair of neurons. The slope m and intercept b were acquired from a linear 632 

regression fit to the measured relationship between rnoise and rsignal for all pairs of neurons. The SI 633 

dependency term was set to 1 in the no SI modulation condition (Fig. 5C, E, magenta). In the SI 634 

dependency condition (Fig. 5C, E, cyan) we estimated the dependency empirically from the data 635 

as, 636 

𝑆𝐼 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑖,𝑗) = 1.3(max
𝑖,𝑗

(𝑆𝐼𝑖 + 𝑆𝐼𝑗) − 𝑆𝐼𝑖 − 𝑆𝐼𝑗 − 2) 637 

where SIi and SIj were the suppression indices for neurons i and j, respectively. When the joint SI 638 

of the neuron pairs is high, the value of SI dependency will be low, and vice versa, capturing the 639 
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modulation of the rnoise on rsignal slope by surround suppression. The constants, 1.3 and 2, were 640 

determined using a least squares method to obtain the closest slopes for the 3 groups of neuron 641 

pairs in Fig. 4A. In each iteration of the simulation, we sampled the noise correlation structure 642 

from a Wishart distribution with maximum variance around the empirical means. 643 

After assuming the covariance matrix, the response simulation becomes 644 

𝑅𝑖(𝑠, 𝜃) = 𝑆𝑖(𝑠, 𝜃) + 𝑦𝑖√𝑉𝑖(𝑠, 𝜃) 645 

where y represents the product of the matrix square root of the covariance matrix with the vector 646 

of independent deviates, x (2, 38, 67). For each simulation, we generated 1,000 trials of 647 

responses for each neuron, each size, and each direction. 648 

 649 

Decoding 650 

After generating the responses for 1000 trials for a fixed number of neurons, n, at each stimulus 651 

size, the 1000 responses in n-dimensional space were projected onto the axis that connects the 652 

mean responses. This subsequently generated 1D distributions for the preferred and null 653 

direction responses. The 1D distribution of preferred and null direction responses was 654 

normalized by their variance and the population d’ was then computed while the decoder was 655 

blinded to their correlations (Fig. 5B). This is commonly referred to as a factorial decoder; the 656 

readout weights the responses depending on the neuronal sensitivity functions and not on their 657 

correlations (36). 658 

 In addition to this correlation-blind decoder (Fig. 5), we also explored the performance of 659 

an optimal linear estimator that considers not only the responses of neurons, but also the 660 

covariance matrix (54). The impact of the dependency between surround suppression and 661 

correlation structure is smaller, but still present (Fig. 5-figure supplement 2). 662 
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