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Abstract 22 

Background 23 

The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts 24 

while crossing the species barrier are complex and yet to be understood completely. 25 

Several studies have been published identifying singular genomic signatures that 26 

indicate such a host switch. The complexity of the problem suggested that in addition 27 

to the singular signatures, there might be a combinatorial use of such genomic 28 

features, in nature, defining adaptation to hosts..  29 

Results 30 

We used computational rule-based modeling to identify combinatorial sets of 31 

interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 32 

subtypes. We built highly accurate rule-based models for each protein that could 33 

differentiate between viral aa sequences coming from avian and human hosts, . We 34 

found 68 combinations of aa residues associated to host adaptation (HAd) on HA, 35 

M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 36 

24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to 37 

these combinations, we found 132 novel singular aa signatures distributed among all 38 

proteins, including the newly discovered PA-X protein, of both subtypes. We showed 39 

that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry 40 

H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry 41 

H3N2-specific HAd signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in 42 

addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, 43 

NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 44 

HAd signatures. 45 

Conclusions 46 
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To sum it up, we computationally constructed simple IF-THEN rule-based models 47 

that could distinguish between aa sequences of virus particles originating from avian 48 

and human hosts. From the rules we identified combinations of aa residues as 49 

signatures facilitating the adaptation to specific hosts. The identification of 50 

combinatorial aa signatures suggests that the process of adaptation of IAVs to a new 51 

host is more complex than previously suggested. The present study provides a basis 52 

for further detailed studies with the aim to elucidate the molecular mechanisms 53 

providing the foundation for the adaptation process. 54 

Keywords 55 

Influenza A virus, Host specificity, combinatorial signatures, MCFS, Rosetta, Rough 56 

sets. 57 

Background 58 

IAVs have been known for a long time to cause disease in a wide range of host 59 

species, including humans and various animals. The IAVs are zoonotic pathogens that 60 

can infect a broad range of animals from birds to pigs and humans. The interspecies 61 

transmission requires that IAVs adapt to the new host and the whole process is 62 

facilitated by their high mutation rates [1]. This can result in epidemics and 63 

pandemics with severe consequences for both human and animal life. In addition to 64 

the yearly epidemics that has proved fatal for at least 250,000 humans worldwide, in 65 

the 20th century alone [2], there has been at least five major pandemics; the Spanish 66 

flu of 1918, Asian influenza of 1957, Hong Kong influenza of 1968, the age restricted 67 

milder Russian flu of the 1977 [3, 4] and the Swine flu of 2009. Thus, new flu 68 

epidemics and pandemics are a constant threat. Given our poor understanding of the 69 
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HAd process of the virus, which can be a major factor for such epidemics and 70 

pandemics, it is very hard to predict the type of the virus that will cause the coming 71 

outbreaks. 72 

The IAVs are usually classified into subgroups based on the two surface glycol-73 

proteins, hemagglutinin (HA) and neuraminidase (NA). To date, 18 types of HA (H1-74 

H18) and 11 types of NA (N1-N11) are known [5-7]. Most of these species have wild 75 

birds as their natural hosts. IAVs are usually adapted and relatively restricted to a 76 

single host but occasionally the virus can jump and adapt to a new host species. This 77 

cross of the species barrier is proved by the pandemic H1N1, H3N2, H2N2 and the 78 

most recent H5N1 and H7N9 subtype outbreaks, which are thought to have evolved 79 

from avian or porcine sources [8, 9, 5]. 80 

The HA protein plays a crucial part in defining the adaptation of the virus to different 81 

hosts since it binds to the receptor providing the entry into host cells. The avian 82 

strains of the IAVs are known to prefer a receptor with α2,3-sialic acid linkages while 83 

the human strains have a preference for a receptor with α2,6-sialic acid linkages [10]. 84 

However, other proteins such as the polymerase subunits have also previously been 85 

shown to play a role in the adaptation of IAVs to different hosts [11, 12].  86 

Computational methods, like artificial neural networks, support vector machines and 87 

random forests, have been used previously to predict hosts of IAVs [13-15]. 88 

Furthermore, several other studies have previously been carried out predicting 89 

genomic signatures specifying different hosts, both computationally and 90 

experimentally [16-22]. Amino acid changes taken one at a time, i.e. singular aa 91 

changes), in viral protein sequences between different hosts have been reported by 92 

these studies as host-specific signatures, either directly or indirectly facilitating the 93 

HAd process. Despite these findings, this process of adaptation of IAVs in different 94 
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hosts is still not completely understood. Given the complex nature of the problem we 95 

suspected that the HAd signatures are not necessarily univariate. Essentially, in 96 

addition to the proven effects of singular aa residues, there might be a combinatorial 97 

use of aa residues in nature that affect the adaptation of IAVs to new hosts.  98 

To this end, for both H1N1 and H3N2 subtypes, we analyzed aa sequences of 12 99 

proteins expressed by the viruses. We built high quality rule-based models, based on 100 

rough sets [23], for each of the 12 proteins, predicting hosts from protein sequences. 101 

The models consisted of simple IF-THEN rules that lend themselves to easy 102 

interpretation. The combinations of aa residues used by the rules were identified as 103 

HAd signatures. In additions to such combinatorial signatures, novel singular 104 

signatures were also identified from the rules. The singular and, especially, the 105 

combinatorial signatures provide novel insights into the complex HAd process of the 106 

IAVs.    107 

Results 108 

Feature selection reduces the number of features needed to discern 109 

between hosts 110 

Monte Carlo Feature Selection (MCFS) [24]was used to obtain a ranked list of 111 

significant features, here significantly informative aa positions in all the proteins for 112 

both subtypes, that best discern between the hosts. This step helped us remove any 113 

kind of noise that could have been in the data. More importantly, the use of MCFS 114 

considerably reduced the number of aa positions to be analyzed further, as shown in 115 

Table 1. The HA protein had 628 positions to start with and after running MCFS on 116 

the data, we were left with 115 and 88 positions for H1N1 and H3N2 subtypes, 117 
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respectively (81.7% and 86% reduction in the number aa positions). On average there 118 

was a 79.8% reduction in the number of aa positions across all the proteins for H1N1 119 

subtype and 82.8% for the H3N2 subtype (Table 1). Only the significant features were 120 

used for further analysis in this study. The ranked lists of the significant features are 121 

provided as a supplementary file (see Additional file 1). 122 

Rule-based models for each protein 123 

Since the number of sequences belonging to human and avian hosts were not balanced 124 

in the training data of either subtype (Table 1), we balanced the data sets by a method 125 

called under-sampling, as described in detail in Methods. For data sets of each protein 126 

and each subtype we created 100 under-sampled subsets. Each of these subsets was 127 

used to build a classifier, consisting of IF-THEN rules, whose performance was 128 

assessed by a 10-fold cross-validation. Mean accuracies of the 100 classifiers were 129 

averaged and shown in Figure 1. HA classifiers for H1N1 and non-structural protein 1 130 

(NS1) classifiers for H3N2 subtypes were the best ones with a mean accuracy of 98% 131 

and 98.9%, respectively. Nuclear export protein (NEP) classifiers of the H1N1 132 

subtype and matrix protein 1 (M1) classifiers of the H3N2 subtype had lowest mean 133 

accuracy of 83.4% and 88.8%, respectively, which is still a very good result. 134 

For each protein of each subtype a single rule-based model containing only the most 135 

significant rules from their respective 100 classifiers was inferred (Methods). We then 136 

reclassified the training data of each protein with its respective rule-based model to 137 

get an idea of its performance in terms of classification of human and avian 138 

sequences. Polymerase acidic protein X (PA-X), which is a frame-shift product of the 139 

third RNA segment, HA and NEP (NS2) models performed the best (Mathew’s 140 

correlation coefficient (MCC) = 1, MCC = 0.99, MCC = 0.99, respectively) among 141 

the H3N2 models while HA, NA and NS1 models performed the best among the 142 
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H1N1 models (MCC = 0.96, MCC = 0.95, MCC = 0.95, respectively) (Figure 2). The 143 

poorest of the H1N1 models was the PA-X protein model (MCC = 0.86) and of the 144 

H3N2 models was the polymerase basic protein F2 (PB1-F2) protein model (MCC = 145 

0.86). The complete HA H1N1 rule-based model is shown in Table 2. Models for the 146 

remaining proteins for both subtypes are provided as supplementary material 147 

(Additional file 2). 148 

To further verify the validity of the rule-based models created, we tested them on 149 

new, unseen data. This data was protein sequences published at the NCBI resource 150 

between 30th of November 2014 and 16th of April 2015. For the H1N1 subtype, the 151 

rule-based models of M1, nucleoprotein (NP), NS1, NEP (also called non-structural 152 

protein 2 (NS2)), PB1-F2, polymerase basic protein 1 (PB1) and polymerase basic 153 

protein 2 (PB2) provided perfect classification (i.e. all the sequences were correctly 154 

classified). For the H3N2 subtype data, the models of HA, M1, NP, NS1, NEP (NS2), 155 

polymerase acidic protein (PA), PB1 and PB2 also gave a perfect classification. Table 156 

3 shows the performance of all rule-based models on the unseen data. A list of names 157 

of the viruses that could not be classified or were miss-classified for both subtypes is 158 

given in Additional file 3. 159 

Predicted signatures of HAd 160 

The rule-based models allowed us to further interpret them and see how they 161 

differentiated viral avian from viral human sequences. Each of the models was 162 

analyzed separately for HAd signatures. The constituent rules of a model associated 163 

aa residues at specific positions with an avian or human host. The confidence in these 164 

associations is shown as the accuracy, support and the decision coverage shown in the 165 

rule-based models. For the combinations in our models we also calculated a 166 

combinatorial accuracy gain (CAG), which is the percentage points gain in accuracy 167 
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of the combination as compared to the average of the accuracies of its constituent 168 

singular conditions when taken independently. 169 

Combinatorial signatures 170 

As expected we found aa combinations in HA, M1, matrix protein 2 (M2), NP, NS1, 171 

NEP (NS2), PA, PA-X, PB1 and PB2 proteins to be associated with specific hosts in 172 

the H1N1 subtype. In the H3N2 subtype, we found combinations in M1, M2, NEP, 173 

PB1 and PB2 proteins. A complete set of combinations for both subtypes is given in a 174 

supplementary file (see Additional file 4: Combinations_from_rules). Ciruvis 175 

diagrams [25] for visualization of combinations of interacting amino acids were used 176 

to illustrate the cases of three or more combinations in the models of both subtypes 177 

associated with the avian hosts (see Figure 3 and Figure 4).   178 

Residues 14G of the M2 H1N1 model and 82N of the PB2 H3N2 model were the 179 

most connected ones interacting with six other aa residues each. Amino acid residues 180 

having interactions with more than one other residue, in both the subtypes are listed in 181 

Table 4. These strongly interacting residues might be relatively more essential to HAd 182 

than the less connected ones.  183 

Singular (linear) signatures 184 

Previous studies [16-22] mostly found the adaptation signatures on the internal 185 

proteins and did not look into surface glycoproteins (HA and NA). In contrast, we 186 

found singular signatures on all the proteins of both subtypes, including the HA, NA 187 

and the newly discovered PA-X proteins. PA-X protein shares the human signature 188 

85I with PA in the H1N1 model while it shares human signatures 28L and avian 189 

signature 28P in the H3N2 models. In total, 189 singular signatures were found, in 190 

both subtypes combined. Out of these, 132 signatures were novel and not reported by 191 
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the previous studies (Table 5). A complete list of singular signatures is given in the 192 

supplementary material (see Additional file 4: singletons_H3N2, singletons_H1N1) 193 

Specific aa changes associated with HAd 194 

Some of the rules from our models associated different residues at the same aa 195 

positions with avian and human hosts. This can be seen as a mutation (aa change) 196 

associated to the adaptation of the viral proteins to a specific host. Eight mutations 197 

were found for the H1N1 subtype and 10 for the H3N2 one. In the H1N1 subtype, 198 

mutations F6V in HA, P46T and L74V in NA, I6M in both NS1 and NEP and L58- in 199 

PB1-F2 were novel. In the H3N2 subtype, mutations R78E in HA, A30I, N40Y and 200 

I44S in NA, P28L and R57Q in PA and P28L in PA-X were not identified in the 201 

previous studies. Table 6 shows all such mutations in both subtypes. 202 

Predicted signatures are not specific to sub-clades of the strains 203 

The support and the decision coverage of the rules showed whether the aa signatures 204 

identified were specific to sub-clades or were more general i.e. spread out across the 205 

sub-clades. The higher decision coverage indicated more generality of the rule. For 206 

example, the top five rules for the avian class have the following very high decision 207 

coverage: rule1 – 98.5%, rule2 – 98.5%, rule3 – 97.8%, rule4 – 98.5% and rule5 – 208 

97.8%.  It follows that the rules are general.  To further illustrate this generality, and 209 

to show the diversity in our training data set, a phylogenetic analysis was carried out 210 

(additional file 5). Top five rules specifying each host were mapped onto the created 211 

phylogenetic trees, separately for each host, for all the proteins of both subtypes.  212 

As an example, consider the avian PB2 H3N2 tree (Figure 5).  91.4% of the 213 

sequences are covered by rule 1, 2, 3, 4 and 5, which is illustrated by the violet 214 

coloring of the leaves in the tree. Only, 1.4% of the sequences are not covered by 215 
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rule4, yet they are covered by rule 1, 2, 3, and 5, and similarly for the remaining 216 

coverage.  For the corresponding human tree, the figures are 89.3% coverage for the 217 

top five human rules. One can see that this generality prevails in all other proteins.  218 

Validity of HAd signatures across H1N1 and H3N2 subtypes 219 

To see whether the signatures associated with HAd identified in the H1N1 subtype 220 

could also function as signatures for the H3N2 subtype and vice versa, we classified 221 

H3N2 subtype data with H1N1 models and H1N1 subtype data with H3N2 models. 222 

Good classifications meant that the rules (and consequently the signatures associated 223 

to adaptation) generated for one subtype were valid for the other one. Bad 224 

classifications meant that the rules of one subtype did not hold for the data of the 225 

other subtype and hence no cross-subtype marker validity. Both HA and NA H1N1 226 

models were bad classifiers for the HA and NA of the H3N2 type data, respectively 227 

since they failed to distinguish avian sequences in the data in both cases (Sp = 0) 228 

(Table 7). It should be kept in mind that the outcome human was considered positive 229 

outcome and the outcome avian considered as a negative one. The PA-X H1N1 model 230 

could not recognize human sequences in the PA-X H3N2 data (Sn = 0). Furthermore, 231 

the models of PA, PB1-F2 and PB1 proteins of H1N1 subtype were bad classifiers of 232 

the H3N2 data (MCC = -0.11, MCC = 0.056, MCC = 0.302), specifically failing to 233 

identify sequences coming from human hosts (Sn = 0.021, Sn = 0.023, Sn = 0.563). 234 

This meant that H1N1 HAd signatures in the models of HA, NA, PA-X, PA, PB1-F2 235 

and PB1 proteins were not valid for H3N2 subtype data and these proteins of the 236 

H3N2 subtype carried only H3N2-specific HAd signatures. Contrary to this, the 237 

H1N1 models of M1, M2, NP, NS1, NEP and PB2 proteins were able to distinguish 238 

between H3N2 subtype sequences coming from avian and human sources reasonably 239 

well (Sn = 0.97–1.0; Sp = 0.64–0.94; MCC = 0.776–0.941). It proved that these 240 
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proteins of the H3N2 subtype, in addition to the stronger H3N2 HAd signatures, also 241 

carried H1N1 HAd signatures.   242 

The H3N2 models of HA, NA, NP, NS1, NEP, PA-X and PA proteins could not 243 

classify avian and human sequences of H1N1 subtype correctly (MCC = -0.004–244 

0.251). This means that these proteins of the H1N1 subtype carried H1N1-specific 245 

signatures. Whereas the successful classifications of H1N1 subtype data of M1, M2, 246 

PB1-F2, PB1 and PB2 proteins by the respective H3N2 models (MCC = 0.788–0.888; 247 

Sn = 0.956–0.992; Sp = 0.766–0.951) proved that these H1N1 proteins carried both 248 

H1N1 and H3N2 signatures. 249 

Discussion 250 

In this study we have focused on H1N1 and H3N2 and restricted our analyses to these 251 

two subtypes. Our models performed reasonably well since all of them had an average 252 

accuracy of more than 90% in the 10-fold cross validation except NEP (NS2), M1 and 253 

M2 protein models of the H1N1 type (Accuracy: 83.4%, 87.7% and 87.6%, 254 

respectively) and M1 protein model of the H3N2 type (Accuracy 88.8%) (Figure 1). 255 

The reason for the relatively low accuracies of the above exceptions could be either 256 

the lack of training sequences from which the models learn or these sequences may 257 

lack stronger genomic signatures specific to hosts. 258 

In previous studies [16-22], signatures of adaptation were mostly found on the 259 

internal proteins, especially in viral ribonucleoprotein complexes consisting of viral 260 

polymerases and NP. The fact that we were able to build high quality models for all 261 

the proteins for both subtypes, indicated that all the proteins, including the highly 262 

variable HA and NA proteins and the recently discovered PA-X protein, carry 263 

genomic signatures specific to hosts. A major difference between our models and the 264 
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ones previously reported is that the previous models were black box classifiers 265 

whereas our models are transparent. Black box classifiers give classification but do 266 

not provide any straightforward possibility to identify which parameters and for 267 

which values a classification is obtained. Transparent classifiers allow explicit 268 

analysis of the model, i.e. the features and their values, for each classified object. The 269 

models created in this study used aa positions as features and aa residues at those 270 

positions as the values for those features, hence lending themselves for easy 271 

interpretation and further analysis.   272 

Previous studies listed above reported only on singular aa positions as HAd 273 

signatures. However, in addition to singular aa positions, we also identified 274 

combinations of aa residues at specific positions as HAd signatures.  This is the very 275 

first time that combinations of aa positions are reported in this context. These 276 

combinations are shown as conjunctive rules, i.e., rules with more than one condition 277 

in the IF part. It appeared that some aa residues were part of more than one 278 

combination in our models.  This may suggest that these residues are relatively more 279 

important in establishing HAd then the ones appearing in one combination only 280 

(Table 4).  281 

In the M2 H1N1 model, the combinations associated with avian hosts had a Glycine 282 

(G) residue at position 14 while the combinations for human hosts had a Glutamic 283 

acid (E) in the same position. Similarly, in PB2 H3N2 model, Arginine (R) at position 284 

340 was associated to avian hosts while Lysine (K) residue at the same position to 285 

human hosts. It seems that the mutations G14E in M2 H1N1 and R340K in PB2 286 

H3N2 model facilitate the shift of hosts from avian to human. However, these 287 

residues always appear in combination with other residues and therefore they cannot 288 

be used in forms other than the combinations themselves. The reason is obvious.  The 289 
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confidence measures (accuracy, support and decision-coverage) were calculated for 290 

the combination as a whole. We do not report such mutations in our list of mutations 291 

affecting HAd although they indicate an effect. The functions of these combinations 292 

at a molecular level are not understood yet, but they provide a novel and interesting 293 

perspective of looking at sequence based HAd signatures. 294 

HA and NA of both subtypes were found to be only carrying subtype-specific 295 

signatures. This goes well with the current knowledge that these two proteins are the 296 

most diverse proteins that are specifically adapted to interact with the host cell. M1, 297 

M2 and PB2 are shown to be the most conserved proteins from the point of view of 298 

host specifying genomic signatures since they carried the host signatures valid for 299 

both subtypes.  300 

The signatures found in this study were also considered in other contexts in other 301 

studies such as viral viability and antiviral resistances. For instance, positions 30, 142, 302 

207 and 209 occurring in the H1N1 M1 models have been previously shown to affect 303 

viral production when mutated [26], while mutation S31N derived from M2 models is 304 

a known marker of amantadine resistance [27-30]. Table 8 lists all the aa residues and 305 

their descriptions as found in different contexts in the literature. All these different 306 

contexts, that the aa residues from our models are described in, show that they affect 307 

the fitness of the viruses in one or the other way, which in turn facilitates their 308 

adaptation to the new environment or hosts.   309 

Conclusions 310 

The highly predictive rule-based models built for 12 proteins for H1N1 and H3N2 311 

subtypes suggest that there are HAd signatures on all the protein including the diverse 312 

HA, NA and the newly discovered PA-X protein that were not previously studied in 313 
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this context. In addition, the transparent nature of our method allowed us to further 314 

investigate our models for how the predictions are actually done. This resulted in a list 315 

of aa residues and their combinations associated with host specifity. Some of the aa 316 

residues identified in this study were already known while others are novel. The 317 

ability of our methods to capture the combinatorial nature of the HAd process makes 318 

this study unique in its nature. We discovered that the surface proteins HA and NA 319 

carry subtype-specific host signatures in both subtypes while NP, NS1, NEP, PA-X 320 

and PA of the H1N1 subtype and PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype 321 

carry subtype-specific host signatures. We showed that M1, M2, PB1-F2, PB1 and 322 

PB2 of the H1N1 subtype carried H1N1 and some additional H3N2 signatures, and 323 

vice versa, M1, M2, NP, NS1, NEP and PB2 of the H3N2 subtype carried H3N2 and 324 

some additional H1N1 host signatures. The computational results presented here will 325 

eventually require further analysis by testing the host-pathogen interactions under 326 

laboratory conditions. We believe that the computational analyses provide important 327 

support in the characterization of host-pathogen interactions and the proper 328 

combination of in silico and in vitro (probably even in vivo) studies will yield 329 

important novel information concerning the infection biology of various viruses and 330 

other infectious agents.  331 

Methods 332 

The combined feature selection – rule-based modeling methodology used in this is 333 

similar to our previous work where we identified a complete map of potential 334 

pathogenicity markers in the H5N1 subtype of the avian influenza A viruses [31]. 335 
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Data 336 

The data used to make the models was downloaded from the NCBI flu database found 337 

at http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database 338 

[32]. Full-length plus (nearly complete, may only miss the start and stop codons) 339 

protein sequences of the twelve proteins namely, HA, NA, NP, M1, M2, NS1, NEP 340 

(NS2), PA, PA-X, PB1, PB2 and PB1-F2, were separately downloaded as published 341 

up till November 30, 2014. Identical sequences were represented by the oldest 342 

sequence in the database. For each protein, sequences of the H3N2 and H1N1 343 

subtypes of avian and human hosts were downloaded. Sequences of the mixed 344 

subtypes were not included in this study. Table 1 shows the number of sequences for 345 

each of the proteins for each subtype. For each protein we combined the sequences of 346 

the two subtypes used in this study into a single file and aligned them with MUSCLE 347 

(v3.8.31) [33].  348 

Decision Tables  349 

A decision table was created for each of the proteins for both the subtypes. A decision 350 

table can be seen as a tabularized form of the aligned FASTA sequences with an extra 351 

decision/label column, which in our case was the host information. The first column 352 

of the decision tables contained the identifier of the sequence, and the last column was 353 

the label/outcome column, the host information in our case and the rest of the 354 

columns represented the sequence information corresponding to the aligned FASTA 355 

files. The alignment gaps were represented by a ‘?’ in the decision tables. The rows of 356 

a decision table were called objects each representing a particular aa sequence and a 357 

label. Columns other than the first and the last one were the features. 358 
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Feature selection  359 

MCFS, as described in [24], was used to rank the features of the decision tables with 360 

respect to their ability to discern between avian and human hosts. MCFS is 361 

implemented as a software package dmLab [34]. MCFS uses a large number of 362 

decision trees and assigns a normalized relative importance (RI-norm) score to each 363 

feature such that the features contributing more to the discernibility of the outcome 364 

gets a higher score. Statistical significance of the RI-norm scores was assessed with a 365 

permutation test and significant features (p<0.05), after Bonferroni correction [35], 366 

were kept as described in [36]. Only these features were used in the further rule-based 367 

model generation. 368 

Under-sampling the data sets 369 

In the training data for both subtypes, the number of sequences from human hosts was 370 

considerably higher than that from the avian hosts. It has previously been shown that 371 

this imbalance affects the learning in favor of the dominating class [37]. However to 372 

address this problem one can artificially balance the classes [38]. To this end, a 373 

technique called under-sampling was used where the sequences belonging to the 374 

dominating class were randomly sampled equal to the class having the lesser number 375 

of sequences and repeated this step 100 times. In this way for each protein and for 376 

each subtype we created 100 subsets where the number of sequences belonging to 377 

human and avian hosts were equal. A single rule-based classifier was inferred from 378 

each of the subsets, which resulted in 200 classifiers per protein. We illustrate the 379 

process with the following example.  380 

The data set of the NA protein of the H1N1 subtype had 3093 human and 205 avian 381 

sequences, which was a significant imbalance in the number of sequences. From the 382 
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human set we created subsets by randomly extracting 100 times 205 human sequences 383 

and joining them with the 205 avian sequences to create 100 subsets.  384 

Rough sets and rule-based model generation  385 

Rough set theory [23] was used to produce minimal sets of features that can discern 386 

between the objects belonging to different decision classes. ROSETTA [39], a 387 

publicly available software system that implements rough sets theory, was used to 388 

transform the minimal sets of features into rule-based models [40] that consisted of 389 

simple IF-THEN rules. A complete description of rough sets can be found in [41] and 390 

the combined MCFS-ROSETTA approach to model generation in bioinformatics is 391 

described in [42].  392 

The input data to ROSETTA were the balanced decision tables created in the previous 393 

step with only the significant features obtained from applying MCFS. ROSETTA 394 

computed approximately minimal subsets of feature combinations that discerned 395 

between avian and human hosts with the Johnsons algorithm implemented in 396 

ROSETTA. The classifiers were collections of IF-THEN rules. A sample rule from 397 

the HA-H1N1 model: 398 

Rule Accuracy (%) Support Decision 
Coverage(%)  

IF P200=P AND P222=K THEN host=Avian 91.3 229 97.7 

 399 

reads as: “IF at position 200 there is a Proline residue AND at position 222 there is a 400 

Lysine residue THEN the sequence is from an avian host”.  401 

There is additional information about the rules available. Support is the set of 402 

sequences (229 sequences) that satisfy the conditions of the left hand side (LHS), i.e. 403 

the set of sequences that have a proline residue at position 200 and a lysine residue at 404 

position 222. For this rule, Accuracy is 91.3% that is the proportion of correctly 405 
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classified sequences to the total number of supporting sequences (209/229). Human 406 

sequences are considered positive and avian as negatives in this study. The decision 407 

coverage for this rule is 97.7%, which means it correctly classifies 97.7% of the total 408 

avian sequences used to train the classifier. It is calculated as follows: 409 

�������� 	�
���
� �%� � � �������� �  �������
����� �������
 ������� �� ���  ������� ����� ! �  100 

�������� �  	�

��� gives us the total number of sequences that are correctly 410 

classified by the rule. Since the rule is for the avian decision class, the total number of 411 

avian sequences used to train the classifier was 214. So for the stated rule the decision 412 

coverage will be ((0.913*229)/214)*100, which is equal to 97.7%. The above rule is a 413 

conjunctive rule since there is a conjunction of conditions (P200=P AND P222=K) 414 

in the left hand side (LHS) of the rule. A conjunctive rule captures the underlying 415 

combinatorial nature of the HAd process. Each conjunctive rule must always be used 416 

as combination only, because the support, accuracy and the decision coverage 417 

measures are calculated for the conjunction and not for the individual conjuncts. A 418 

rule can also be a singleton rule where LHS consists of only a single condition. 419 

The confidence in these classifiers come from the 10-fold cross validation performed 420 

in ROSETTA. In a 10-fold cross validation step the input data set is randomly divided 421 

into ten equal subsets, say {P1, …, P10}. A classifier is trained on the first nine 422 

subsets {P1, …, P9} and then tested on the remaining, P10 subset. In the next run, 423 

another classifier is trained on {P1, …, P8, P10} and its performance is tested on the 424 

remaining subset, this time P9. Notice that each time the test set is a different one. 425 

The process is repeated 10 times and by then each subset has been used once as a test 426 

set. The performance of all the classifiers is averaged and presented as a cross-427 

validation accuracy. Such a validation is quite common in machine learning since one 428 
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becomes more or less assured that the performance of the classifier was not simply by 429 

chance.   430 

Extraction of a single rule-based model for each protein 431 

Rules from all the 100 classifiers were combined into a single file. Duplicates were 432 

removed. Among partially identical rules, the one with the highest decision coverage 433 

was kept. If the difference of decision coverage was lower than 1% then the shortest 434 

(the rule with least conditions) was kept. Accuracy, support and decision coverage 435 

were calculated on the complete data set for all the rules. Rules that were below the 436 

90% accuracy and 30% decision coverage thresholds were discarded. In this way we 437 

extracted a single, high quality rule-based model for each of the protein for both 438 

H1N1 and H3N2 subtype data. 439 

Classification of sequences  440 

In order to classify a sequence, each rule from the model was applied on it. If the 441 

conditions of the rule matched the sequence, the rule was said to fire on the sequence. 442 

Every fired rule voted for a particular classification specified by its THEN-part. The 443 

number of votes a fired rule casted was the accuracy multiplied by the support of the 444 

rule. For a sequence several rules may fire, each casting votes in favor of the class in 445 

the THEN-part. The final classification was assigned based on the majority of votes. 446 

Consider the rules:  447 

In case of 1) IF P70=S THEN host=Avian. Acc=94.0%   Supp=50 448 

2) IF P14=M and P32=I THEN host=Avian.  Acc=93.0% Supp=43 449 

3) IF P14=L THEN host=Human.  Acc=100% Supp=285 450 

4) IF P57=L THEN host=Human.  Acc=100% Supp=273 451 
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Now let us assume that these four rules are applied to a sequence an it turns out that 452 

Rule 2, 3 and 4 fire for this sequence. Rule 2 will cast 40 (0.93*43) votes for class 453 

Avian while rule 2 and rule 3 will cast 285 and 273 votes in favor of class Human. So, 454 

the sequence will be classified as class Human since the number of votes is 558 455 

versus 40.  456 

In case of no rules fired or there was a tie in the votes, the sequences were labeled as 457 

unknown.   458 

Performance evaluation statistics of the rule-based models 459 

In this study the outcome human was considered as a positive outcome and outcome 460 

avian was considered as a negative one. True positives (TP) were sequences correctly 461 

classified as coming from human hosts. True negatives (TN) were sequences correctly 462 

classified as coming from avian hosts. False positives (FP) were actually avian 463 

sequences but incorrectly classified as human sequences and false negatives (FN) 464 

were actually human sequences that were incorrectly classified as avian sequences. 465 

The performance of the models for all the proteins for both H1N1 and H3N2 was 466 

assessed by the following statistics. 467 

Sensitivity: it is also known as the true positive rate (TPR). In our case, rate at which 468 

a model correctly identifies sequences coming from a human host is the sensitivity i.e. 469 

a sequence originally from human host and classified as coming from human hosts by 470 

the model. It is calculated with the following formula: 471 

�������
��� ���� �  �$
��$ % &'� 

Specificity: Also known as the true negative rate (TNR). The rate at which the model 472 

correctly identifies avian sequences is the specificity, which is calculated by:  473 

����������� ���� � �'
�&$ % �'� 
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Mathew’s correlation coefficient: It is a measure of how well a model classifies as a 474 

whole. The difference with accuracy is that unlike accuracy Mathew’s correlation 475 

coefficient is not effected by un-balanced data and hence gives a better overall idea of 476 

how well the model is classifying. It is calculated by the following formula: 477 

(����)� ����������� ����������� �(		�

� ��$ �  �'� * �&$ �  &'�
+��$ % &$� � ��$ % &'� � ��' % &$� � ��' % &'� 

From alignment positions to true positions 478 

In this study the aa positions for all the H3N2 proteins except the PB1-F2 corresponds 479 

to the positions of the A/Victoria/JY2/1968 virus. For all but PB1-F2 proteins of the 480 

H1N1 data, the positions shown in this study correspond to positions on the 481 

A/Wisconsin/301/1976 virus. The PB1-F2 protein for both viruses is in a truncated 482 

form and we wanted to show positions from a full-length protein. For this reason we 483 

mapped the PB1-F2 H3N2 positions to the PB1-F2 of the A/New York/674/1995 virus 484 

and the PB1-F2 H1N1 positions to full-length PB1-F2 of the A/duck/Korea/372/2009 485 

virus. 486 

Phylogenetic analysis 487 

FastTree 2.1.8 [43] was used to create the phylogeny trees. 488 

Scripting programming language 489 

Python was used for scripting purposes. 490 

List of abbreviations 491 

aa: Amino acids 492 

CAG: Combinatorial accuracy gain 493 
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HA: Hemagglutinin 494 

IAVs: Influenza A viruses  495 

LHS: Left hand side 496 

M1: Matrix protein 1 497 

M2: Matrix protein 2 498 

MCC: Mathew’s correlation coefficient 499 

MCFS: Monte carlo feature selection 500 

NA: Neuraminidase 501 

NEP: Nuclear export protein 502 

NP: Nucleoprotein 503 

NS1: Non structural protein 1 504 

NS2: Non structural protein 2 505 

PA: Polymerase acidic protein 506 

PB1: Polymerase basic protein 1 507 

PB2: Polymerase basic protein 2 508 

Sn: Sensitivity 509 

Sp: Specificity 510 

Competing interests 511 

We have no competing interests. 512 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 23 of 42 

 

Authors Contribution 513 

ZK has performed all computational experiments and together with JK was the main 514 

contributor to the paper. MK and SB have contributed the idea to analyze the virus 515 

data following the earlier work of JK. They contributed to writing the paper. JK 516 

provided the computational methods, supervised the work and together with ZK was 517 

the main contributor to the paper.   518 

Acknowledgements 519 

We would like to thank Husen Umer who provided valuable comments during various 520 

stages of the work.  521 

This research was supported by Uppsala University, Sweden, the ESSENCE grant, 522 

(ZK and JK), JK was supported in part by Institute of Computer Science, Polish 523 

Academy of Sciences, Poland. The EMIDA ERA-NET FP7 EU projects Epi-SEQ (nr. 524 

219235), NADIV (nr. ID 108), the SLU Award of Excellence provided support to SB, 525 

and the Swedish Research Council FORMAS Strong Research Environments project, 526 

nr 2011-1692, “BioBridges”) to ML and SB.  527 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 24 of 42 

 

References 528 

1. Shi Y, Wu Y, Zhang W, Qi J, Gao GF. Enabling the 'host jump': structural 529 

determinants of receptor-binding specificity in influenza A viruses. Nature reviews 530 

Microbiology. 2014;12(12):822-31. doi:10.1038/nrmicro3362. 531 

2. cdc. Influenza (Seasonal) Fact Sheet. 2014. 532 

http://www.who.int/mediacentre/factsheets/fs211/en/. Accessed 17 April 2015. 533 

3. Taubenberger JK, Morens DM. Pandemic influenza--including a risk assessment of 534 

H5N1. Revue scientifique et technique. 2009;28(1):187-202.  535 

4. Kilbourne ED. Influenza pandemics of the 20th century. Emerging infectious 536 

diseases. 2006;12(1):9-14. doi:10.3201/eid1201.051254. 537 

5. Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane 538 

glycoproteins. The Journal of biological chemistry. 2010;285(37):28403-9. 539 

doi:10.1074/jbc.R110.129809. 540 

6. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM et al. A distinct 541 

lineage of influenza A virus from bats. Proceedings of the National Academy of 542 

Sciences of the United States of America. 2012;109(11):4269-74. 543 

doi:10.1073/pnas.1116200109. 544 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 25 of 42 

 

7. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M et al. New world bats harbor 545 

diverse influenza A viruses. PLoS pathogens. 2013;9(10):e1003657. 546 

doi:10.1371/journal.ppat.1003657. 547 

8. Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution of the 548 

1918 "Spanish" influenza virus hemagglutinin gene. Proceedings of the National 549 

Academy of Sciences of the United States of America. 1999;96(4):1651-6.  550 

9. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A et al. Antigenic 551 

and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses 552 

circulating in humans. Science. 2009;325(5937):197-201. 553 

doi:10.1126/science.1176225. 554 

10. Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, 555 

Lvov DK et al. Avian influenza A viruses differ from human viruses by recognition of 556 

sialyloligosaccharides and gangliosides and by a higher conservation of the HA 557 

receptor-binding site. Virology. 1997;233(1):224-34. doi:10.1006/viro.1997.8580. 558 

11. Li OT, Chan MC, Leung CS, Chan RW, Guan Y, Nicholls JM et al. Full factorial 559 

analysis of mammalian and avian influenza polymerase subunits suggests a role of an 560 

efficient polymerase for virus adaptation. PloS one. 2009;4(5):e5658. 561 

doi:10.1371/journal.pone.0005658. 562 

12. Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of 563 

influenza A virus is a determinant of host range. Journal of virology. 564 

1993;67(4):1761-4.  565 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 26 of 42 

 

13. Qiang X, Kou Z. Prediction of interspecies transmission for avian influenza A 566 

virus based on a back-propagation neural network. Mathematical and Computer 567 

Modelling. 2010;52(11–12):2060-5. 568 

doi:http://dx.doi.org/10.1016/j.mcm.2010.06.008. 569 

14. Wang J, Ma C, Kou Z, Zhou YH, Liu HL. Predicting transmission of avian 570 

influenza A viruses from avian to human by using informative physicochemical 571 

properties. International journal of data mining and bioinformatics. 2013;7(2):166-79.  572 

15. Eng CL, Tong JC, Tan TW. Predicting host tropism of influenza A virus proteins 573 

using random forest. BMC medical genomics. 2014;7 Suppl 3:S1. doi:10.1186/1755-574 

8794-7-S3-S1. 575 

16. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. 576 

Characterization of the 1918 influenza virus polymerase genes. Nature. 577 

2005;437(7060):889-93. doi:10.1038/nature04230. 578 

17. Chen GW, Chang SC, Mok CK, Lo YL, Kung YN, Huang JH et al. Genomic 579 

signatures of human versus avian influenza A viruses. Emerging infectious diseases. 580 

2006;12(9):1353-60. doi:10.3201/eid1209.060276. 581 

18. Chen GW, Shih SR. Genomic signatures of influenza A pandemic (H1N1) 2009 582 

virus. Emerging infectious diseases. 2009;15(12):1897-903. 583 

doi:10.3201/eid1512.090845. 584 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 27 of 42 

 

19. Finkelstein DB, Mukatira S, Mehta PK, Obenauer JC, Su X, Webster RG et al. 585 

Persistent host markers in pandemic and H5N1 influenza viruses. Journal of virology. 586 

2007;81(19):10292-9. doi:10.1128/JVI.00921-07. 587 

20. Allen JE, Gardner SN, Vitalis EA, Slezak TR. Conserved amino acid markers 588 

from past influenza pandemic strains. BMC microbiology. 2009;9:77. 589 

doi:10.1186/1471-2180-9-77. 590 

21. Miotto O, Heiny AT, Albrecht R, Garcia-Sastre A, Tan TW, August JT et al. 591 

Complete-proteome mapping of human influenza A adaptive mutations: implications 592 

for human transmissibility of zoonotic strains. PloS one. 2010;5(2):e9025. 593 

doi:10.1371/journal.pone.0009025. 594 

22. Hu YJ, Tu PC, Lin CS, Guo ST. Identification and chronological analysis of 595 

genomic signatures in influenza A viruses. PloS one. 2014;9(1):e84638. 596 

doi:10.1371/journal.pone.0084638. 597 

23. Pawlak Z. Rough sets. International Journal of Computer and Information 598 

Sciences. 1982;11(5):341-56. doi:10.1007/BF01001956. 599 

24. Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski 600 

J. Monte Carlo feature selection for supervised classification. Bioinformatics. 601 

2008;24(1):110-7. doi:10.1093/bioinformatics/btm486. 602 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 28 of 42 

 

25. Bornelov S, Marillet S, Komorowski J. Ciruvis: a web-based tool for rule 603 

networks and interaction detection using rule-based classifiers. BMC bioinformatics. 604 

2014;15:139. doi:10.1186/1471-2105-15-139. 605 

26. Bialas KM, Desmet EA, Takimoto T. Specific residues in the 2009 H1N1 swine-606 

origin influenza matrix protein influence virion morphology and efficiency of viral 607 

spread in vitro. PloS one. 2012;7(11):e50595. doi:10.1371/journal.pone.0050595. 608 

27. Abed Y, Goyette N, Boivin G. Generation and characterization of recombinant 609 

influenza A (H1N1) viruses harboring amantadine resistance mutations. 610 

Antimicrobial agents and chemotherapy. 2005;49(2):556-9. 611 

doi:10.1128/AAC.49.2.556-559.2005. 612 

28. He G, Qiao J, Dong C, He C, Zhao L, Tian Y. Amantadine-resistance among 613 

H5N1 avian influenza viruses isolated in Northern China. Antiviral research. 614 

2008;77(1):72-6. doi:10.1016/j.antiviral.2007.08.007. 615 

29. Cheung CL, Rayner JM, Smith GJ, Wang P, Naipospos TS, Zhang J et al. 616 

Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. The 617 

Journal of infectious diseases. 2006;193(12):1626-9. doi:10.1086/504723. 618 

30. Ilyushina NA, Govorkova EA, Webster RG. Detection of amantadine-resistant 619 

variants among avian influenza viruses isolated in North America and Asia. Virology. 620 

2005;341(1):102-6. doi:10.1016/j.virol.2005.07.003. 621 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 29 of 42 

 

31. Khaliq Z, Leijon M, Belak S, Komorowski J. A complete map of potential 622 

pathogenicity markers of avian influenza virus subtype H5 predicted from 11 623 

expressed proteins. BMC microbiology. 2015;15:128. doi:10.1186/s12866-015-0465-624 

x. 625 

32. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T et al. The 626 

influenza virus resource at the National Center for Biotechnology Information. 627 

Journal of virology. 2008;82(2):596-601. doi:10.1128/jvi.02005-07. 628 

33. Edgar R. MUSCLE: multiple sequence alignment with high accuracy and high 629 

throughput. Nucleic Acids Research. 2004;32(5):1792-7.  630 

34. Draminski M. Michal Dramiski Home Page. 2014. 631 

http://www.ipipan.waw.pl/~mdramins/software.htm. Accessed December 10 2014. 632 

35. Holm S. A simple sequentially rejective multiple test procedure. Scandinavian 633 

journal of statistics. 1979:65-70.  634 

36. Bornelov S, Saaf A, Melen E, Bergstrom A, Torabi Moghadam B, Pulkkinen V et 635 

al. Rule-based models of the interplay between genetic and environmental factors in 636 

childhood allergy. PLoS One. 2013;8(11):e80080. doi:10.1371/journal.pone.0080080. 637 

37. Folorunso S, Adeyemo A. Alleviating Classification Problem of Imbalanced 638 

Dataset. African Journal of Computing & ICT. 2013;6(2).  639 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 30 of 42 

 

38. Bekkar M, Alitouche TA. IMBALANCED DATA LEARNING APPROACHES 640 

REVIEW. International Journal. 2013.  641 

39. Øhrn A, Komorowski J, editors. ROSETTA: A Rough Set Toolkit for Analysis of 642 

Data. Proc. Third International Joint Conference on Information Sciences, Fifth 643 

International Workshop on Rough Sets and Soft Computing (RSSC'97); 1997 March 644 

1-5; Durham, NC, USA. 645 

40. Komorowski J. Jan Komorowski's Bioinformatics Lab. 2014. 646 

http://bioinf.icm.uu.se/ -> Repositories -> Rosetta. Accessed December 10 2014. 647 

41. Komorowski J, Pawlak Z, Polkowski L, Skowron A. Rough sets: A tutorial. 648 

Rough fuzzy hybridization: A new trend in decision-making. 1999:3-98.  649 

42. Komorowski J. Learning rule-based models - the rough set approach. In: Brahme 650 

A, editor. Comprehensive Biomedical Physics Elsevier; 2014. 651 

43. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood 652 

trees for large alignments. PloS one. 2010;5(3):e9490. 653 

doi:10.1371/journal.pone.0009490. 654 

44. Smeenk CA, Wright KE, Burns BF, Thaker AJ, Brown EG. Mutations in the 655 

hemagglutinin and matrix genes of a virulent influenza virus variant, A/FM/1/47-MA, 656 

control different stages in pathogenesis. Virus research. 1996;44(2):79-95.  657 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 31 of 42 

 

45. Liu T, Ye Z. Introduction of a temperature-sensitive phenotype into influenza 658 

A/WSN/33 virus by altering the basic amino acid domain of influenza virus matrix 659 

protein. Journal of virology. 2004;78(18):9585-91. doi:10.1128/JVI.78.18.9585-660 

9591.2004. 661 

46. Watanabe K, Handa H, Mizumoto K, Nagata K. Mechanism for inhibition of 662 

influenza virus RNA polymerase activity by matrix protein. Journal of virology. 663 

1996;70(1):241-7.  664 

47. Akarsu H, Burmeister WP, Petosa C, Petit I, Muller CW, Ruigrok RW et al. 665 

Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear 666 

export protein (NEP/NS2). The EMBO journal. 2003;22(18):4646-55. 667 

doi:10.1093/emboj/cdg449. 668 

48. Liu W, Zou P, Ding J, Lu Y, Chen YH. Sequence comparison between the 669 

extracellular domain of M2 protein human and avian influenza A virus provides new 670 

information for bivalent influenza vaccine design. Microbes and infection / Institut 671 

Pasteur. 2005;7(2):171-7. doi:10.1016/j.micinf.2004.10.006. 672 

49. Holsinger LJ, Lamb RA. Influenza virus M2 integral membrane protein is a 673 

homotetramer stabilized by formation of disulfide bonds. Virology. 1991;183(1):32-674 

43.  675 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 32 of 42 

 

50. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus 676 

virulence determinant: the NS1 protein four C-terminal residues modulate 677 

pathogenicity. Proceedings of the National Academy of Sciences of the United States 678 

of America. 2008;105(11):4381-6. doi:10.1073/pnas.0800482105. 679 

51. Heikkinen LS, Kazlauskas A, Melen K, Wagner R, Ziegler T, Julkunen I et al. 680 

Avian and 1918 Spanish influenza a virus NS1 proteins bind to Crk/CrkL Src 681 

homology 3 domains to activate host cell signaling. The Journal of biological 682 

chemistry. 2008;283(9):5719-27. doi:10.1074/jbc.M707195200. 683 

52. Min JY, Li S, Sen GC, Krug RM. A site on the influenza A virus NS1 protein 684 

mediates both inhibition of PKR activation and temporal regulation of viral RNA 685 

synthesis. Virology. 2007;363(1):236-43. doi:10.1016/j.virol.2007.01.038. 686 

53. Hale BG, Kerry PS, Jackson D, Precious BL, Gray A, Killip MJ et al. Structural 687 

insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 688 

protein. Proceedings of the National Academy of Sciences of the United States of 689 

America. 2010;107(5):1954-9. doi:10.1073/pnas.0910715107. 690 

54. Hale BG, Jackson D, Chen YH, Lamb RA, Randall RE. Influenza A virus NS1 691 

protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. 692 

Proceedings of the National Academy of Sciences of the United States of America. 693 

2006;103(38):14194-9. doi:10.1073/pnas.0606109103. 694 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 33 of 42 

 

55. Melen K, Kinnunen L, Fagerlund R, Ikonen N, Twu KY, Krug RM et al. Nuclear 695 

and nucleolar targeting of influenza A virus NS1 protein: striking differences between 696 

different virus subtypes. Journal of virology. 2007;81(11):5995-6006. 697 

doi:10.1128/JVI.01714-06. 698 

56. Pan C, Cheung B, Tan S, Li C, Li L, Liu S et al. Genomic signature and mutation 699 

trend analysis of pandemic (H1N1) 2009 influenza A virus. PloS one. 700 

2010;5(3):e9549. doi:10.1371/journal.pone.0009549. 701 

57. Tamuri AU, Dos Reis M, Hay AJ, Goldstein RA. Identifying changes in selective 702 

constraints: host shifts in influenza. PLoS computational biology. 703 

2009;5(11):e1000564. doi:10.1371/journal.pcbi.1000564. 704 

58. Lipatov AS, Yen HL, Salomon R, Ozaki H, Hoffmann E, Webster RG. The role 705 

of the N-terminal caspase cleavage site in the nucleoprotein of influenza A virus in 706 

vitro and in vivo. Archives of virology. 2008;153(3):427-34. doi:10.1007/s00705-707 

007-0003-8. 708 

59. Bussey KA, Desmet EA, Mattiacio JL, Hamilton A, Bradel-Tretheway B, Bussey 709 

HE et al. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian 710 

influenza virus polymerase activity in mammalian cells. Journal of virology. 711 

2011;85(14):7020-8. doi:10.1128/JVI.00522-11. 712 

60. Desmet EA, Bussey KA, Stone R, Takimoto T. Identification of the N-terminal 713 

domain of the influenza virus PA responsible for the suppression of host protein 714 

synthesis. Journal of virology. 2013;87(6):3108-18. doi:10.1128/JVI.02826-12. 715 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 34 of 42 

 

61. Jin H, Lu B, Zhou H, Ma C, Zhao J, Yang CF et al. Multiple amino acid residues 716 

confer temperature sensitivity to human influenza virus vaccine strains (FluMist) 717 

derived from cold-adapted A/Ann Arbor/6/60. Virology. 2003;306(1):18-24.  718 

62. Xu C, Hu WB, Xu K, He YX, Wang TY, Chen Z et al. Amino acids 473V and 719 

598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, 720 

especially in mammalian cells. The Journal of general virology. 2012;93(Pt 3):531-721 

40. doi:10.1099/vir.0.036434-0. 722 

63. Mehle A, Doudna JA. Adaptive strategies of the influenza virus polymerase for 723 

replication in humans. Proceedings of the National Academy of Sciences of the 724 

United States of America. 2009;106(50):21312-6. doi:10.1073/pnas.0911915106. 725 

64. Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, Shinya K et al. Biological 726 

and structural characterization of a host-adapting amino acid in influenza virus. PLoS 727 

pathogens. 2010;6(8):e1001034. doi:10.1371/journal.ppat.1001034. 728 

65. Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays 729 

a key role in enhanced polymerase activity of influenza A viruses in mammalian host 730 

cells. Journal of virology. 2010;84(9):4395-406. doi:10.1128/JVI.02642-09. 731 

66. Foeglein A, Loucaides EM, Mura M, Wise HM, Barclay WS, Digard P. Influence 732 

of PB2 host-range determinants on the intranuclear mobility of the influenza A virus 733 

polymerase. The Journal of general virology. 2011;92(Pt 7):1650-61. 734 

doi:10.1099/vir.0.031492-0. 735 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 35 of 42 

 

67. Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P. A single mutation 736 

in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to 737 

increased virulence. PLoS pathogens. 2007;3(10):1414-21. 738 

doi:10.1371/journal.ppat.0030141. 739 

68. Burke DF, Smith DJ. A recommended numbering scheme for influenza A HA 740 

subtypes. PloS one. 2014;9(11):e112302. doi:10.1371/journal.pone.0112302. 741 

69. Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. The antigenic structure of the 742 

influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell. 1982;31(2 Pt 1):417-27.  743 

70. Brownlee GG, Fodor E. The predicted antigenicity of the haemagglutinin of the 744 

1918 Spanish influenza pandemic suggests an avian origin. Philosophical transactions 745 

of the Royal Society of London Series B, Biological sciences. 2001;356(1416):1871-746 

6. doi:10.1098/rstb.2001.1001. 747 

 748 

Figure Legends 749 

Figure 1. Mean accuracies of the classifiers from 10-fold cross validations. The 750 

red bars are for the H1N1 subtype and cyan bars are for the H3N2 subtype. 751 

Figure 2. Performance of the rule-based models. The figure shows how well the 752 

models perform from a classification point of view, which is shown in terms of 753 

Mathew’s correlation coefficient (MCC) values when tested on its corresponding 754 

complete input data set for each protein model of both subtypes. A value of 1 means a 755 

perfect classification, 0 is for a prediction no better than random and -1 indicates a 756 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2016. ; https://doi.org/10.1101/044909doi: bioRxiv preprint 

https://doi.org/10.1101/044909


Page 36 of 42 

 

total disagreement between predictions and observations. The red bars are for the 757 

H1N1 subtype and cyan bars are for the H3N2 subtype. 758 

Figure 3. Ciruvis diagrams of combinations from the rules of H1N1 models. 759 

Models having at least three combinations are shown. The outer circle shows the 760 

positions. The inner circle shows the position or positions to which the position of the 761 

outer circle is connected. The edges show these connections.  The width and color of 762 

the edges are related to the connection score (low = yellow and thin, high = red and 763 

thick). The width of an outer position is the sum of all connections to it, scaled so that 764 

all positions together cover the whole circle [25].  765 

Figure 4. Ciruvis diagrams of combinations from the rules of H3N2 models. 766 

Models having at least three combinations are shown. The outer circle shows the 767 

positions. The inner circle shows the position or positions to which the position of the 768 

outer circle is connected. The edges show these connections.  The width and color of 769 

the edges are related to the connection score (low = yellow and thin, high = red and 770 

thick). The width of an outer position is the sum of all connections to it, scaled so that 771 

all positions together cover the whole circle [25]. 772 

Figure 5. Phylogeny of PB2 H3N2 protein of avian hosts annotated with top 5 773 

avian rules form the PB2 H3N2 model. Each sequences is represented by its 774 

GeneBank accession. The violet nodes mark the sequences that supports rule 1,2,3,4 775 

and 5, which are 91.4% of the total sequences. Similarly the DarkViolet nodes mark 776 

the sequences that support rule 1, 2, 3 and 4 but lacks support for rule 5, which are 777 

2.2% of the total sequences. The nodes with a LightBlue background are the new, 778 

unseen sequences. The unmarked nodes do not support the top 5 rules, and were 779 

either supporting rules other than the top 5 or were not classified by the models. 780 
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Tables 801 

Table 1: The training data. 802 

 

Nr. of sequences for each subtype 
 Features after MCFS H1N1 H3N2 

 Protein Avian Human Avian  Human  Total Features H1N1 H3N2 
HA 214 5205 164 3715 628 115 88 
NA 205 3093 173 3412 517 93 79 
NS1 150 1258 150 1176 249 98 85 
NEP 61 407 54 299 124 31 26 
NP 125 839 93 773 506 61 69 
M1 45 467 42 355 275 18 15 
M2 65 461 64 503 98 25 23 
PA 192 1677 143 1358 726 65 47 
PA-X 57 164 45 244 252 28 24 
PB1 171 1654 132 1347 762 59 33 
PB2 184 1817 136 1297 776 52 42 
PB1-F2 151 224 112 737 101 64 54 

 803 

Table 2: Rule-based model of HA protein for the H1N1 subtype 804 

Rule Accuracy (%) Support Decision Coverage (%) 
IF P435=I THEN host=Human 99.9 5128 98.4 
IF P200=S THEN host=Human 99.9 4052 77.8 
IF P10=Y THEN host=Human 99.8 3998 76.7 
IF P88=S THEN host=Human 99.9 3989 76.5 
IF P6=V THEN host=Human 99.8 3936 75.5 
IF P222=R THEN host=Human 99.9 3823 73.4 
IF P220=T THEN host=Human 100.0 3584 68.8 
IF P516=K THEN host=Human 99.9 1818 34.9 
IF P200=P and P222=K THEN host=Avian 91.3 229 97.7 
IF P130=K THEN host=Avian 91.3 218 93.0 
IF P2=E and P222=K THEN host=Avian 96.2 208 93.5 
IF P137=A and P544=L THEN host=Avian 96.1 205 92.1 
IF P78=L and P435=V THEN host=Avian 97.1 204 92.5 
IF P9=F THEN host=Avian 98.5 204 93.9 
IF P6=F THEN host=Avian 98.2 169 77.6 
IF P14=V THEN host=Avian 99.4 165 76.6 
IF P173=T THEN host=Avian 98.7 158 72.9 
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Table 3: Performance of the rule-based models on the new, unseen data 805 

 Human Sequences Avian Sequences 
Protein Total Correctly classified Total Correctly classified 
HA-H1N1 107 104 2 2 
HA-H3N2 72 72 4 4 
M1-H1N1 24 24 0 0 
M1-H3N2 7 7 0 0 
M2-H1N1 30 26 1 1 
M2-H3N2 21 15 3 3 
NA-H1N1 32 32 2 1 
NA-H3N2 45 45 4 3 
NP-H1N1 13 13 1 1 
NP-H3N2 7 7 4 4 
NS1-H1N1 30 30 2 2 
NS1-H3N2 18 18 3 3 
NEP-H1N1 11 11 2 2 
NEP-H3N2 7 7 2 2 
PAX-H1N1 17 13 2 2 
PAX-H3N2 6 6 0 0 
PA-H1N1 33 28 2 2 
PA-H3N2 23 23 3 3 
PB1F2-H1N1 2 2 2 2 
PB1F2-H3N2 8 7 4 0 
PB1-H1N1 27 27 0 0 
PB1-H3N2 19 19 1 1 
PB2-H1N1 28 28 2 2 
PB2-H3N2 15 15 3 3 

 806 

Table 4: Amino acid residues having the most interactions in the models of both subtypes.  807 

Subtype Protein Positions Number of interactions 
H1N1 HA 222K 2 
 M1 121T 5 
 M2 14G 6 
 NEP 57S, 60S 2 
 PA 28P, 277S 3 
 PA-X 28P 4 
 PB1 179M, 741A 3 
 PB2 65E 3 
H3N2 M1 101R 2 
 M2 11T, 14G, 31S, 54R 2 
 NEP 14M 4 
 PB1 212L 2 
 PB2 82N 6 
 808 

Table 5: Novel singular aa positions associated to host adaptation 809 

Protein Novel singular positions 
HA 6,9,10,14,23,47,66,69,78,88,91,94,130,173,189,200,220,222,435,516 
M1 30,116,142,207,209 
M2 13,16,31,36,43,51,54 
NA 16,18,19,23,30,40,42,44,46,47,74,79,147,150,157,166,232,285,341,344,351,369,372,

389,397,435,437,466 
NP 31,53,98,146,444,450,498 
NS1 6,7,14,23,27,28,74,123,152,192,220,226 
NS2 6,7,14,32,34,48,83,86 
PA 85,323,336,348,362,300 
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PAX 28,85,210,233 
PB1 12,54,59,113,175,212,339,435,576,586,587,619,709 
PB1F2 3,6,12,17,21,25,26,27,28,33,47,52,54,57,58,60,62,65,82 
PB2 54,65,354 

 810 

Table 6: Amino acid changes associated with host adaptation 811 

H1N1  H3N2 
Protein Position Avian Human  Protein Position Avian Human 
HA 6 F V  HA 78 R E 
NA 46 P T  NA 30 A I 
 74 L V   40 N Y 
NP 100 R I,V   44 I S 
NS1 6 I M  NP 16 G D 
NEP 6 I M  PA-X 28 P L 
PB1-F2 58 L -  PA 28 P L 
PB2 588 A I   57 R Q 
     PB2 9 D N 
      64 M T 

 812 

Table 7:  Performance of the H1N1 models on H3N2 data and vice versa. Sensitivity is the ability to 813 

correctly predict human sequences and specificity is the ability to correctly predict avian sequences where 814 

1 means perfect prediction and 0 means no correct predictions. Mathew’s correlation coefficient (MCC) 815 

value is a measure of how well the model performs overall where 1 is perfect prediction, 0 is similar to 816 

prediction by chance and -1 is total disagreement between observations and predictions. “na” means the 817 

measure could not be calculated for the given model. 818 

 Protein Sensitivity Specificity MCC 

H3N2 data - H1N1 models 

HA 1 0 na 
M1 1 0.895 0.941 
M2 1 0.742 0.848 
NA 1 0 na 
NP 1 0.891 0.938 
NS1 1 0.745 0.849 
NEP 1 0.642 0.776 
PA-X 0 1 na 
PA 0.021 0.93 -0.11 
PB1-F2 0.023 1 0.056 
PB1 0.563 0.909 0.302 
PB2 0.979 0.949 0.873 

H1N1 data - H3N2 models 

HA 0 na na 
M1 0.957 0.975 0.885 
M2 0.987 0.766 0.804 
NA 1 0 -0.004 
NP 0.363 0.984 0.251 
NS1 0.365 0.993 0.236 
NEP 0.027 1 0.06 
PA-X 0.202 0.982 0.224 
PA 0.247 0.995 0.177 
PB1-F2 0.991 0.804 0.831 
PB1 0.992 0.877 0.888 
PB2 0.956 0.951 0.788 

 819 
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Table 8: Amino acid positions discussed in literature from the models of both the subtypes for all 820 

proteins 821 

Protein Positions Description 
M1 115,121,137 Known signatures of host-adaptation [18, 21, 22] 

30,142,207,209 Affecting viral production on mutation [26] 
121 Affecting viral replication [44] 
101 Determinant of temperature sensitivity [45], located in a 

transcription inhibition site [46] and is also interacting 
with NEP [47] 

M2 11,14,18,20,28,
55,57,78,82,89,
93 

Known signatures of host-adaptation [18, 21, 22, 48] 

31 S31N is a known marker for amantadine resistance [27-
30] 

18,20 Lie next to 17,19 which forms a di-sulphide bond [49] 
NS1 18,21,22,53,60,

70,81,112,114,1
71,215,227 

Known signatures of host-adaptation [19, 50, 17, 21, 22, 
20] 

215 Required for Crk/CrL-SH3 binding [51] 
123 Necessary for interaction with PKR, resulting in an 

inhibition of eIF2alpha phosphorylation [52] 
95 Along with others, has been shown to be necessary for 

binding p85beta and activating PI3K signaling [53, 54] 
220 Part of nuclear localization signal 2 essential for the 

importin-alpha binding [55] 
NEP(NS2) 57,60,70,107 Known signatures of host-adaptation [17, 56, 18, 22, 21] 
NP 16,33,100,214,2

83,313,351,353,
357,422 

Known signatures of host-adaptation [20, 18, 57, 19, 22, 
21] 

16 D16G shown to decrease pathogenicity several fold [58] 
PA 28,55,57,65,256

,268,277,356,38
2,400,409 

Known signatures of host-adaptation [19, 18, 20, 57, 22, 
21] 

85,336 Residues 85I and 336M are deemed important for 
enhanced polymerase activity in mammalian cells [59] 

57,65,85 Shown to be involved in suppressing the host cell protein 
synthesis during infection [60] 

PB1 52,179,216,298,
327,336,361,37
5,581,741 

Known signatures of host-adaptation [57, 18, 21, 22, 16] 

581 Shown to be conferring temperature sensitivity to human 
influenza virus vaccine strains [61] 

473 Mutation at position 473 has been shown to decrease 
polymerase activity [62] 

PB2 9,44,64,81,105,
271,292,368,45
3,588,613,682,6
84 

Known signatures of host-adaptation [57, 18, 19, 22, 21] 

591 591Q is known to mimic the effect of 627K [63, 64] 
271 271A shown to increase polymerase activity in 

mammalian cells [65] 
271,588 Also been shown to be host range determinants [66] 

PB1-F2 16,23,42,66,70,
73,76 

Known signatures of host-adaptation [17, 22] 

66 Linked with affecting pathogenicity [67] 
NA 46,47,74,147,15 Under selection pressure with a shift of hosts from birds 
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7,341,351 to humans [57] 
344 Calcium ion binds here that stabilizes the molecule 

(UniProt: Q9IGQ6). 
HA 2,6,9,10,14 Signal peptide domain 

88,173,220,22 Position 71, 159, 206 and 208 of the fully-mature HA 
with H3-numbering [68]) are part of the antigenic sites 
Cb, Sb and Ca of the HA protein, respectively [69, 70] 

 822 
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AIS23601
AFO83466

AHN02061
AHZ44236

AEI30016
AFN66839

AEM75533
BAQ35877

AHN01786
ACX55509
ABO52587
ABO76956

ABO52598
ABS89408

ABR37494
ABO52576
AEK65762

AET76678
ACZ45452

BAJ76645
AEK65817

AEM75910
AHN03266

ABB19736
ADP07228
AHL81954

AHN04437
AHN03055
AHN01175

AHL24584
AHL24594
AIJ11009

BAQ35767
BAM42771

BAQ35800
AIS23590
AEM00337
AGE02750

ABB88266
AHL24574

AIJ10973
ABB20254

AIJ10985
AIJ10997

BAO56919
AEI30007

AEI30026
AHM99540
AHN03656

AHN04214
ACJ14466
ACU15050

AEI30028
AHN03007

ABB87428
AGL59017

AEP17304
AEP95316
AEP17293

ABQ41885
ABC59716
ACD88658
ACF25539

AHL81660
AHL81710

ABO51839
AGK42533

AGC73395
ADU20338
ABL75573

AET75677
AET75471

ACX55487
AEK65784
ACX55432
ACX55443

AHN04000
AGE00678

AHN04334
AHN04250

AGE01043
AET76864
AGD99815

AHL81856
ABI84783

AHN00668
AHZ43611
AGE08042

AHZ44128
AHM99636
AHL82574

AET75517
AFY06403
AEM75712
AHN00225
AET76886
AET76656
ACZ45326

AEK65892
AEM75227
AEM75921

ACV41547

 
 
 
 
 
 

Rules 1,2,3,4,5 apply,  91.4%  coverage
Rules 1,2,3,5 apply,  1.4%  coverage
Rules 1,2,3,4 apply,  2.2%  coverage
Rules 2,3,4,5 apply,  1.4%  coverage
Rules 1,2,4,5 apply,  2.2%  coverage
Rules 1,3,4,5 apply,  1.4%  coverage
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