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Abstract1

Background This paper re-analyzes the gene set data from [1] and [2] which purportedly showed2

opposing effects of hedonic and eudaimonic happiness on the expression levels of a set of genes that3

have been correlated with social adversity.4

Methods Four non-parametric methods were used to test the two null hypotheses addressed in the5

original studies (H0 : β̄hedonia = 0 and H0 : β̄eudaimonia = 0) as well as the null hypothesis of no6

difference in effect between hedonic and eudaimonic happiness (H0 : β̄hedonia − β̄eudaimonia = 0).7

Results Standardized effects (mean partial regression coefficients) of Hedonia and Eudaimonia on8

gene expression levels are very small in both the 2013 and 2015 data, as well as the combined data.9

The p-values from all four tests are similar in magnitude and fail to reject any of the null models.10

Discussion The results unambiguously fail to support opposing effects, or any detectable effect,11

of hedonic and eudaimonic happiness on the pattern of gene expression. The apparently replicated12

pattern of gene expression is simply “correlated noise” due to the geometry of multiple regression13

given the strongly correlated measures of hedonic and eudaimonic happiness.14

Background15

In a highly visible gene set analysis, Fredrickson et al. 2013 [1] claimed that a measure of eudaimonic16

happiness was associated with a decreased “conserved transcriptional response to adversity” (CTRA)17

while a measure of hedonic happiness was associated with increased CTRA. This transcriptional response18

includes the up-regulation of pro-inflammatory signals and the down-regulation of antiviral and antibody19

synthesis signals. Brown et al. [3] criticized multiple components of the methodology and interpretation20

of Fredrickson et al. 2013 [1], including importantly here, the one-sample t-tests of the set of regression21

coefficients of the CTRA genes on hedonic and eudaimonic scores. Fredrickson et al. 2015 [2] followed up22

∗Address: Department of Biological Sciences, University of Southern Maine, 70 Falmouth St., Portland, ME, 04103,
U.S.A. E-mail: walker@maine.edu

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2016. ; https://doi.org/10.1101/044917doi: bioRxiv preprint 

https://doi.org/10.1101/044917
http://creativecommons.org/licenses/by/4.0/


the criticism of [3] with a replicate study but using a marginal model with a specified correlated errors23

matrix, to estimate the associations between CTRA gene expression and happiness scores. In this follow-24

up study, Fredrickson et al. 2015 [2] showed that the pattern of mean CTRA gene expression replicated25

that of Fredrickson et al. 2013 [1] but that only eudaimonic happiness had a statistically significant effect26

on CTRA gene expression.27

Here, I present the results of a re-analysis of the Fredrickson et al. 2013 [1] and Fredrickson et al.28

2015 [2] data. Not being a social psychologist, I limit my analysis to addressing the question “what29

is the evidence for effects of hedonic and eudaimonic happiness scores on CTRA gene expression” and30

give here only the necessary background to understand my analysis. The CTRA gene set includes 1931

pro-inflammatory, 31 anti-viral, and 3 antibody-stimulating genes. The Fredrickson et al. 2013 [1] data32

included all 53 genes but the Fredrickson et al. 2015 [2] data is missing IL-6 from the pro-inflammatory33

subset.34

Fredrickson et al. 2013 [1] used 53 univariate multiple regressions to estimate the effects (the regression35

coefficient) of each happiness (hedonic and eudaimonic) score on log2(normalized gene expression) for each36

gene. The regression model included both happiness scores, seven covariates to adjust for demographic37

and general health confounding (sex, age, ethnicity, BMI, a measure of alcohol consumption, a measure of38

smoking, and a measure of recent illness), and eight covariates to adjust for immune status confounding39

(expression level of T-lymphocyte markers). Hedonic and eudaimonic scores were transformed to z-scores40

prior to the analysis. The 53 multiple regressions (one for each gene) yielded 53 coefficients for hedonic41

score and 53 coefficients for eudaimonic score. The coefficients of the 31 anti-viral and 3 antibody genes42

were multiplied by -1 to make the direction of the effect consistent with the CTRA response. Fredrickson43

et al. 2013 [1] used a simple one-sample t-test of the 53 coefficients to test for a mean effect of hedonic44

or eudaimonic score on CTRA expression. A mean coefficient greater than zero reflects a positive CTRA45

response (increased pro-inflammatory and decreased anti-viral and antibody-stimulating genes).46

The fundamental problem with the Fredrickson et al. 2013 [1] t-test is that the coefficients are not47

independent of each other because of the correlated expression levels among genes. As a consequence of48

the correlated error, a one-sample t-test of the coefficients violates the test’s assumption of independent49

error. One way to think about the consequence of this violation is to consider a null model of no effect of50

happiness score on any of the 53 genes. The mean absolute correlation in the 53× 53 correlation matrix51

of Fredrickson et al. 2013 [1] gene expression levels is 0.25. The maximum is 0.92. Because of the high52

correlations among the expression levels, a set of 53 coefficients computed with the hypothetical null data53

will tend to have either more positive or more negative signs than expected. Consequently, the error of54

the mean coefficient (the standard error) is much larger than if the coefficients were independent. And,55

as a consequence, there will be an inflated Type-I error in a one-sample t-test of the mean. Brown et. al.56

[3] discovered this inflated Type-I error in their exploration of the Fredrickson et al. 2013 [1] data.57
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In response to criticism from Brown et. al. [3], Fredrickson et al. 2015 [2] used a generalized least58

squares (GLS) model with a heterogenous compound symmetry error matrix, effectively treating each of59

the 52 gene expression levels as repeated measures of a common effect [2]. I am not aware of any criticism60

or re-analysis of Fredrickson et al. 2015 [2]. While a GLS estimate of marginal effects is consistent even61

if the error correlation is misspecified, the variance of the estimates will be biased. Compound symmetry62

assumes equal correlation (conditional on the set of predictors) among all expression levels. This is not63

likely to approximate the true error structure for a set of expression levels for different genes, as these64

expression levels will share different sets of underlying regulatory factors. A second and perhaps more65

fundamental problem with the Fredrickson et al. 2015 [2] analysis is the small sample size (n = 12266

or n = 198 in the combined data) relative to the number of regression coefficients (69) and variance67

parameters (53) that must be estimated. This small sample per parameter ratio is likely to result in68

overfit models, which, in turn, will result in unstable and inflated coefficients [4]. Typically, when only69

the fixed effects are of interest (as here), the fixed effects and their errors are estimated using Generalized70

Estimating Equations instead of GLS to avoid issues resulting from estimating the correlated error matrix71

[5, 6]. Finally, and most importantly, the GLS model gains power by assuming that the estimated72

regression coefficient is a common effect for all genes (and each univariate estimate is merely an estimate73

of this common effect), an assumption that is more appropriate for longitudinal or repeated measures74

than for multiple outcomes such as gene expression levels.75

The general question addressed by Fredrickson et al. 2013 [1] and Fredrickson et al. 2015 [2], that is,76

is there a mean response different from zero for a set of multiple outcomes, has a long and rich history77

in applied statistics [7], including in association studies of gene sets[8, 9]. Bull [10] is an especially clear78

exposition of the different null hypotheses that one might test. Wu et al. [11] clearly outline some of79

these hypotheses in the context of gene set associations.80

Here, I reanalyze the Fredrickson et al. 2013 [1] data (hereafter, FRED13), the Fredrickson et al.81

2015 [2] data (FRED15), and the combined data (FRED13+15) using both bootstrap resampling to82

obtain standard errors of effects that account for the correlated expression levels and permutation tests83

to test the null hypotheses of zero mean effects for Hedonia and Eudaimonia. The re-analysis includes84

a permutation version of the O’Brien OLS test [7] and a randomization procedure implemented for gene85

set analysis [11]. The results from all analyses for each datasets are consistent in that they all fail to86

provide evidence against the nulls. Additionally, I show that the high correlation (.79 and .73 in the87

two datasets) between the two focal predictors (Hedonia and Eudaimonia) results in coefficients with88

negatively correlated errors that may be misinterpreted as a “replicable” pattern instead of correlated89

noise reflecting the geometry of multiple regression.90
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Methods91

Data were downloaded as .txt Series Matrix Files from http://www.ncbi.nlm.nih.gov/geo/ using accession92

numbers GSE45330 and GSE55762. The CTRA (response) expression data were log2 transformed. The93

T-lymphocyte expression data that formed part of the set of covariates were log2 transformed in the94

downloaded data. The downloaded hedonic and eudaimonic scores in FRED13 had means and variances95

close but not equal to that expected of z-scores, which suggests that the public data slightly differs from96

that analyzed by Fredrickson et al. 2013 [1]. Three rows of FRED13 had missing covariate data (two rows97

were completely missing) and were excluded; the number of rows (cases) in the cleaned matrix was 76.98

The downloaded hedonic and eudaimonic scores in FRED15 were the raw values and were transformed99

to z-scores. There was no missing data in FRED15 and the number of cases was 122.100

Prior to all analyses, the expression levels of the 31 anti-viral and 3 antibody genes were multiplied101

by -1 to make the direction of the effect consistent with the CTRA response [1, 2].102

Null hypothesis tests103

The overall effect of Hedonia or Eudaimonia on expression levels of the CTRA gene set is simply the104

averaged effect over all genes, β̄. Two of the focal null hypotheses that are tested here, which were105

also the focus of Fredrickson et al. 2013 [1] and Fredrickson et al. 2015 [2] are H0 : β̄hedonia = 0106

and H0 : β̄eudaimonia = 0. Fredrickson et al. 2013 [1] and Fredrickson et al. 2015 [2] also discussed107

the differential effect of Hedonia and Eudaimonia on CTRA gene expression but inferred this from108

differences in p-values. Here I explicitly test the null hypothesis of no difference in effect between the two109

types of happiness using the null hypothesis H0 : δ = β̄hedonia − β̄eudaimonia = 0. I refer to these three110

null hypotheses as Hhedonia=0, Heudaimonia=0, and Hδ=0.111

All three hypotheses are directional, that is, the mean effect differs from zero. This differs from the112

general multivariate test that at least one of the coefficients differs from zero, but the mean response may113

be zero. While the hypotheses are directional, the tests are two-tailed, that is, the mean response may114

be up or down regulation of the CTRA gene set.115

Inferential tests116

The effects of Hedonia and Eudaimonia on the mean of the m gene expression levels are estimated with117

the multivariate linear model118

Y = XB + E (1)

where Y is the n×m matrix of gene expression levels for the n subjects, X is the model matrix of dummy119

variables and covariates, E is the matrix of residual error, and B is the p×m matrix of partial regression120

coefficients. The coefficients of the jth column of B are precisely equal to univariate multiple regression121
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of the jth gene on X (and why the model is sometimes called a multivariate multiple regression). In R,122

estimating the m effects of Hedonia and Eudaimonia is much faster using this multivariate model than123

looping through m univariate multiple regressions. I refer to the mean of the m coefficients as the OLS124

estimates.125

Four tests were used to test the null hypotheses. In all four tests, the happiness scores for Hedonia and126

Eudaimonia and the m expression levels were mean-centered and variance-standardized. Consequently,127

the reported OLS estimates are the mean standard partial regression coefficients (averaged over the m128

genes).129

Procedural bootstrap t-test130

Fredrickson et al. 2013 [1] used a bootstrap resampling method to compute a p-value. In their bootstrap,131

the 53 partial regression coefficients were re-sampled with replacement 200 times. Each iteration, a mean132

regression coefficient was computed. The standard deviation of the 200 means was used as the estimate of133

the standard error to compute a t-statistic and associated p-value. Resampling the regression coefficients134

fails to address the lack of independence among the coefficients. To estimate the sampling error that135

accounts for correlated error among the regression coefficients, the entire estimation procedure needs136

to be included within the bootstrap by resampling the data and re-estimating the coefficients. In each137

iteration of this procedural bootstrap, entire rows of the data were re-sampled with replacement, the m138

coefficients were estimated by equation 1, and the re-sampled mean coefficients (β̄hedonia and β̄hedonia)139

were saved each iteration. 1999 bootstrap iterations were run. The t-statistic for each hypothesis is the140

observed mean coefficient (β̄obs, or δobs for the difference in means) divided by its standard error, which141

was estimated as the standard deviation of the 2000 saved mean coefficients.142

Permutation t-test143

As an alternative to the bootstrap t-test, I used permutation to generate null distributions of t-statistics144

for each null hypothesis and then computed p-values from these null distributions. To comply with the145

assumption of exchangeable error, I followed Anderson and Robinson [12] and used the permutation146

method of Freedman and Lane[13]. For this procedure, the predictor variables were divided into main147

effects Z (hedonic and eudaimonic scores) and covariates X (the demographic and immune variables).148

Using the non-permuted data, the observed residuals (EY ) and predicted values (Ŷ) of Y|X were es-149

timated using equation 1. For each of the permuted iterations, rows of EY were permuted and added150

to the non-permuted Ŷ to generate a permuted response Yπ = Ŷ + Eπ
Y , where π indicates a permuted151

value. Prior to fitting the permuted data, Hedonia and Eudaimonia and the m expression levels were152

re-centered and variance-standardized. The m coefficients for both Hedonia and Eudaimonia were then153

computed from the model Yπ|X + Z and β̄ was computed from the m coefficients for each of the three154
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hypotheses. Additionally, a t-statistic was computed for each hypothesis each iteration using155

tperm =
β̄

sβ/
√
m

(2)

where sβ is the standard deviation of the m coefficients. 2000 iterations were run, including an iteration of156

non-permuted data. The two-sided p-value of each hypothesis was computed as the fraction of |tperm| ≥157

the observed |tperm|.158

Permutation O’Brien’s OLS t-test159

Neither the bootstrap t-test nor permutation test explicitly accounts for the correlation among the regres-160

sion coefficients (although both implicitly account for this in the resampled distributions). To explicitly161

account for this correlation, I used a modification of O’Brien’s OLS test [7]. After standardizing the162

covariates and all gene expression levels to unit variance, O’Brien’s test statistic is163

tObrien =
j>t

j>Rj
(3)

where j is a m vector of 1s, t contains the t-statistic associated with each of the m partial regression164

coefficients, and R is the correlation matrix of the m coefficients. More simply, the numerator is the165

sum of the t-statistics for each gene and the denominator is the sum of all of the elements of R. R166

was estimated using a bootstrap resampling procedure. The null distribution of tObrien was constructed167

using the observed value and 1999 permutations of the data. The permutation procedure was exactly168

that for the permutation t-test above except that each iteration of the permutation, the permuted data169

was resampled and refit (using Equation 1) 1000 times in order to estimate R as the correlation matrix170

of the 1000×m set of coefficients. The inner and outer loops make this a computationally intensive test.171

Rotation gene set test (ROAST)172

The final test of β̄ is the rotation-test described in Wu et al. [11] and implemented in the function roast173

from the limma package [14]. The test statistic, zrot, is a mean z-score computed from the set of m174

moderated t-statistics computed for each gene. Using a hierarchical model, the moderated t-statistic uses175

information on the error of all genes in the set to estimate the gene specific standard error. A p-value for176

the test statistic is evaluated in a very similar manner to that described above in “Permutation test” but177

with some key differences. First, in the rotation-test, the observed residuals (EY ) are from Y|X where178

X includes not only the covariates but also the non-focal happiness score (for example, Eudaimonia179

is included in X for the test of Hedonia). Second, instead of permutation, the n-vector of residuals is180

rotated by a random vector r, which is constant for all genes within each iteration but variable among181

iterations. And third, the rotated residuals (Eπ
Y ) are used to directly compute the new t-statistics and182
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z-scores without fitting the new model Eπ
Y |X + Z (where π indicates rotated residuals). The observed183

and rotated z-scores from 1999 rotations were used to generate the null distribution. The p-value for the184

“UpOrDown” test was used as this is the test of the two-tailed directional hypothesis.185

Permutation generalized least-squares186

If we assume the separate coefficients for each of the m genes is an estimate of a common effect β, then the187

tests described above lose power due to effectively discarding the m within subject estimates of β. A fixed-188

effects marginal model potentially gains power by using all nm responses but avoids pseudoreplication189

[15] (or inflated Type I error) by weighting the standard error of the estimate by the within subject error190

covariance matrix. To implement this model, the data matrix is stacked into long format by combining191

the m expression levels into a single variable expression and the variable Gene is created to identify the192

gene associated with a specific expression value. The fixed-effects marginal model is193

yi = Xiβ + εi (4)

where yi is the vector of m responses for subject i, Xi is the model matrix for subject i, which includes194

the main effect Gene to identify the jth element of yi, and β is the vector of coefficients, including the195

common effects of each covariate on the response. In this model, εi ∼ N(0,Σ), where Σ is the within196

subject error covariance matrix.197

While the “common effect” assumption is highly questionable for gene expression data, it is useful to198

explore this model in order to learn about the results from Fredrickson et al. [2]. Following Fredrickson et199

al. 2015 [2], I used GLS with a heterogenous compound symmetry error matrix to estimate the common200

effects βHedonia and βEudaimonia. Exploration of the behavior of the GLS suggested very unstable201

coefficients and, consequently, I used a bootstrap procedure to show this sensitivity to sampling and a202

permutation test to estimate p-values. Each iteration of either the bootstrap or permutation, the data203

was resampled (permuted) in wide format, rescaled, and reshaped to long format. For both bootstrap and204

permutation, the coefficients were estimated using the gls function from the nmle package [16]. In both,205

the first iteration used the observed (not resampled or permuted) data. The bootstrap was limited only206

to the combined FRED13+15 data because of lack of convergence issues with the smaller datasets. 500207

iterations of the bootstrap procedure were run (including the iteration with the observed sample). For208

the permutation test, the standard partial regression coefficients and associated t-statistics for Hedonia209

and Eudaimonia were saved each iteration and used to generate a null distribution of expected values210

(using the t-statistic) given no effect of either on expression level. Due to the time required to fit the211

GLS, only 300 permutations were run but this was sufficient to get an approximate p-value. To estimate212

the sensitivity of this p-value to only 300 permutations, 95% confidence intervals were computed for the213
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p-value using 2000 bootstrap resampled sets of the 300 permutation t-statistics.214

Type I error in the GLS method215

I used Monte Carlo simulation to explore the inflation of type I errors due to overfitting in the GLS fit216

using the parametric estimate of the standard error. In each run of the simulation, a random n×p matrix217

X of independent variables (n samples of p covariates) and a random n×m matrix Y of response variables218

(n samples of m responses) were generated using the function rmvnorm from the mvtnorm package [17].219

All simulated independent variables were modeled as continuous variables sampled from N (0,SX), where220

SX is the covariance matrix of the 17 regressor variable from FRED15. The 52 response variables were221

modeled as continuous variables sampled from N (0,SY ), where SY is the covariance matrix of the 52222

gene expression levels from FRED15. The expected effect of any of the X on any of the Y is zero.223

To reduce the time required for the simulation, subsets of m =10, 20, or 30 of the 52 response224

variables were sampled randomly. p is the number of covariates (17) from FRED15. The sample size225

was determined as n = 2(m+ p). Because the number of regressors is m+ p (again, the data are in long226

format), the ratio of samples to regressor was 2 for all runs. This ratio is in-between that for FRED15227

and the combined data (1.8 and 2.9, respectively). 200 iterations of each subset were run. The p-values228

associated with the t-test of the coefficients for the two X variables simulating Hedonia and Eudaimonia229

(that is, with an expected correlation equal to that in FRED15) were saved each iteration.230

All analyses were performed using R [18]. All data cleaning and analysis scripts are available at the231

public GitHub repository https://github.com/middleprofessor/happiness.232

Results233

Replication of previous analyses234

Fredrickson et al. 2013 [1] do not report either the partial regression coefficients of each gene expression235

level on hedonic and eudaimonic score or the mean coefficient for each score. The back-transformed mean236

effects (24β̄ × 100, where β̄ is the mean of the m coefficients) for all three datasets are given in Table 1.237

My values approximate the values inferred from Fig. 3 of Fredrickson et al. 2015 [2] with the exception238

of that for Hedonia from FRED13, which is noticeably smaller than that figured in Fredrickson et al.239

2015 [2]. This likely reflects small differences between the public data and thta analyzed in Fredrickson240

et al. 2013 [1] [see also 3]. From the p-values based on a t-statistic that assumes independence of the241

regression coefficients (Table 1), one might reasonably reject each null hypothesis for each dataset.242

The variance-standardized effects and p-values for hedonic and eudaimonic scores estimated from the243

GLS for each dataset are given in Table 2. My coefficients for FRED15 are the same as those reported244

in Fredrickson et al. 2015 [2] to the 3rd decimal place. My coefficients for the combined data are similar245
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Table 1: Back-transformed mean effect sizes (24β̄ × 100) and naive p-values from the 2013, 2015, and
combined data

data Hedonia Eudaimonia phedonia peudaimonia

FRED13 3.6 -7.3 0.096 0.003
FRED15 7.2 -5.7 <0.001 0.045
FRED13+15 6 -5.3 <0.001 0.048

Table 2: GLS estimates of the variance-standardized coefficients for the 2013, 2015, and combined data.
The bootstrap standard error and permutation p-values are also given

Type Data β SE p bootstrap SE permutation p

Hedonia FRED13 0.525 0.169 0.002 0.29
FRED15 0.086 0.122 0.48 0.74
FRED13+15 0.062 0.099 0.53 0.227 0.79

Eudaimonia FRED13 0.135 0.176 0.44 0.83
FRED15 -0.511 0.126 <0.001 0.16
FRED13+15 -0.456 0.101 <0.001 0.272 0.07

to my coefficients for the FRED15 data, while Fredrickson et al. 2015 [2] report a substantially smaller246

negative effect for Eudaimonia for the the combined data. Again, this is likely due to small differences247

between the public FRED13 data and the data actually analyzed in [1].248

Importantly here, the coefficients for the FRED13 data have the opposite pattern of that for FRED15249

and combined data, that is, with the 2013 data, the effect of Hedonia is large and has a very small250

p-value (0.002) while the effect for Eudaimonia is small and not statistically significant (p = 0.44).251

New results252

Standardized mean effects (β̄) are very small and positive for Hedonia and very small and negative253

for Eudaimonia for all three datasets (Table 3). The bootstrap SE for each mean indicates that a254

95% confidence interval is too large to have any confidence in the direction of either of the effects for255

any dataset. The p-values computed using the the procedural bootstrap, the permutation t-test, the256

permutation O’Brien’s t-test, and the rotation z-test are very consistent and all fail to reject the null.257

The OLS estimates of the difference (∆) between hedonic and eudaimonic effects are small and positive.258

The bootstrap SE for all ∆ are too large to have any confidence in the direction of the difference and the259

p-values from each of the four tests fail to reject the null for any of the data sets.260

GLS stability261

The GLS coefficients were described above (Table 2). The bootstrap standard errors for the FRED13+15262

data for the GLS fit are over twice the parametric estimates (Table 2), which shows that the coefficients263

are very sensitive to sampling. Again, bootstrap errors were not computed for FRED13 or FRED15264

because of too many issues with convergence of the smaller datasets. Despite the large coefficient for265
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Table 3: OLS estimates of mean Hedonia and Eudaimonia effects on CTRA gene expression. The esti-
mates are the mean variance-standardized partial regression coefficients from the multivariate regression
over the m responses (genes). The SE was estimated using a bootstrap. The p-values are from the
bootstrap, permutation t, permutation Obrien’s t, and rotation z tests.

Type Data β̄ SE pboot pperm pObrien prot

Hedonia FRED13 0.026 0.117 0.83 0.75 0.8 0.77
FRED15 0.062 0.044 0.17 0.22 0.23 0.23
FRED13+15 0.049 0.04 0.23 0.19 0.27 0.23

Eudaimonia FRED13 -0.063 0.125 0.62 0.42 0.51 0.5
FRED15 -0.067 0.048 0.17 0.31 0.21 0.21
FRED13+15 -0.058 0.039 0.14 0.32 0.17 0.16

Table 4: OLS estimates of the difference in effect (∆ = β̄hedonia − β̄eudaimonia) for the 2013, 2015,
and combined data. The SE was estimated using a bootstrap. The p-values are from the bootstrap,
permutation t, permutation Obrien’s t, and rotation z tests

Data ∆ SE pboot pperm pObrien prot

FRED13 0.089 0.235 0.71 0.55 0.62 0.62
FRED15 0.129 0.085 0.13 0.23 0.19 0.19
FRED13+15 0.107 0.075 0.16 0.25 0.19 0.18

Eudaimonia for FRED13+15, the standard errors are too large to have any confidence in the direction266

of the effect. The p-values from the permutation test fail to reject any of the nulls.267

The large bootstrap relative to parametric standard errors for the GLS coefficients suggest an inflated268

Type I error rate with the parametric p-values. Type I error for the GLS parametric p-values for simulated269

data modeled on FRED15 is given for different levels of α in Table 5. The results show highly inflated270

Type I error which increases with smaller α.271

Discussion272

The re-analysis of the gene expression data in subjects scored for hedonic and eudaimonic happiness273

unambiguously fails to support either the original conclusion of an opposite relationship of hedonic and274

eudaimonic happiness on the CTRA (conserved transcriptional response to social adversity) gene set [1] or275

the more recent conclusion limiting the relationship to eudaimonic well-being [2]. The consistency among276

the four different tests for each hypothesis and dataset is notable. The p-values from the permutation277

Table 5: Type I error and Inflation factor (Errorα ) for the GLS test of Fredrickson et al. 2015 [2]. The
Error is the average of the error computed for the simulated coefficients for Hedonia and Eudaimonia

α Error Inflation

.1 0.21 2.1

.05 0.14 2.7

.01 0.06 5.7

.001 0.02 19.2

.0001 0.01 108.3
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O’Brien’s t-test and rotation z test are especially close despite the differences in the implementation of278

the randomization. That said, the rotation test is very fast relative to the permutation O’Brien test,279

which required nested re-sampling.280

The apparent replication of the sign of the effects between FRED13 and FRED15 [2] is true for the281

OLS estimates but strikingly false for the GLS estimates, although this failure of the GLS test to replicate282

was not noted by Fredrickson et al. [2] because they used the OLS estimate and not the GLS estimate283

to show the replicated pattern of expression. Regardless, any replication in the sign of the mean effect284

should not be surprising given only two replicates of two coefficients. More importantly, as I show below,285

the apparent replication is expected given the high correlation between hedonic and eudaimonic scores.286

Beyond the fact that a GLS model with 69 predictors and 53 variance estimates was fit with a mere287

122 (FRED15) or 198 (FRED13+15) subjects, several features of the results suggest inflated coefficient288

estimates resulting from overfitting the model to noise. First, at least one of the GLS coefficients in each289

of the datasets is very large relative to what we’d expect from a gene set association given observational290

data and the stated hypotheses. Second, the GLS coefficients are very different from the OLS coefficients291

(Tables 2 and 3). Third, the opposite pattern of effects estimated in FRED13 and FRED15 suggests that292

either something very different biologically is going on between the subjects in FRED13 and FRED15 or293

the coefficients are very unstable due to a combination of overfitting and multicollinearity. Fredrickson294

et al. 2015 [2] did not report re-analyzed results for FRED13 using the GLS model so do not discuss295

either interpretation. Fourth, the plot of residuals against the predicted values shows a strong, negative296

relationship (not shown). And finally, the Type I error rate of the simulated data modeled on FRED15 is297

highly inflated (Table 5). Especially striking about the Type I error rates is the relatively high frequency298

of very small p-values (p ≤ 0.001).299

The conclusions of Fredrickson et. al. 2015 [2], then, are based on p-values from tests contaminated300

by highly inflated Type I errors due to overfitting combined with moderate multicollinearity and a high301

correlation between the two focal predictors. The consequences of the highly correlated focal predictors302

has not been discussed in detail. Fredrickson et al. 2015 [2] emphasized the replicated pattern of a303

positive mean coefficient (described in the introduction) for Hedonia and a negative mean coefficient304

for Eudaimonia, where a positive coefficient implies up-regulation of the genes associated with social305

adversity. This pattern and apparent replication is almost certainly a function of the multicollinearity306

among the predictors in combination with the high positive correlation between hedonic and eudaimonic307

scores. It is well known that the partial regression coefficients of two highly correlated predictors are308

negatively correlated (one will tend to be positive and the other negative), which is the case with these309

data. For example, using FRED13, and disregarding all predictors but hedonic and eudaimonic scores,310

the partial regression coefficient of any gene expression level on Hedonia (X1) and eudaimonoia (X2) are311
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β1 = 2.66x>
1 y− 2.1x>

2 y

β2 = −2.1x>
1 y + 2.66x>

2 y

(5)

where the 2.66 and -2.1 are the diagonal and off-diagonal elements of the inverse of the correlation312

matrix with .79 in the off-diagonal (the correlation between hedonic and eudaimonic scores in FRED13).313

Because of the high correlation, both β1 and β2 include a large contribution from the covariance of the314

other X and Y but the sign of this contribution is negative. Consequently, if the expected x>y is zero315

for both predictors, the β coefficients will be negatively correlated. Random noise creates negatively316

correlated error. This negative correlation is easily seen in the scatterplot of βhedonia vs. βeudaimonia for317

the gene IL1A (the choice of gene doesn’t matter) from the permutation t-test (Figure 1A). The negative318

correlation is also seen using the coefficients from GLS model, which estimates a single coefficient for319

the complete set of genes (Figure 1B). In both of these analyses, the expected effects (partial regression320

coefficients) are zero (because of the permutation) yet the estimates are negatively correlated. Note that321

this correlated error arises from the correlation between hedonic and eudaimonic scores (Equation 5)322

and is not the same as the correlated error that arises from the correlation among the gene expression323

levels. Unambiguously, then, the data from Fredrickson et al. 2013 [1] and Fredrickson et al. 2015 [2] do324

not show a replicated pattern of differentially expressed genes associated with social adversity between325

hedonic and eudaimonic people. Instead, this apparently replicable pattern of differential expression is326

simply correlated noise arising from the geometry of multiple regression.327
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Figure 1: Correlation between regression coefficients of gene expression levels on Hedonia and
Eudaimonia for permuted data. Coefficients from permuted runs are in grey. Observed coefficients for
all three datasets are in black. The expected effects for the permuted runs is zero. A. Partial regression
coefficients of IL1A from the permutation t-test. B. Partial regression coefficients (accounting for the
expression of all genes simultaneously) from the permutation GLS model.
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