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Abstract

Motivation: Graphical models are often employed to interpret patterns of
correlations observed in data through a network of interactions between the vari-
ables. Recently, Ising/Potts models, also known as Markov random fields, have
been productively applied to diverse problems in biology, including the prediction
of structural contacts from protein sequence data and the description of neural ac-
tivity patterns. However, inference of such models is a challenging computational
problem that cannot be solved exactly. Here we describe the adaptive cluster ex-
pansion (ACE) method to quickly and accurately infer Ising or Potts models based
on correlation data. ACE avoids overfitting by constructing a sparse network of
interactions sufficient to reproduce the observed correlation data within the statisti-
cal error expected due to finite sampling. When convergence of the ACE algorithm
is slow, we combine it with a Boltzmann Machine Learning algorithm (BML). We
illustrate this method on a variety of biological and artificial data sets and compare
it to state-of-the-art approximate methods such as Gaussian and pseudo-likelihood
inference.

Results: We show that ACE accurately reproduces the true parameters of the un-
derlying model when they are known, and yields accurate statistical descriptions
of both biological and artificial data. Models inferred by ACE have substantially
better statistical performance compared to those obtained from faster Gaussian
and pseudo-likelihood methods, which only precisely recover the structure of the
interaction network.

Availability: The ACE source code, user manual, and tutorials with example
data are freely available on GitHub at https://github.com/johnbarton/ACE.
Contacts: jpbarton@gmail.com, cocco@lps.ens.fr

Supplementary information: Supplementary data are available
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1 Introduction

Interpreting patterns of correlations in data is a fundamental problem across scien-
tific disciplines. A common approach to this problem is to infer a simple graphical
model that explains the statistics of the data through a network of effective inter-
actions between the variables, which may then be used to generate new predictions
[1]. The goal of this approach is to disentangle the direct interactions between
variables from their correlations, which arise through a combination of direct and
indirect effects. Here we focus on a particular family of undirected graphical mod-
els, referred to as Potts models in the language of statistical physics, which have
recently been applied to study a wide variety of biological systems. Applications
include inference of the effective connectivity of populations of neurons, and their
patterns of firing activity, based on data from multi-electrode recordings [2, 3, 4, 5],
and the prediction of protein contact residues [6] and the fitness effects of mutations
[7, 8, 9] based on the analysis of multiple sequence alignments (MSAs).

Unfortunately, the inference of Potts models from data is challenging. The
computational time required for naive Potts inference algorithms scales exponen-
tially with the system size, rendering the problem intractable for realistic systems
of interest. Various approximations have been employed to combat this problem,
including Gaussian and mean-field inference [10], perturbative expansions [11, 12],
and pseudo-likelihood methods [13, 14]. These approximate methods can success-
fully capture the general structure of the network of interactions, recovering, in
particular, contact residues in the three-dimensional structure of protein families
[6, 15, 16, 17, 18, 19, 20], but the resulting models typically give a less accurate
statistical description of the data [21]. Alternately, algorithms based on itera-
tive rounds of Monte Carlo simulation [22, 8, 23] are capable of inferring models
that accurately reproduce the observed correlations, but they are typically slow to
converge.

Here we describe an extension of the adaptive cluster expansion (ACE) method,
originally devised for binary (Ising) variables [24, 25], to more general (Potts)
variables taking multiple categorical values. We also describe new computational
methods for faster inference, including a fast Monte Carlo learning procedure and
the optional incorporation of prior knowledge about the structure of the interaction
graph. The algorithm has been successfully applied to real data with as many as
several hundred variables, including studies of neural activity in the retina and
prefrontal cortex [24, 25, 5, 26], human immunodeficiency virus (HIV) fitness based
on protein MSA data [8, 27], and lattice protein models [28]. Below we illustrate
the application of this method to both real and artificial data sets. We show that
models inferred by ACE give an excellent reconstruction of the statistics of the data.
They also accurately recover, considering sampling limitations, true underlying
model parameters when they are known, and can achieve comparable performance
to state-of-the-art methods for predicting structural contacts in protein family data.
We compare these results to those obtained using other approximate inference
methods, focusing in particular on pseudo-likelihood methods.

1.1 Background

The Potts model emerges naturally in the statistical description of complex sys-
tems. Consider a system of N variables described by the configuration x =
{x1,29,..., 2N}, with 2; € {1,2,...,¢;}. The number of discrete categories g;
that each variable x; can take on, which we refer to as states, may depend on the
variable index ¢. For proteins the states correspond to particular amino acids, while
for neurons they represent the binary (firing or silent) state of activity. Given a
set of measurements of the system, the empirical average over the sampled config-
urations gives us the ), ¢; individual and ), _ ; 44 pairwise frequencies for the
different states of each variable in the data. We denote the individual and pair-
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wise frequencies by p;(a) and p;;(a,b), respectively, where ¢, j are the index of the
variables and a,b are the index of the states. As an example, x could represent
sequences in a MSA, with p;(a) the frequency of the amino acid labeled by a in
column ¢ of the alignment, and p;;(a,b) the frequency of the pair of amino acids
a,b in columns i, j.

The simplest, or maximum entropy [29], probabilistic model capable of repro-
ducing the observed frequencies is a Potts model, which assigns a probability to
every configuration of the system x:

_ exp(=EX)
P(x) = -z
N N-1 N
B(x) = - th(fﬂz) - Z Jij(wi,x5) (1)
i=1 =1 j=1+1

Here the partition function Z is a normalizing factor which ensures that all prob-
abilities sum to one. In the simple case that all the variables x; are binary, this
model is referred to as an Ising model. The parameters h;(a) and J;;(a,b) in the
energy function F, called fields and couplings, must be chosen such that variable
averages (correlations) in the model match those in the data, i.e.

pi(a) = 25(%7@)13(?(),

(2)
Pij (a) = Z 6(1‘17 U,)(S(.ﬁj, b)P(X) ;

where § is the Kronecker delta function. The problem of finding the parameters
hi(a), Jij(a,b) that satisfy Equation (2) is referred to as the inverse Potts prob-
lem. Note that the probability of any configuration remains unchanged under the
transformation of the couplings and fields given by J;;(a,b) — J;;(a,b) + K;;(b),
hi(a) = hi(a) + Hi — 32, ,; Ki;(b) for any K. This “gauge invariance” reduces
the number of free parameters in the Potts model to g; — 1 fields for each site and
(¢i — 1)(gj — 1) couplings for each pair of sites.

Formally, the inverse Potts problem is solved by the set of fields and couplings
that maximize the average log-likelihood or equivalently, those that minimize the
cross-entropy between the data and the model,

1 1
S= B log L(J|p) = Spotts(J|P) — B log Po(J), (3)

where B is the number of data points in the sample, and

N g
Spotts(I|p) =log Z = > > " hi(a)pi(a)
i=1a=1

-1 N i 4 (4)

B Zsz(a,b)pij(a,b),

i=1 j=i+1a=10b=1

and Py is a prior distribution for the parameters. Here for simplicity we have
written the set of all individual and pairwise variable frequencies as p and the set
of all fields and couplings as J. Note that, ignoring the contribution of the prior
distribution, the cross-entropy S is equivalent to the entropy of the inferred model
satisfying Equation (2).

The inclusion of a prior distribution helps to avoid overfitting, while also im-
proving convergence. A Gaussian prior distribution for the parameters is a typical
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choice, which contributes a term

N—-1 N qi 94

y'zihi(a)2+yz >33 Jijla,b)? (5)

i=1 a=1 i=1 j=i+1a=1b=1

to Equation (3). The addition of this factor ensures that the solutions of the inverse
problem are not at plus or minus infinity. Note that this form of the regularization
is not invariant under gauge transformations. Thus, the results of the inference
including the regularization do have some dependence on the gauge choice. Other
forms of regularization are also possible (see Supplementary Materials). Note that
the presence of the partition function Z in Equation (4) precludes direct numerical
maximization of the likelihood when the system size is large, since this requires
summing over all vazl q; configurations of the system. Alternate methods of solv-
ing the inverse Potts problem involve approximation schemes or rely on computa-
tionally costly Monte Carlo simulations, as described above.

2 Methods

2.1 Adaptive cluster expansion

The adaptive cluster expansion [24, 25| is based on the formal decomposition of
the regularized cross-entropy Equation (3) into a sum of contributions from subsets
(or clusters) of the variables I = {i1,...,ix},k < N,

S=> ASr, (6)

where the sum is over all nonempty subsets of the NV variables. The terms ASr,
referred to as cluster entropies, are recursively defined,

ASp=Sp— Y ASp. (7)

I’cr

Here St denotes the maximum of Equation (3) restricted only to the variables in T'.
Thus, St depends only on the frequencies p;(a), pi;(a, b) with ¢, j € T Provided that
the number of variables in I' is small (typically < 20) numerical maximization of
the likelihood restricted to I' is tractable. Note that the definition of AST ensures
that the sum over all clusters I' in Equation (6) yields the log-likelihood for the
entire system of NV variables.

Neglecting the regularization term, the single variable cluster contributions are
the entropies of the variables taken as if they were independent, AS; = S; =
— Y% | p;logp;i(a). The two variable entropy is S;; = — .2 Y | p;;(a,b) logp;;(a,b)
(see Supplementary Materials for more details). The cluster entropy for a pair of
variables is then AS;; = S;; — S; — S;, which is equivalent to the mutual infor-
mation. It is zero when p;;(a,b) = pi(a)p;(b), i.e. when the two variables are
independent. In general, ASr is a measure of the inter-dependence between the
variables in the cluster which cannot be accounted for by smaller clusters.

The main idea of this approach is to approximate the cross-entropy (and simul-
taneously, the parameters that maximize it) by limiting the sum in Equation (6) to
a restricted set of clusters I' that give the most important contributions to it. As
shown in [24, 25], neglecting clusters with small contributions to the cross-entropy
helps to avoid overfitting. We define a threshold ¢ on the cross-entropy to separate
the significant clusters from those which can be neglected. Starting from a large
value of the threshold (typically ¢ = 1), such that only a few clusters are selected,
the algorithm proceeds through two nested iterations. The outer loop is on the
value of the threshold ¢, which is progressively lowered until enough clusters are
included to yield a model consistent with the data. The inner loop constructs the
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set of clusters I' with contributions to the cross-entropy |ASp| > ¢ and yields an
approximation of the cross-entropy and the model parameters at the threshold ¢.
Contributions to the cross-entropy from clusters within the same interaction sub-
network partially compensate, and thus summing up clusters according to |ASr|
allows for a faster convergence of Equation (6) [24, 25]. The algorithm stops at the
first value of the threshold ¢ where the inferred model fits the sampled averages
and correlations Equation (2) to within the statistical error due to finite sampling
(see Section 3.2 ).

The algorithm for the inner loop, including the selection and summation of
individual clusters, is as follows. Given a list Ly of clusters of size k, beginning
with the list of all clusters of size k = 2:

1. For each cluster I' € Ly,

(a) Compute St by numerical minimization of Equation (3) restricted to I.
(b) Record the parameters minimizing Equation (3), called Jp.
(¢) Compute ASt using Equation (7).

2. Add all clusters I' € L, with |ASp| >t to a new list L} (¢).

3. Construct a list Ly of clusters of size k 4+ 1 from overlapping clusters in
L (t).

The rule for constructing new clusters of size k + 1 from selected clusters of size
k can be lax (such that a new cluster I is added provided that any pair of size
k subclusters, I'1,I'; € L) (t) and I'y UTy =T') or strict (such that a new cluster
is only added if all of its k + 1 subclusters of size k belong to L) (t)). The above
process is then repeated until no new clusters can be constructed.

After the summation of clusters terminates, the approximate value of the pa-
rameters minimizing the cross-entropy, given the current value of the threshold, is
computed by

J)=>_ > AJr, AJr=Jr- > AJp. (8)

k TeL)(t) r’cr

Note that this formula generally yields sparse solutions because nonzero couplings
are only included in Equation (8) if some clusters containing them have been se-
lected. In this algorithm the dominant contribution to the computational complex-
ity often comes from the evaluation of the partition function Z for large cluster
sizes, which requires O (HieF qi) operations to compute.

2.2 Compression of the number of Potts states

As mentioned in Section 1.1, the number of states each variable may take on
need not be the same for all variables in a system. States with zero (or otherwise
very small) probabilities may be observed very infrequently in real, finitely-sampled
data, and the relative error on the corresponding correlations due to finite sampling
is large.

To limit overfitting and reduce the computational time, the low probability
states can be effectively grouped together according to a given compression pa-
rameter. Here we present two conventions for compressed representations of the
data. First, for each variable we can treat explicitly the states observed with proba-
bility larger than a cutoff value p;(a) > p, while grouping all infrequently observed
values into the same state. Alternatively, we can order the states by their contri-
bution to the total single site entropy S, and choose a reduced model in which only
the first k states are modeled explicitly, with k chosen to capture a certain fraction
f of the site entropy (Supplementary Materials). The final ¢— k states are grouped
together. The frequency of the regrouped Potts state is then the sum of the frequen-
cies of the states which have been regrouped: p;(k+1)=3"7_,  pi(a). Once the
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reduced model is inferred, one can recover a complete model by modifying the field
parameter for the regrouped states, h;(a’) = h;(k+1)+log (p;(a’)/p;(k + 1)), while
keeping the couplings to the value of the regrouped state J;;(a’,b) = J;;(k + 1,b).
For states with zero probabilities in the data, we fix the fields from the regulariza-
tion alone.

2.3 Expansion around a reference structure

ACE is a two-fold algorithm: it builds up the interaction graph while also inferring
the corresponding parameters that reproduce the correlated structure of the data.
This expansion can accelerated if the interaction graph is known, or by incorporat-
ing a priori information about the interaction graph. It is also possible to expand
the cross-entropy around its Gaussian approximation.

e If the list of directly interacting variables is known, one can run the expansion
using this restricted set of sites such that clusters of larger size are built up
only from the initial list of interacting pairs. For proteins this procedure can
be applied using the real contact map, known from structural information, or
alternatively the one derived with fast inference approaches such as DCA or
plmDCA [6, 19]. to obtain a selected list of putative contacts and then use
the cluster expansion to infer the interactions between them.

e As shown in [25] for the Ising model, one can analytically calculate the log-
likelihood and the parameters that maximize it under the Gaussian approx-
imation with an ad hoc Lg-norm regularization (where the regularization
strength depends on the variable frequencies). It is then possible to perform
the cluster expansion around this Gaussian reference model.

2.4 Refinement with Boltzmann Machine Learning (BML)

In cases where convergence of the cluster algorithm alone is not sufficiently fast, it is
often more expedient to use the output set of fields and couplings as starting values
for a Boltzmann Machine Learning (BML) routine. In typical cases, provided that
the inferred model is not too sparse, this procedure can lead to rapid convergence
of the model even when the starting error is large.

Here we adapted the RPROP algorithm for neural network learning [30] to the
case of Potts models. Given an input set of fields and couplings, we first compute
the model correlations pg‘/fc(a),pﬁ‘fc(a,b) through Monte Carlo simulation. The
couplings and fields are then updated according to the gradient of the log-likelihood,
multiplied by a parameter-specific weight factor

hi(a) = hi(a) — (p}'° (a) = pi(a)) wi(a) ,

9

Jij(a,b) = Jij(a,b) — (sz'\;[c(aa b) — pij(a,b)) wij(a,b). ®)
Regularization can also be incorporated by adding 2vJ;;(a,b), or the analogous
term for fields, to the gradient. Here the weights w;(a) and w;;(a,b) are also
updated with each iteration of the algorithm. At each iteration, if the sign of
(pM¢(a) — pi(a)) is the same as in the previous round, w;(a) — siw;(a), else
w;(a) = s_w;(a), and similarly for the w;;(a,b). This acceleration of weight
parameters allows appropriate step sizes to be chosen adaptively for each coupling
and field. To prevent steps sizes from becoming too large or too small, the weight
parameters are restricted to lie between some wpyi, and wpyax. Typical choices of
the weight bounds and update multipliers are wyin = 1072, Wyayx = 10, s4 = 1.9,
s_— = 0.5. Note that we choose s+ < 1/s_ so that, if the sign of one of the terms
of the gradient continually switches, the corresponding weight decreases.
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3 Results

3.1 Description of test data and their preprocessing

3.1.1 Potts models on Erdés-Rényi random graphs (ERO05)

We consider an example of a Potts model with ¢ = 21 states, where the network of
interactions is described by an Erdds-Rényi random graph with N = 50 variables.
Each edge in the interaction graph is included with probability 0.05. Field and cou-
pling values for interacting pairs of sites are selected from a Gaussian distribution
(Supplementary Materials). We compute the correlations through Monte Carlo
sampling of B = 10* configurations. In the results shown below we compressed
rarely-observed Potts states with p;(a) < p, = 0.05 and used v = 1/B = 1074,
performing the inference in the gauge of the compressed Potts state.

3.1.2 Lattice protein model (LP Sp)

We consider an alignment of 5 x 10% protein sequences with N = 27 sites, arranged
in a 3 x 3 x 3 cube, selected according to their exactly computable [31] folding
probability Sp (see [28], Supplementary Materials). In the results below we have
remove never-observed amino acids (i.e. compression with p, = 0), and used the
regularization v = 5/B = 10~*. Couplings and fields corresponding to the least
frequently observed amino acid at each site are gauged to zero.

3.1.3 Trypsin inhibitor protein family (PF00014)

We study an alignment of 4915 sequences downloaded from the PFAM database
for the trypsin inhibitor protein family (PF00014). After removing columns with
> 50% gaps the number of sites is N = 53. We reweight the contribution of each
sequence to the correlations according to its similarity to other sequences in the
alignment, an approach commonly used to attenuate phylogenetic correlations [6].
Here we show results in the consensus gauge after compressing rarely-observed
amino acids with p;(a) < p, = 0.05, using v = 2/B = 1073, Additionally, we note
that gaps in the MSA are not generally modeled well in the Potts model repre-
sentation with pairwise interactions, as they tend to be present in long stretches,
especially at the beginning and the end of the alignment [20]. Such stretches of
highly correlated gaps slow down the inference procedure because they give rise to
large clusters. Here we have processed the data to replace gaps by random amino
acids with the same frequency as observed in the non-gapped sequences.

3.1.4 HIV p7 nucleocapsid protein

The HIV nucleocapsid protein p7 plays an essential role in multiple aspects of
viral replication [32]. We downloaded a MSA of 4131 p7 sequences from individ-
uals infected by clade B viruses from the Los Alamos National Laboratory HIV
sequence database (www.hiv.lanl.gov). After removing columns with > 95% gaps,
the remaining number of sites is N = 71. Here we do not reweight sequences by
similarity, given that they are all phylogenetically related. We have replaced gaps
in the alignment as described above, compressed rarely-observed amino acids with
fs = 90%, and chosen v ~ 1/2B = 1.4 x 10~%. Inference is performed in the
consensus gauge.

3.1.5 Multi-electrode recordings of cortical neurons

We divided a 20 minute recording of the firing activity of 32 cortical neurons
into a set of B = 1.5 x 10° time bins of 10ms, treating each time window as an
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observation of the system. During each time window, the variable for each neuron
1 was assigned x; = 1 if the neuron was active at least once during that time, and
zero otherwise. Here we take v =1/B = 6.6 x 1075.

3.2 Convergence of the cluster expansion algorithm

As mentioned in Section 2.1 for each threshold ¢ used to select clusters in the
ACE expansion, the model individual (z;(a)) and pairwise (z;;(a,b)) frequencies
are compared to the data’s frequencies p;(a) and p;j(a,b). We define a relative
error as the ratio between the deviations of the predicted observables from the
data 6(x;) = (x;) — p; and 6(z;;) = (x;5) — pi; and the expected statistical
fluctuations due to finite sampling: 6p;(a) = +/pi(a)(1 — p;(a))/B, opij(a,b) =
V/Pij(a,b)(1 — p;j(a,b))/B. We define the normalized maximum error as

Lo (@)l 8 b)]
Gma*‘{i,j,a,b}m< Spila)  opi(ab) ) (10)

where M is the total number of one- and two-point correlations.

Figure 1 shows the behavior of €, and the cross-entropy as a function of the
threshold the five data sets described above. The cross-entropy S approaches a
constant value as the threshold is decreased. In all cases except for the lattice
protein model, the algorithm converges at €p.x ~ 1, when the correlations are re-
produced to within the expected error due to finite sampling. The expansion slows
dramatically for the lattice protein model at a fairly high value of the threshold due
to the large number of states included at each site in the model (typically ¢ = 19).
The computational cost of calculating the partition function is a limiting factor as
the maximum cluster size increases, corresponding to Ky.x = 7 at the stopping
point in Fig. 1. At this point, BML is needed to refine the parameters inferred
through the cluster expansion. Note that, even in cases when the error appears
large, convergence of the BML procedure is often rapid because only small changes
to the parameters may be necessary to obtain a model that accurately reproduces
the correlations.

Convergence of the algorithm can also be more difficult for alignments of long
proteins or those with very strong interactions. In such cases one may observe
large oscillations in the cross-entropy as a function of the threshold, and large
(> 10 sites) clusters may appear even at high thresholds. Strong regularization
(v > 1/B) can help to dampen these oscillations, after which it can be returned to
~ 1/B during the BML procedure.

3.3 Parameters of the ER05 model are recovered by ACE

In Fig. 5 we show that the 2 x 10* underlying parameters for the ER05 model
corresponding to the explicitly modeled Potts states are accurately recovered by
ACE. These states are better sampled and therefore they have smaller statistical
uncertainties. In the model inferred by plmDCA, which includes no reduction in
the number of states, there are around 10 parameters. Those corresponding to
the explicitly modeled states are recovered fairly well (with some errors in the
fields), but parameters corresponding to compressed states are difficult to infer
due to insufficient sampling (see Supplementary Materials for details and analysis
of errors in inferred parameters due to finite sampling).

3.4 Statistics of the data are accurately reproduced

Figures 2 and 3 show how the model inferred by ACE reproduces the statistics of the
input data. In all cases the model accurately captures the input probabilities and
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Figure 1: Convergence of the cluster expansion as a function of the threshold ¢ for (a)
ERO005, (b) LP S (c) PF00014, (d) HIV p7, and (e) cortical data. As the threshold
is lowered, the cross-entropy S approaches a constant value. In all cases except for LP
Sp the normalized maximum error €,,x reaches 1 through the cluster expansion alone.
For LP Sp a Monte Carlo learning procedure is used to refine the inferred parameters
and reach epay ~ 1.
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Figure 2: ACE outperforms plmDCA in recovering the single variable frequencies for
models describing (a) ER005, (b) LP Sp, (c) PF00014, (d) HIV p7, and (e) cortical
activity. The results for plmDCA are obtained with the regularization v = 0.01, which
gives better results for the correlations than lower values of the regularization strength
(see Supplementary Materials).
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Figure 3: Fit for models describing (a) ER005, (b) LP Spg, (¢) PF00014, (d) HIV p7, and
(e) cortical activity. ACE recovers the connected pair correlations ¢;;(a,b) = pi;(a,b) —
pi(a)p;(b) (left). The inferred model also successfully captures higher order correlations
present in the data, such as the connected three-body correlations (center) and the
probability P(k) of observing a configuration with %k differences from the consensus
configuration (right).
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Figure 4: Histograms of the data (MSA) and model (MC) energy distributions for (a)
ERO005, (b) LP Sg, (c) PF00014, (d) HIV p7, and (e) cortical activity. Monte Carlo
sampling of the inferred Potts model describing each set of data yields a distribution
of energies similar to the empirical distribution, a further check on the consistency of
the model fit beyond the fitting of correlations.

pairwise connected correlations within the expected error due to finite sampling,
as expected.

We also find that higher order correlations in the data can be accurately repro-
duced. Figure 3 shows the 3-point connected correlations and the distribution P(k)
of Hamming distances k between the sampled configurations and the configuration
in which each site takes on the most probable value (i.e. the consensus sequence
for proteins). In the neural case the most probable configuration is the silent one
and therefore P(k) is the probability to have k active neurons in the same time
window. Models inferred by ACE outperforms those from plmDCA [19], see Fig. 2
and Supplementary Materials for higher order statistics.

Comparing the distribution of energies E for configurations sampled from the
inferred model to the distribution obtained from the original data provides an addi-
tional check of statistical consistency. The energy of a configuration is proportional
to the logarithm of its probability (in addition, because the entropy S is obtained
from the cluster expansion, we can also compute the constant of proportionality).
Concordance between the inferred and empirical energy distributions thus indicates
that the real data could plausibly be generated from the inferred model. Figure 4
compares the data and model distributions of energies, showing that in most cases
they closely overlap. A small discrepancy is introduced in PF00014 because of
the reweighting procedure (here the histogram of the data is normalized by the
sequence weights). The energy distribution for the lattice protein model is broader
than for the data, though the peak is fit correctly. In contrast with models inferred
using ACE, the distribution of energies of the data is less well reproduced with
plmDCA (Supplementary Materials). The ability to estimate the probability of
a configuration can be useful when comparing the likelihood of a configuration in
two different models, for example to decide which family a given protein belongs
to.
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Figure 5: ACE accurately recovers the the true fields h (left) and couplings J (right)
corresponding to Potts states with p;(a) > 0.05 for the ER05 model. Error bars denote
standard deviation in estimated parameters due to finite sampling.
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Figure 6: (a) Contact map for PF00014 inferred by ACE. Here we show the top 100
predicted contacts, with true predictions in orange and false predictions in blue. Other
contact residues in the crystal structure are shown in gray. For true positives and other
contact residues, close contacts (< 6A) are darkly shaded and further contacts (< 8A)
are lightly shaded. The upper and lower triangular parts of the contact map give
predictions for the inferred model with strong regularization/no compression (y = 1)
and weak regularization/high compression (7 = 2/B), respectively. (b) Precision (ratio
between the number of true predictions and the total number of predictions) as a
function of the number of predictions for close contact residues that are widely separated
on the protein backbone (i — j > 4). Results using ACE compare favorably with those
from DCA [6] and are competitive with those from plmDCA [19].
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3.5 ACE accurately infers structural contacts for PF00014

In Fig. 6 we use the inferred couplings to predict pairs of residues that are in
contact in the folded protein structure for PF00014, and we compare results from
ACE to the standard contact prediction methods DCA [6] and plmDCA [19]. In
this case the pairs of sites for which the Frobenius norm of the couplings is largest,
including the average product correction (APC, see [33]), are predicted to be most
likely to be in contact. We define contact residues to be those that are within 6A
of each other in the folded structure of the protein, and we exclude trivial contact
pairs along the protein backbone (i — j < 4).

The accuracy of contact predictions with ACE can be increased by decreasing
the compression (p, = 0) and using a large regularization (v = 1), in the same spirit
as the strong regularization employed in typical DCA and plmDCA approaches.
Here we gauged the parameters for the least frequently observed amino acids to
zero and computed the Frobenius norm of the couplings in the zero sum gauge (as
is typical in DCA). The couplings are then strongly damped by regularization and
the cluster expansion converges for maximal cluster sizes much smaller than those
needed in the case with weaker regularization. Figure 6b shows that the precision
in this case is competitive with the one obtained from pImDCA, and the prediction
of the first ~ 30 contacts is slightly better for ACE. However, in this case we note
that because of the small values of the couplings the generative properties of the
inferred model are lost (see Supplementary Materials for the statistical fit of the
model).

4 Discussion

Potts models have been successfully applied to study a variety of biological sys-
tems. However, the computational difficulty of the inverse Potts problem, i.e. the
inference of a Potts model from correlation data, has presented a barrier to their
use. Here we presented ACE, a flexible, easy-to-use method for solving the inverse
Potts problem, which can be applied to analyze a wide variety of real and syn-
thetic data. We also provide tools for automatically generating correlation data
from multiple sequence alignments (MSA), making the analysis of this type of data
even more accessible.

Here we have adapted the complexity of the inferred Potts models to the level
of the sampling in the data. This is achieved by regrouping less frequently observed
Potts states into a unique state (according to a threshold on entropy or frequency),
then by a sparse inference procedure that omits interactions that are unnecessary
for reproducing the statistics of the data to within the error bounds due to finite
sampling. On artificial data we verified that compression of the number of Potts
states allows a faster and more precise inference of the uncompressed model param-
eters while reducing overfitting. The methods of compression that we describe here
can also be applied to other inference methods (including, for example, the DCA
and plmDCA approaches discussed above), a topic of future study. In addition,
as described above ACE yields sparser models when sampling is poor, leading to
more robust inference.

This method allows for the simple construction of models from various types
of data, and which can then be used to predict the evolution of experimental
systems and their response to perturbations. Previous work has demonstrated
promising applications of such models in a variety of different biological contexts.
In neuroscience, the analysis of multi-electrode recordings has led to models that
identify cell assemblies, which are thought of as basic units of memory [26]. Studies
of MSAs of protein families allows for the prediction of pairs of residues in contact in
the folded protein structure, giving insights on the protein structure from sequence
information alone. Classical protein folding algorithms can be then used to refine
the structure from contact predictions [15, 16, 17]. Potts models have also been
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used to describe the mutational landscape of viral and bacterial proteins, where
they provide information about the effects of mutations on protein function, which
could potentially be exploited to improve vaccine design and drug treatment [7, 8,
27, 9]. Recent work has also shown that a Boltzmann machine learning algorithm
can be constructed to give a good generative model predicting the structure and
functional dynamics of proteins [23]. Running such algorithms from a good initial
guess of parameters, such as those obtained by ACE, could help to accelerate the
inference procedure.

In the present work we have compared ACE with standard maximum entropy
inference methods based on Gaussian and pseudo-likelihood approximations. These
methods are particularly fast and adapted to find structural contacts and use, re-
spectively, large pseudocounts and regularizations. Inference with ACE is generally
slower than mean-field and pseudo-likelihood approaches. However, it allows for
the accurate inference of underlying model parameters (when they are known), and
for the construction of good generative models of the data when using a Bayesian
value of the regularization strength (7 &~ 1/B). In analogy with DCA and plmDCA,
when using ACE with little compression (e.g. p, = 0) and strong regularization the
contact prediction obtained using traditional contact estimators is improved while
the generative power of the inferred model is degraded.

An additional advantage of ACE is that it evaluates the entropy of the Potts
model corresponding to a given set of data. For protein sequence data, this entropy
gives a measure of the variability of the sequences in the same protein family, and
can be used to predict site-dependent variability and robustness with respect to
mutations [34]. We have now successfully applied the method to protein sequences
of a few hundred amino acids in length collected from phylogenetically distant
organisms, or longer sequences (up to 500 amino acids) for more phylogenetically
related and less variables HIV MSA alignments.
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