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Abstract

Background: The dynamics of heterogeneous tumor cell populations competing
with healthy cells is an important topic in cancer research with deep implications
in biomedicine. Multitude of theoretical and computational models have addressed
this issue, especially focusing on the nature of the transitions governing tumor
clearance as some relevant model parameters are tuned. In this contribution, we
analyze a mathematical model of unstable tumor progression using the
quasispecies framework. Our aim is to define a minimal model incorporating the
dynamics of competition between healthy cells and a heterogeneous population of
cancer cell phenotypes involving changes in replication-related genes (i.e.,
proto-oncogenes and tumor suppressor genes), in genes responsible for genomic
stability, and in house-keeping genes. Such mutations or loss of genes result into
different phenotypes with increased proliferation rates and/or increased genomic
instabilities. Also, lethal phenotypes with mutations or loss of house-keeping genes
are present in our model.

Results: Despite bifurcations in the classical deterministic quasispecies model are
typically given by smooth, continuous shifts (i.e., transcritical bifurcations), we
here identify an novel type of abrupt transition causing tumor extinction. Such a
bifurcation, named as trans-heteroclinic, is characterized by the exchange of
stability between two distant fixed points (that do not collide) involving,
respectively, tumor persistence and tumor clearance. The increase of mutation
and/or the decrease of the replication rate of tumor cells involves this catastrophic
shift of tumor cell populations. The transient times near bifurcation thresholds are
also characterized, showing a power law dependence of exponent −1 of the
transients as mutation is changed near the bifurcation value.

Conclusions: An abrupt transition involving tumor clearance has been identified
with a phenotypic quasispecies cancer model. This result is discussed in the
context of targeted cancer therapy as a possible therapeutic strategy to force a
catastrophic shift by delivering mutagenic and cytotoxic drugs inside tumor cells.
Our model also reveals a novel mechanism causing a discontinuous transition given
by the stability exchange of two distant fixed points, which we name as a
trans-heteroclinic bifurcation.

Keywords: Applied mathematics; Cancer evolution; Cancer targeted therapy;
Dynamical systems; Genomic instability; Phenotypic model; Quasispecies

Background
A major issue in dealing with cancer progression is the heterogeneous nature of

their populations, resulting from genetic instability. This is a defining feature of

most advanced tumors [1, 2]. A major consequence of this lack of clonal structure

is an enhanced potential to evade cell proliferation checkpoints. Genomic instability

refers to an increased tendency of alterations in the genome during the life cycle of
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cells. Normal cells have a mutation rate of about 1.4× 10−10 changes per nucleotide

and replication cycle. It has been proposed that the spontaneous mutation rate in

normal cells is not sufficient to account for the large number of mutations found

in human cancers. Indeed, studies of mutation frequencies in microbial populations,

in both experimentally-induced stress and clinical cases, reveal that mutations that

inactivate mismatch repair genes result in 102 − 103 times the background mutation

rate, with comparable increases in cancer cells [3–11]. The presence of high instability

creates a peculiar situation, since cancer cells become less differentiated, more plastic

to adapt but also more prone to failure. How much instability can be afforded by

cancer cells? It has been suggested that unstable cancer progression is feasible up to

some critical instability levels [15, 16]. Once this critical point is reached, instability

levels become lethal.

Evidence suggests that cancer populations might actually evolve towards the crit-

ical instability point [18]. Such evolution towards the edge of instability has been

reported in RNA viruses, where thresholds of lethal mutagenesis have been found to

exist [24, 25, 40]. RNA viruses exhibit critical mutation rates [19, 20], beyond which

they can experience extinction and their heterogeneous populations are known as qua-

sispecies [21] and share several key features with cancer cell populations [16, 18, 22].

Following these similarities, it was suggested that cancer might also share the presence

of critical instability levels [13, 15, 16, 27]. If true, cancer treatments could incorpo-

rate increased mutagenesis that would push the system slightly beyond its critical

limits [7]. In this context a possible therapeutic strategy in tumors would benefit

from targeting DNA repair pathways [28–31]. Similarly, germline mutations in the

proofreading domains of DNA polymerases Pol δ and ε have been identified in many

types of cancers, giving place to the so-called ’ultramutator’ phenotype [32]. It has

been suggested that increased mutation in these tumors (e.g., anaplastic astrocy-

toma, breast cancer, or colorectal cancer, among others) with impaired exonuclease

proof-reading activities could drive cancer towards the critical transition given by

the error threshold [32].

Theoretical models on cancer quasispecies have revealed smooth, continuous tran-

sitions towards tumor impairment or collapse as some of the model parameters (typ-

ically mutation rates) are tuned (see, e.g., [15,16,26,27,33]). These models deal with

mutation rates as single parameters that can be tuned to explore their impact on

tumor progression. However, a richer and more useful framework should include a

repertoire of changes affecting not only stability but also replication traits. Similarly,

the limits imposed to instability levels are largely determined by the presence of es-

sential (house-keeping) genes whose integrity needs to be preserved [18]. A digital

genome model incorporating multiple genes associated to replication and stability,

as well as the use of house-keeping genes suggests that a complex evolution unfolds

as the cancer population approaches higher, near-critical instability levels [17, 18].

However, an analytical approach to this more complete picture is still lacking.

Here we study this problem by means of a phenotypic quasispecies model. Our

model is similar to a phenotypic model that has been recently used to investigate

the effects of mutational fitness effects in RNA viral populations [34]. In particular,

we consider a mean field model describing the evolutionary dynamics of different tu-

mor cell phenotypes competing with healthy cell populations. The tumor phenotypes

are the result of mutations in proto-oncogenes, tumor suppressor genes, and house-

keeping genes, driven by genetic instability. We will specifically model how genomic
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instability and tumor cells proliferation affect the competition dynamics. To do so we

will analyze a minimal model of phenotypic quasispecies, providing the equilibrium

points and their stability dependence on model parameters. We will also investigate

how the mutation rate of tumor cells, and both genomic instability and proliferation

rates affect the transients towards tumor persistence and tumor extinction. Our re-

sults will be discussed in the context of the current development of targeted cancer

therapies.

Model and Methods
Mathematical model

To analyze the dynamics of unstable cancer progression we build a mathematical

model using Eigen’s quasispecies model [19], following previous modeling on phe-

notypic quasispecies [34]. The quasispecies model can be represented, in its general

form, by:

dxi
dt

= (1− µ)rixi + µ
∑
<j>i

rjxj − Φxi, i = 1, ..., n. (1)

This model describes the time dynamics of a population of n sequences with con-

centration xi under the processes of replication (proportional to replication rate ri)

and mutation (proportional to mutation rate µ) within the assumption of a constant

population (CP). The first RHS term denotes the error-free replication of species xi,

while the second RHS term is the synthesis of sequence i by mutation from mutant

neighbours (denoted as < j >i) in sequence space. Finally, the last RHS term is the

dilution flow, which keeps a CP, and is introduced with function Φ, which depends

on xi. The dilution term introduces competition between all n sequences (see below

for the computation of this term).

Equation (1) will be used in the present manuscript to model the competition be-

tween healthy and tumor cells with different replication rates, mutation rates, and

survival properties given by the bits composition of sequence i (see Fig. 1A,B). Hence,

each cell xi has a genetic state i defined as a 3-bits sequence, where i denotes the

decimal number of the binary sequence. Each bit denotes a different genomic com-

partment containing replication-related (R) genes, genes involved in genomic stability

(S), and house-keeping (H) genes. It is known that alterations in these genes are re-

sponsible for tumorigenesis [12]. Hence, such sequences provide the phenotypic traits

of the cells of the population. Healthy cells have sequences 000, since no mutations

or genomic aberrations are found in these compartments. Tumor cells can have mu-

tations or other types of genomic aberrations such as gene loss in any of these three

compartments [12], such abnormalities will be denoted with bit 1.

Mutations or genes loss in compartment R involve the impairment of genes affect-

ing the rate of replication of cells, which usually increase cells replication activity

(introduced in our model with parameter δr, see below). This set would include both

anomalies in tumor suppressor genes (e.g., APC or P53) and proto-oncogenes (RAS

or SRC). Although they act in different ways (are targeted in opposite ways by ge-

netic alterations) here we make no explicit distinction [12]. This assumption is based

on the fact that, in terms of population dynamics, alterations in both types of genes

lead to a neoplastic process through increases in cancer cells numbers. Mutations in
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replication-related genes that confer an increase of fitness and thus a selective advan-

tage are named driver mutations. Mutations or genes loss in compartment S involve

the impairment of genomic stability genes [1,12], which are typically genes playing a

key role in preserving genome integrity. These genes (including e.g., BRCA1, BLM,

ATM, or P53) keep genetic changes under control. Abnormalities in this compartment

will involve an increased level of mutation or genes loss rates, parametrized in our

model with δµ (see below). Finally, the cells in our model also include a compartment

for the so-called house-keeping (hk) genes. These genes are tied to essential functions

whose failure leads to cell death. In real cells, hk genes are constitutive and would

include, for example, ribosomal proteins, glyceraldehyde-3-posphate dehydrogenase

(GAPDH), or ubiquitin [35], among others.

For our system, as we mentioned above, the state variables xi are the population

numbers of cells with sequence i. Parameter µi is the mutation rate or genes loss rate

of cell xi, and ri is the replication rate of the cell with the i-th sequence. Finally, Φ

is a population constraint which introduces competition between cells also ensuring

that the total population remains constant (see below). The full model obtained from

Eq. (1), considering the particular structure of the sequence space of our system (see

Figure 1A), is given by:

ẋ000 =
dx0
dt

= rx0 − x0Φ, (2)

ẋ001 =
dx1
dt

= −x1Φ, (3)

ẋ010 =
dx2
dt

= (1− (µ+ δµ))rx2 − x2Φ, (4)

ẋ011 =
dx3
dt

=
1

ν − 1
(µ+ δµ)rx2 − x3Φ, (5)

ẋ100 =
dx4
dt

= (1− µ)(r + δr)x4 − x4Φ, (6)

ẋ101 =
dx5
dt

=
1

ν − 1
µ(r + δr)x4 − x5Φ, (7)

ẋ110 =
dx6
dt

= (1− (µ+ δµ))(r + δr)x6+

+
1

ν − 1

[
(µ+ δµ)rx2 + µ(r + δr)x4

]
− x6Φ, (8)

ẋ111 =
dx7
dt

= (µ+ δµ)(r + δr)x6 − x7Φ, (9)

with ν = 3. Equation (2) describes the dynamics of healthy cells, which compete with

tumor cells. Equation (3) corresponds to the dynamics of a lethal phenotype with

cell state 001. Also, Equations (5), (7), and (9) describe the dynamics of lethal phe-

notypes. All lethal phenotypes have mutations or loss of genes in the house-keeping

genes compartment, and are not able to replicate. Hence, they can only be origi-

nated from tumor cells able to replicate. Equation (4) corresponds to the dynamics

of tumor cells with the mutations or alterations in the stability compartment, giving

place to a genomically unstable phenotype. Equation (6) describes the dynamics of

tumor cells with mutations or genomic aberrations in replication-related genes com-

partment. Such phenotype acquires increased proliferation rates. Finally, another

possible phenotype can contain both alterations in replication- and stability-related

genes compartments. The dynamics of this phenotype is modeled with Eq. (8). Recall

that variables subindices are the binary sequence expressed in integers.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2016. ; https://doi.org/10.1101/044644doi: bioRxiv preprint 

https://doi.org/10.1101/044644
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sardanyés et al. Page 5 of 19

Parameter r is the basal replication rate of all cells. As mentioned, mutations

or aberrations in compartment R increase the proliferation rate of tumor cells

(parametrized with δr). Parameter µ is a background mutation rate of tumor cells.

Mutation in healthy cells is set to zero since we assume that it is negligible compared

to the mutation rate of tumor cells. Anomalies in compartment S will increase the

mutation of tumor cells by means of parameter δµ (e.g., sequences 110 and 010).

The modeled system spans a disconnected cube where mutations only affect tumor

cells and healthy cells are only coupled to the other variables due to competition

(see Table in Fig. 1 for a complete description of the system). As mentioned above,

the term Φ is a dilution flow that is used to keep a CP constrain. Hence, by setting∑7
i=0 ẋi = 0, and

∑7
i=0 xi = 1, we obtain Φ = r(x0 + x2) + (r + δr)(x4 + x6).

Numerical tools

Numerical solutions have been obtained with the adaptive Runge-Kutta-Fehlberg

algorithm of seventh-eighth order, with an automatic step size control fixing the

local relative tolerance to 10−15.

1 Results and Discussion
Firstly, we will characterize the fixed points of the system Eqs. (2)-(9). Then we will

determine their stability and the possible bifurcations separating tumor persistence

from tumor clearance as a function of the model parameters. Also, we will compute

explicit analytical solutions of the model. Finally, we will investigate the transients

times near bifurcation thresholds. All of the analytical calculations will be comple-

mented by means of numerical simulations to illustrate the most relevants results in

terms of cancer biology and therapy.

1.1 Fixed points and stability analysis

The model parameters are given by r > 0, δr > 0, 0 < µ < 1, 0 < δµ < 1 − µ. For

the sake of simplicity we introduce r̂ = r + δr, µ̂ = µ + δµ, α1 = µ̂r/(ν − 1), and

α2 = µr̂/(ν − 1). Since ν = 3, we have α1 = µ̂r/2, and α2 = µr̂/2. According to the

previous terms, and after rearranging the equations, the model under investigation

can be represented as follows

ẋ0 = x0(r − Φ),

ẋ2 = x2((1− µ̂)r − Φ),

ẋ4 = x4((1− µ)r̂ − Φ),

ẋ6 = x6((1− µ̂)r̂ − Φ) + α1x2 + α2x4, (10)

ẋ1 = −x1Φ,

ẋ3 = α1x2 − x3Φ,

ẋ5 = α2x4 − x5Φ,

ẋ7 = µ̂r̂x6 − x7Φ,

where Φ = r(x0 + x2) + r̂(x4 + x6). We are interested in values xj ≥ 0 for all the xj

variables.

It is well known [36, 37] that this kind of systems can be reduced to a linear one

with constant coefficients and so, the solutions can be obtained explicitly. However
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from a dynamical point of view it is also interesting to know the equilibrium points

as well as their stability properties.

First, we look for the equilibrium points of (10). If we denote them by (ξ, η) where

ξ = (x0, x2, x4, x6), and η = (x1, x3, x5, x7), it is easy to obtain the following equilib-

ria

P ∗
1 : ξ1 = (0, 0, 0, 0) and arbitrary η1.

P ∗
2 : ξ2 = (1, 0, 0, 0) and η2 = (0, 0, 0, 0).

P ∗
3 : ξ3 =

(
0, 0,

2(1−µ)δµ
D2

, µ(1−µ)D2

)
and η3 =

(
0, 0,

µδµ
D2

, µµ̂D2

)
, where D2 = µ+ 2δµ.

P ∗
4 : ξ4 = (0, 0, 0, 1− µ̂) and η4 = (0, 0, 0, µ̂).

P ∗
5 : ξ5 =

(
0, 2δr

(1−µ̂)2
D1

, 0,− µ̂(1−µ̂)rD1

)
and η5 =

(
0, µ̂(1−µ̂)δrD1

, 0,− r̂µ̂
2

D1

)
, where

D1 = 2δr(1− µ̂)− µ̂r̂.

Equilibria P ∗
2 involves, if stable, the dominance of healthy cell populations and the

clearance of tumor populations. On the contrary, equilibrium point P ∗
3 involves, also

if stable, the out competition of healthy cells by the tumor cell populations. These

two equilibrium points are thus the most relevant ones since they represent an asymp-

totic extinction and persistence of tumor cells, respectively. Moreover, two lines of

equilibria appear for special values of the parameters:

P ∗
6 : ξ6(σ) =

(
1− σψ, 0, σ, α2

r̂δµ
σ

)
, η6(σ) =

(
0, 0,

α2

r
σ,
α2µ̂

rδµ
σ

)
,

ψ = 1 +
δr(1 + 2δµ)

2rδµ
, σ ∈ R, if δr − µr̂ = 0.

P ∗
7 : ξ7(c) =

(
1− 1

1− µ̂
σ, 0, 0, σ

)
, η7(σ) =

(
0, 0, 0,

µ̂

1− µ̂
σ

)
, σ ∈ R,

if δr − µ̂r̂ = 0.

We note that all the components of the equilibria P ∗
1 to P ∗

4 are non negative but

for the equilibrium P ∗
5 the values of x2 and x6 have opposite sign and, hence, it

will be discarded. If δr − µr̂ = 0 the equilibria (ξ6(σ), η6(σ)) have non negative

components for 0 ≤ σ ≤ σ6 = 1/ψ. It is easy to check that (ξ6(0), η6(0)) = (ξ2, η2)

and (ξ6(σ6), η6(σ6)) = (ξ3, η3). Then, in this case, the relevant equilibria are the ones

in the segment corresponding to σ ∈ [0, σ6]. In a similar way, if δr − µ̂r̂ = 0, the

equilibria (ξ7(σ), η7(σ)) have non negative components for 0 ≤ σ ≤ σ7 = 1− µ̂. This

corresponds to the segment determined by (ξ2, η2) and (ξ4, η4).

To study the stability of the equilibrium points we consider the matrix of the

linearized system. This matrix has the following form

M =

(
M1 0

M2 −ΦI

)
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where I is the identity of order 4, and

M1 =


r − Φ− x0r −x0r −x0r̂ −x0r̂
−x2r (1− µ̂)r − Φ− x2r −x2r̂ −x2r̂
−x4r −x4r (1− µ)r̂ − Φ− x4r̂ −x4r̂
−x6r −x6r + α1 −x6r̂ + α2 (1− µ̂)r̂ − Φ− x6r̂

 .

M2 is not necessary to our purposes. We note that −Φ< 0 is an eigenvalue of M
with multiplicity 4.

The eigenvalues of M1 at the non negative equilibria are the following

1. (ξ1, η1), λ1 = r > 0, λ2 = (1 − µ̂)r > 0, λ3 = (1 − µ)r̂ > 0, λ4 =

(1− µ̂)r̂ > 0,

2. (ξ2, η2), λ1 = −µ̂r < 0, λ2 = δr − µ̂r̂ < λ3 = δr − µr̂, λ4 = −r < 0,

3. (ξ3, η3), λ1 = −r̂(1− µ) < 0, λ2 = −δr + r̂µ, λ3 = −((1− µ)δr + rδµ) <

0, λ4 = −r̂δµ < 0,

4. (ξ4, η4), λ1 = −r̂(1− µ̂) < 0, λ2 = −δr + r̂µ̂, λ3 = −δr(1− µ̂) < 0, λ4 =

r̂δµ.

We notice that when P ∗
3 is unstable, dim(Wu) = 1. For P ∗

2 : if µr̂ < δr < µ̂r̂ ,

dim(Wu) = 1; and if µ̂ < δr/r̂, dim(Wu) = 2.

It is clear that for any given set of admissible parameters, (ξ1, η1) is unstable.

Moreover, if δµ > 0, as we are assuming, then (ξ4, η4) is also unstable.

The stability of (ξ2, η2) and (ξ3, η3) depends on the sign of δr − µr̂.
• If δr − µr̂ > 0 then (ξ2, η2) is unstable and (ξ3, η3) is stable.

• If δr − µr̂ < 0 then (ξ3, η3) is unstable and (ξ2, η2) is stable.

That is, from the previous conditions we can derive the bifurcation value involving

the transition from tumor cells dominance to tumor clearance. Such a bifurcation

value can be written

µc =
δr

r + δr
, (11)

or, alternatively, as

δcr =
µr

1− µ
. (12)

When µ > µc or δr < δcr the population of tumor cells will collapse to extinction (see

Proposition 1.2. for a detailed explanation of the nature of the bifurcation identified).

We remark that if δµ = 0, the equilibrium points (ξ3, η3) and (ξ4, η4) coincide.

Moreover if we accept that δµ crosses the value 0, the points interchange stability.

However, this is not a biologically meaningful scenario since always δµ > 0.

The bifurcation values (11) and (12) involve, when surpassed, an abrupt transition

between tumor persistence and tumor clearance. This discontinuous transition is

displayed in Fig. 1C. Here we numerically compute the equilibria of the populations at

increasing µ. In all of our numerical simulations we will consider as initial conditions

a tiny population of tumor cells in a healthy tissue with x0(0) = 0.94. We note

that the three neighbors of node 000 do not receive mutational income from 000

because healthy cells are assumed to have mutation rate 0. Hence, we use x1,2,4(0) =

0.02 as initial conditions. All other variables, which are the lethal phenotypes and
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sequence 110, are set to x3,5,6,7(0) = 0. The value of the critical mutation rate in

Fig.1C, is given by µc = 1/3, which perfectly matches with our theoretical prediction.

Notice that when µ < µc the equilibria of the lethal populations monotonically

increase as mutation rises up, while the equilibria of sequence 100 fastly decreases.

The other variable, x6 also increases, but all populations collapse at the critical

mutation rate. Notice that the collapse is discontinuous (see Proposition 1.2. for a

detailed explanation of this nature of transition). Panels in Fig. 1D display the time

dynamics below and above µc.

Figure 2 displays the equilibria in the parameter spaces (µ, δµ). Here, as we iden-

tified in the theoretical calculations, the bifurcation involving tumor extinction does

not depend on δµ. However, an increase in δµ slightly increase the population number

of lethal sequence 101. Interestingly, increasing δµ involves a decrease in populations

110, while populations with sequence 100 largely increase. This indicates that, be-

low the bifurcation, the increase of genomic instability favors the proliferating tumor

cells. Two phase portraits below (Fig. 2B1) and above (Fig. 2B2) the critical mutation

rate are also displayed by means of two-dimensional projections in the simplex. In

each phase portrait we plot several initial conditions, also including the fixed points

living in the simplex for each chosen parameter combination. Below the bifurcation

value (with µ = 0.27), the fixed points P ∗
2 and P ∗

3 are, respectively, unstable and

stable, involving the out competition of the healthy cells by the tumor ones. On the

contrary, with µ = 0.35 > µc, the stability is exchanged between these two distant

points, causing the abrupt transition towards tumor extinction. Figure 3 displays the

equilibria in the parameter spaces (δµ, δr). Since the bifurcation value also depends

on δr, we can see those values of δr < δcr involving tumor clearance and survival of

healthy cells. As we previously found, the increase of δµ for δr > δcr here also favors

the population of cells with sequence 100 with higher proliferation rates.

1.2 Explicit solutions

Now we look for explicit formulas for the solutions of (10). To do so, it is useful to

write the system as

ẋ = Ax− Φ(x)x , (13)

where xT = (x0, x2, x4, x6, x1, x3, x5, x7),

Φ(x) = uTRx, uT = (1, 1, 1, 1, 1, 1, 1, 1), R = diag(r, r, r̂, r̂, 0, 0, 0, 0)

and

A =

(
B 0

D 0

)
, B =


r 0 0 0

0 r(1− µ̂) 0 0

0 0 r̂(1− µ) 0

0 α1 α2 (1− µ̂)r̂

 ,

and D = diag(0, α1, α2, µ̂r̂).

As usual if we introduce new variables y = (y1, y2, y3, y4, y5, y6, y7, y8) given by

y = exp(f(t))x, f(t) :=

∫ t

0

Φ(x(τ)) dτ
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integrating along a solution x(τ). Then we obtain a linear constant coefficients system

for y

ẏ = Ay (14)

that can be solved easily. The initial conditions are y(0) = x(0). To recover x we use

the invariance of uTx =
∑7
i=0 xi = 1 to write

uTy = uT exp(f(t))x = exp(f(t))uTx = exp(f(t)).

Then,

x(t) = exp(−f(t))y(t) =
1

uTy
y(t). (15)

To simplify the notation we introduce

γ2 = r(1− µ̂), γ3 = r̂(1− µ), γ4 = r̂(1− µ̂).

We are assuming that δr > 0 and δµ > 0. Then γ2 6= γ4 and γ3 6= γ4. The solution of

(14), which satisfies y(0) = (c1, c2, c3, c4, c5, c6, c7, c8), is

y1(t) = c1e
rt, y2(t) = c2e

γ2t, y3(t) = c3e
γ3t, (16)

y4(t) = eγ4t
(
c4 +

α1c2
γ2 − γ4

(e(γ2−γ4)t − 1) +
α2c3
γ3 − γ4

(e(γ3−γ4)t − 1)

)
(17)

= eγ4t
(
c4 −

α1c2
γ2 − γ4

− α2c3
γ3 − γ4

)
+

α1c2
γ2 − γ4

eγ2t +
α2c3
γ3 − γ4

eγ3t, (18)

y5(t) = c5, y6(t) = c6 +
α1c2
γ2

(eγ2t − 1), y7(t) = c7 +
α2c3
γ3

(eγ3t − 1), (19)

y8(t) = c8 + (eγ4t−1)
µ̂r̂

γ4

(
c4−

α1c2
γ2−γ4

− α2c3
γ3−γ4

)
+
µ̂r̂α1c2(eγ2t−1)

γ2(γ2−γ4)

+
µ̂r̂α2c3(eγ3t−1)

γ3(γ3−γ4)
. (20)

Given some initial conditions x(0) = (x0,0, x2,0, x4,0, x6,0, x1,0, x3,0, x5,0, x7,0, ), tak-

ing into account that y(0) = (c1, c2, c3, c4, c5, c6, c7, c8) = x(0) and using (15) we

recover the initial variables x, that is

x0(t) =
y1(t)

uTy(t)
, x2(t) =

y2(t)

uTy(t)
, x4(t) =

y3(t)

uTy(t)
, x6(t) =

y4(t)

uTy(t)
, (21)

x1(t) =
y5(t)

uTy(t)
, x3(t) =

y6(t)

uTy(t)
, x5(t) =

y7(t)

uTy(t)
, x7(t) =

y8(t)

uTy(t)
.

Proposition 1.1 Assume r > 0, δr > 0, 0 < µ < 1, δµ > 0, µ+ δµ < 1 are fixed val-

ues. Let x(t) be the solution of (10) such that x(0) = (x0,0, x2,0, x4,0, x6,0, x1,0, x3,0, x5,0, x7,0),

with xj,0 ≥ 0, j = 0...7, and
∑7
j=0 xj,0 = 1. Then for any t ≥ 0, all the components

of x(t) are non negative. Moreover

• Assume x0,0 6= 0. If δr−µr̂ < 0 then x(t) tends to the equilibrium point (ξ2, η2)

as t goes to infinity.
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• Assume x4,0 6= 0. If δr−µr̂ > 0 then x(t) tends to the equilibrium point (ξ3, η3)

as t goes to infinity.

• Assume x0,0x4,0 6= 0. If δr − µr̂ = 0 then x(t) tends to the equilibrium

(ξ6(σ), η6(σ)), as t goes to infinity, where

σ =
x4,0

x0,0 + x4,0ψ
.

We recall that ψ has been defined as ψ = 1 +
δr(1+2δµ)

2rδµ
.

Proof We note that 0 < γ2 < γ4 < γ3. Assume that the initial conditions are non

negative. Then it is clear from (16), (17) and (19) that yi(t) ≥ 0 for i = 1, 2, 3, 4, 5, 6, 7.

Moreover using that ẏ8(t) = µ̂r̂y4(t) ≥ 0, we obtain that y8(t) is an increasing

function of t. So, if c8 ≥ 0, y8(t) ≥ 0. Therefore, uTy(t) > 0 and xi(t) ≥ 0 for all

t ≥ 0.

• If δr − µr̂ < 0, then r > γ3 and the dominant terms in (16) - (20) are the ones

corresponding to ert. In particular, if x0,0 6= 0, then uTy(t) ≈ c1e
rt = x0,0e

rt

and the solution (21) goes to the equilibrium point (ξ2, η2) as t goes to infinity.

• If δr −µr̂ > 0, then r < γ3. If we assume that x4,0 6= 0 the dominant terms are

the ones corresponding to eγ3t and

uTy(t) ≈ x4,0

(
1 +

α2

γ3
+

α2

γ3 − γ4
+

α2µ̂r̂

γ3(γ3 − γ4)

)
exp(γ3t) =

= x4,0
(µ+ 2δµ)

2(1− µ)δµ
exp(γ3t).

In this case, as t goes to infinity, the solutions tend to the equilibrium point

(ξ3, η3).

• If δr − µr̂ = 0, then r = γ3. Now the dominant terms are

uTy(t) ≈ ert(x0,0 + x4,0ψ).

If x0,0 6= 0 or x4,0 6= 0, as t → ∞ the solution tends to the point

(x0,L, 0, x4,L,x6,L,0, 0,x5,L, x7,L) where

x4,L =
x4,0

x0,0 + x4,0ψ
, x0,L = 1− ψx4,L, x6,L =

α2

r̂δµ
x4,L,

x5,L =
α2

r
x4,L, and x7,L =

α2µ̂

rδµ
.

That is, the limit point is (ξ6(σ), η6(σ)), with σ =
x4,0

x0,0 + x4,0ψ
.

Proposition 1.2 Assume that at t = 0 we start at a point of the segment joining the

points P ∗
2 and P ∗

3 of the form P = (1−β0)P ∗
2 +β0P

∗
3 . Then the solution remains on

that segment for all time, and at time t it is located in P (t) = (1−β(t))P ∗
2 +β(t)P ∗

3 ,

where

β(t) =
β0e

γ3t

(1− β0)ert + β0eγ3t
.
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The proof follows immediately from the expressions of the solutions (16-20). We

note that this result is valid for all values of the parameters.

Hence, for values of µ close to µc the situation is as follows: For µ > µc the

solution P ∗
3 is unstable, with an unstable 1-dimensional manifold and one of the

branches tends to the stable point P ∗
2 . This is a heteroclinic connection. For µ < µc

the situation is reversed: the heteroclinic connection goes from P ∗
2 (unstable) to P ∗

3

(stable). For the critical value µc all the points on the line passing through P ∗
2 and

P ∗
3 are fixed. Furthermore, for µ close to µc, the full line is attracting. We can talk

about a trans-heteroclinic bifurcation.

As for µ close to µc the eigenvalues associated to the line joining P ∗
2 and P ∗

3 are

close to zero, and all the other eigenvalues at these points are negative, arbitrary

initial conditions (except a set of zero measure) tend to that line. So, we can reduce

the study to the dynamics to a single line. A simple model of the trans-heteroclinic

bifurcation is as follows.

Assume that a differential equation in dimension one depends on a parameter α

and for any value of the parameter the points x0 = 0, x1 = 1 are fixed. Consider the

model equation

ẋ = αx(1− x).

Then, for α > 0 points between x0 and x1 move towards x1, while for α < 0 they

move towards x0. For α = 0 all the points on the line are fixed. This is exactly a

model of what happens in the present system.

1.3 Bifurcations and transients: Implications and potential therapies

The previous calculations and numerical simulations revealed a catastrophic transi-

tion separating tumor persistence from extinction. The bifurcation value has been

shown to depend on both mutation and proliferation rates of tumor cells. Here we

will focus on these two parameters seeking for the effects of their manipulation with

potential therapies. Several strategies to directly target cancer cells (targeted can-

cer therapies) have been discussed. For instance, DNA nano clews containing drugs

could be used for drug delivery inside tumor cells [42] (see below and Conclusions

Section). In Fig. 4A we display a bifurcation diagram increasing mutation rates of

tumor cells for 5 different values of the proliferation rate of tumor cells, δr. Notice

that the decrease of the replicating tumor populations (x4 + x6, red line) is linear

at increasing mutation. Interestingly, when the increase in the proliferation rate is

tiny (e.g., δr = 0.01), the critical mutation value, µc, becomes very small. This re-

sult suggests that possible therapies combining both mutagenic and cytotoxic drugs

may allow to achieve the abrupt bifurcation more easily. For larger values of δr the

critical mutation rate largely increases. This would involve higher concentrations of

mutagenic drugs or longer exposures to such drugs (see Conclusions Section).

Another interesting point that we can address with the model are the transients

towards both fixed points P ∗
2,3 as we approach to the bifurcation value (from below

and above), and their dependence on δr. Here, recall that with µ < µc the fixed point

P ∗
2 is unstable and P ∗

3 is stable. Contrarily, with µ > µc the fixed points P ∗
2 and P ∗

3

are, respectively, stable and unstable. The transients are computed as the time a

given trajectory φt spends to achieve a distance ε ≤ 10−6 to the fixed point P ∗
2 or

P ∗
3 , depending if or µ > µc. Here we will also use as initial conditions x0(0) = 0.94,

x1,2,4(0) = 0.02, and x3,5,6,7(0) = 0. The results are displayed in Fig. 4B. Here we
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numerically computed the transient times near but above µc (big panel) and near but

below µc (inset). The numerical results reveal a power-law dependence of the transient

times with the distance to the bifurcation value. For example, above bifurcation

threshold, the time that the tumor cells spend towards extinction, te (trajectories

are attracted by P ∗
2 ), scales according to te ∼ (µ− µc)θe , with θe = −1. This scaling

law (see below for the mathematical derivation of this exponent) indicates that with

a mutation rate extremely close to µc the system spends a huge amount of time

before tumor extinction. However, a tiny value increase beyond this critical value

the system drastically reduces the time-to-extinction, meaning that responses time

would be extremely fast after drug treatment. In this scenario, it is worth to mention

that tumor populations with higher proliferation rates would become extinct more

rapidly, although the critical mutation rate is also much higher (notice that Fig. 1B

gives information about the transients as mutation is changed from the bifurcation

value, however, the critical mutation value grows as δr grows, see Fig. 1A). For

instance, the time-to-extinction with µ = µc + 10−4 is te ≈ 756, 800 for δr = 0.05;

and te ≈ 171, 590 for δr = 0.8. If we increase mutation this time is drastically reduced:

the time-to-extinction with µ = µc+10−2 is te ≈ 7, 590 for δr = 0.05; and te ≈ 1, 727

for δr = 0.8 (times are in arbitrary units).

The inset in Fig. 1B displays the same information now tuning mutation up to

µc but from below. This means that the orbits are attracted by the fixed point

P ∗
3 , which involves tumor persistence and extinction of the healthy cell populations.

Here, the time the tumor spends to outcompete the population of healthy, tT cells

scales according to tT ∼ (µc − µ)θT , with θT = −1. Here, the higher the value of

δr, the shorter the time the tumor spends to achieve equilibrium P ∗
3 . This means

that increasing mutation rate close, but below µc would involve a fast tumor growth

impairing the healthy population. This strategy would not be so dangerous for slowly-

replicating tumors, which also have a low value of µc.

In the following lines we will derive the scaling exponent previously identified nu-

merically. As it was mentioned in the previous section, for µ close to µc the dynamics

tends first to approach the segment between P ∗
2 and P ∗

3 . For concreteness assume

that it approaches a point P of the form P = (1−β0)P ∗
2 +β0P

∗
3 . Then the subsequent

evolution is of the form P (t) = (1− β(t))P ∗
2 + β(t)P ∗

3 , where

β(t) =
β0e

γ3t

(1− β0)ert + β0eγ3t
=

β0e
(γ3−r)t

1− β0 + β0e(γ3−r)t
.

Note that γ3 − r = −r̂(µ− µc).
Hence, for µ > µc as γ3 − r < 0 the second term in the denominator becomes

negligible in front of the first one after some time. It remains, essentially, β(t) =
β0

1−β0
e(γ3−r)t which tends to 0 as time increases. That is, the point tends to P ∗

2 . If

we want to stop at a distance d from P ∗
2 we put d = ||P (t)− P ∗

2 || = β(t)||P ∗
3 − P ∗

2 ||
and denoting as C the value of ||P ∗

3 − P ∗
2 ||

β0

1−β0
we obtain d = C exp(−r̂(µ− µc)t),

where we have used the expression of γ3 − r given above.

Taking logarithms twice in the last equality one has log(log(C/d)) = log(r̂)+log(µ−
µc) + log(t).

For fixed values of r, δr, d and a given initial value β0 this is the equation of a straight

line in the M = log(µ − µc) and T = log(t) variables, with slope −1; M + T = S,

where S denotes log(log(C/d))− log(r̂).
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Hence, t is of the order of magnitude of (µ− µc)−1. We also check that increasing

δr and, hence, increasing r̂, the value of S decreases and the line with slope -1 is

going a little bit down, as seen in Fig. 4B.

The same reasoning applies if µ < µc looking for the approach to P ∗
3 .

Anyway, we should note that for values of µ − µc relatively large one can have

relevant variations in the value of the parameter β0 of the point of the segment

between P ∗
2 and P ∗

3 that we approach at the beginning of the evolution. This is

clearly reflected on the figure when the values of µ − µc exceeds 0.1. Furthermore,

this effect is more visible in the case µ < µc, when approaching P ∗
3 . This is due to

the fact that the initial point, with first component 0.94, is much closer to P ∗
2 . The

effect of this first component is also reflected on the fact that, for a fixed value of δr,

the time to be at distance d from P ∗
3 with µ = µc−∆µ is larger than the time to be

at distance d from P ∗
2 with µ = µc + ∆µ.

Conclusions
Most of the transitions and bifurcations identified in deterministic quasispecies mod-

els towards the so-called error-threshold are given by smooth, continuous shifts

[38–41]. Moreover, previous mathematical models [15,16,26,27,33] applied to cancer

dynamics have also revealed smooth transitions towards the impairment of cancer

populations. Here, we identified a novel bifurcation named as trans-heteroclinic bifur-

cation, which involves the stability exchange between two equilibria placed far away

from each other in phase space. These conditions lead to a non-smooth, i.e., catas-

trophic, transition governing the extinction of tumor cell populations. As a difference

from transcritical or saddle-node bifurcations of fixed points or periodic orbits, the

two equilibria in our system do not collide in phase space. We notice that the bi-

furcation found in our model is not very standard and involves a transcritical-like

bifurcation with a discontinuous shift as a given control parameter crosses its bifur-

cation value. As a difference from a transcritical bifurcation, the fixed points do not

collide when interchanging stability, thus giving place to an abrupt transition

The bifurcation value in our system depends on the mutation rate of tumor cells

and on their proliferation increase. This finding can give clues about how a proper

therapy may affect the tumor behaviour. In this sense, the so-called targeted cancer

therapies are being designed to deliver drugs inside cancer cells in a specific manner.

For instance, DNA nano-capsules storing anticancer drugs [42]. Roughly, such nano

capsules could attach to the receptors of the tumor cells, being internalised inside

them and delivering the drugs after their self-degradation inside the cancer cell lyso-

somes. For this particular case, recent essays have studied the release dynamics of

the anticancer drug DOX (doxorubicin) in an acidic medium in vitro [42]. DOX is

known to act on macromolecular synthesis, inhibiting the progression of the enzyme

topoisomerase II during DNA replication. Hence, DOX has a cytotoxic effect stoping

the process of replication reducing cancer cells proliferation. Another side effect of

DOX is the increase of free radical production, which could involve increased muta-

genesis in such cells. In this sense, it is known that oxidative damage can increase

the mutation frequency by an average 4.3-fold [43].

The results reported here highlight the importance of combination therapies using

both mutagenic and cytotoxic drugs, such as DOX. Similarly, other mutagenic drugs

such as etoposide, mitoxantrone and teniposide (other topoisomerase inhibitors)
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could be applied to cancer cells by means of the DNA nano capsules, in combi-

nation with cytotoxic drugs such as maytansine [44], vinorelbine, vindesine, and

vinflunine [45] (which block cell division by inhibiting the assembly of microtubules).

The combination of these two drugs could, according to our results, drive the system

towards parameter values causing the abrupt collapse of the tumor populations.
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Figure 1 Population structure of the phenotypic quasispecies considering competition between
healthy and tumor cells. (A) Our model describes the dynamics of healthy cells (green) competing
with a pool of heterogeneous tumor cell phenotypes (red). Each cell is described by a binary state
containing three compartments with genes involved in replication (R, such as proto-oncogenes or
tumor-suppressor genes), genome stability (S), and the house-keeping (H) genes. The sequence of
this cell state determines its phenotypic traits. The system is a disconnected cube since mutations in
healthy cells are neglected (dashed lines). Notice that genomes with a mutation or alterations in the
H compartment are not viable and do not produce mutant cells (dotted lines). (B) Table displaying
(by columns): the binary sequence of each cell; the variable with the subindex corresponding to the
integer number of each binary sequence; the replication rate of each cell; and the mutation rate of
each genome. (C) Bifurcation diagram using mutation rate of tumor cells, µ, as control parameter
using r = 0.1 and δµ = δr = 0.05. Notice that the bifurcation is discontinuous as the control
parameter µ crosses its bifurcation value. (D) Time series using same parameter values as in (C)
using: Panel 1: µ = 0.05; Panel 2: µ = 0.2: Panel 3: µ = 0.31; and Panel 4: µ = 0.35. The time
dynamics of healthy and tumor cells are displayed in black and in red, respectively.
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Figure 2 Effect of µ and δµ on the equilibrium populations. (A) The surfaces display the
equilibrium concentrations of the state variables represented in the parameter space (δµ, µ), setting
δr = 0.05. The other variables i.e., x001(x1);x010(x2);x011(x3) have zero population numbers at
equilibrium. (B) Dynamics projected on the phase portrait (x0, x4), also setting δr = 0.05, and
δµ = 0.3 with Panel 1: µ = 0.27; and Panel 2: µ = 0.35. Notice that the straight line to which all
initial conditions flow corresponds to the heteroclinic connection between fixed points P ∗

2 and P ∗
3 .

The fixed point P ∗
1 is also shown on the simplex (stable and unstable equilibria are indicated in

black and white, respectively). In all the analyses we set r = 0.1.
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Figure 3 Effect of δµ and δr on the equilibrium populations. Here the surfaces also display the
equilbrium concentrations of the state variables represented in the parameter space (δµ, δr) at high
mutation rates i.e., µ = 0.8. As in the previous figure, state variables x001(x1); x010(x2); and
x011(x3) have zero population numbers. In (A) we display the scenario where healthy cell
populations outcompete the tumor population, with δr = 0.39, once the critical value of δr is
crossed. If δr is increased, the tumor outcompetes the population of healthy cells, as we show in
(B) using δr = 0.41. In both panels we used δµ = 0.05. In all the analyses we use r = 0.1.
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Figure 4 Catastrophic shifts of tumor cell populations and transient times near bifurcation
threshold. (A) Abrupt extinction of tumor cell populations (represented as x∗4 + x∗6, red i.e., not
considering lethal phenotypes). The vertical dashed black lines represent the critical mutation rates
µc given by Eq. (11) for (from right to left) decreasing values of δr. (B) Times to tumor extinction,
te, as mutation rate µ increases above the critical mutation value µc for (from top to down):
δr = 0.01; δr = 0.05; δr = 0.1; δr = 0.2; δr = 0.3; δr = 0.4; δr = 0.5; δr = 0.6; δr = 0.7. Notice
that te displays a power-law dependence after bifurcation threshold: te ∼ (µ− µc)θe with θe = −1.
The inset displays the time it takes to the system to achieve the fixed point P ∗

3 (where the tumor
wins) below bifurcation threshold (here we used the same increasing values of δr (also from top to
down) than in the big plot). Notice that the same exponent is found below bifurcation threshold,
i.e., tT ∼ (µc − µ)θT , θT = −1. In both panels we use r = 0.1 and δµ = 0.1 (we notice, however,
that the results of this figure do not depend on δµ).
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