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Abstract:  

Two-component signaling (TCS) is the primary means by which bacteria sense and respond to 

the environment. TCS involves two partner proteins working in tandem, which interact to 
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perform cellular functions while limiting interactions with non-partners (i.e., “cross-talk”). We 

construct a Potts model for TCS that can quantitatively predict how mutating amino acid 

identities affect the interaction between TCS partners and non-partners. The parameters of this 

model are inferred directly from protein sequence data. This approach drastically reduces the 

computational complexity of exploring the sequence-space of TCS proteins. As a stringent test, 

we compare its predictions to a recent comprehensive mutational study, which characterized the 

functionality of 204 mutational variants of the PhoQ kinase in Escherichia coli. We find that our 

best predictions accurately reproduce the amino acid combinations found in experiment, which 

enable functional signaling with its partner PhoP. These predictions demonstrate the evolutionary 

pressure to preserve the interaction between TCS partners as well as prevent unwanted “cross-

talk”. Further, we calculate the mutational change in the binding affinity between PhoQ and 

PhoP, providing an estimate to the amount of destabilization needed to disrupt TCS. 

 

Introduction 

Early theoretical work on protein folding postulated that proteins have evolved to be minimally 

frustrated (Bryngelson and Wolynes 1987; Bryngelson, et al. 1995; Onuchic, et al. 1997), i.e., 

evolved to have favorable residue-residue interactions that facilitate folding into the native state 

while having minimal non-native energetic traps. The principle of minimal frustration provides 

intuition as to why protein sequences are not random strings of amino acids. The evolutionary 

constraint to fold into a particular, stable three-dimensional structure while minimizing the 

number of frustrated interactions greatly restricts the sequence-space of a protein (Leopold, et al. 

1992; Bryngelson, et al. 1995; Onuchic, et al. 1997). Satisfaction of these constraints result in 

correlated amino acid identities within the sequences of a protein family. These correlated 
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identities occur between different positions in a protein such as, for example, native contacts 

(Gobel, et al. 1994; Neher 1994; Shindyalov, et al. 1994). We refer to these quantifiable amino 

acid correlations as coevolution. 

 Of course, coevolution does not only arise from the constraint to fold. Proteins also fulfill 

cellular functions, which act as additional constraints on the sequences of proteins (Ferreiro, et 

al. 2014; Sikosek and Chan 2014; Wolynes 2015). In the context of signal transduction, proteins 

have evolved to be able to preferentially bind to a signaling partner(s) as well as catalyze the 

chemical reactions associated with signal transfer. An important example is two-component 

signaling (TCS) (Hoch 2000; Stock, et al. 2000; Laub and Goulian 2007; Casino, et al. 2010; 

Szurmant and Hoch 2010; Capra and Laub 2012), which serves as the primary means for bacteria 

to sense the environment and carry out appropriate responses. TCS consists of two partner 

proteins working in tandem: a histidine kinase (HK) and a response regulator (RR). Upon the 

detection of stimulus by an extracellular sensory domain, the HK generates a signal via 

autophosphorylation. Its RR partner can then transiently bind to the HK and receive the signal 

(i.e., phosphoryl group), thereby activating its function as a transcription factor. The HK has also 

evolved to catalyze the reverse signal transfer reaction (i.e., phosphatase activity), acting as a 

sensitive switch to turn off signal transduction. To prevent signal transfer with the wrong partner 

(i.e., “cross-talk”), TCS partners have mutually evolved amino acids at their respective binding 

interfaces that confer interaction specificity (Laub and Goulian 2007; Szurmant and Hoch 2010; 

Capra and Laub 2012). Thus, the collection of protein sequences of TCS partners contains 

quantifiable coevolution between the HK and RR sequences. 

 In principle, the determinants of interaction specificity for TCS can be quantified by a 

probabilistic model of sequence selection (Cheng, et al. 2014). Assuming that nature has 
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sufficiently sampled the sequence-space of TCS proteins, the collection of protein sequences of 

TCS partners can be viewed as being selected under quasi-equilibrium from a Boltzmann 

distribution: 

    P(STCS ) = Z
−1 exp −H (STCS )( )     (1) 

where STCS is the concatenated amino acid sequence of a HK and RR protein, P is the probability 

of selecting STCS , and -H is proportional to the additive fitness landscape that governs the 

evolutionary sequence selection for TCS partners. Specifically, Eq. 1 was previously derived 

using simple models of evolutionary biology (Sella and Hirsh 2005), where H = −vx  and v  is 

the population size of the genotypes and x  is the additive fitness (i.e., the negative log of the 

fitness); See Materials and Methods for more details. H is referred to in our work as a 

coevolutionary landscape. 

 Recently, maximum entropy-based approaches referred to as Direct Coupling Analysis 

(DCA) (Weigt, et al. 2009; Morcos, et al. 2011; Ekeberg, et al. 2013) have been successfully 

applied to infer the parameters of H (a Potts model) that governs the empirical amino acid 

sequence statistics. This has allowed for the direct quantification of the coevolution in protein 

sequence data (See Review: (de Juan, et al. 2013)). Early work using DCA to study TCS 

primarily focused on identifying the key coevolving residues between the HK and RR (Weigt, et 

al. 2009). Highly coevolving residue pairs have been used as docking constraints in a molecular 

dynamics simulation to predict the HK/RR signaling complex (Schug, et al. 2009), the 

autophosphorylation structure of a HK (Dago, et al. 2012) , and the homodimeric form 

(transcription factor) of the RR (dos Santos, et al. 2015). DCA has also been applied to quantify 

the determinants of interaction specificity between TCS proteins (Procaccini, et al. 2011; Cheng, 

et al. 2014), building on earlier coevolutionary approaches (Li, et al. 2003; Burger and van 
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Nimwegen 2008). In particular, DCA was used to predict the effect of point mutations on TCS 

phosphotransfer in vitro as well as demonstrate the reduced specificity between HK and RR 

domains in hybrid TCS proteins (Cheng, et al. 2014). 

 The experimental effort to determine the molecular origin of interaction specificity in 

TCS proteins (See Reviews: (Laub and Goulian 2007; Casino, et al. 2010; Szurmant and Hoch 

2010; Podgornaia and Laub 2013)) precedes the recent computational efforts. Full knowledge of 

the binding interface between HK and RR was made possible through X-ray crystallography 

(Casino, et al. 2009). Scanning mutagenesis studies (Tzeng and Hoch 1997; Qin, et al. 2003; 

Capra, et al. 2010) provided insight on the subset of important interfacial residues that determine 

specificity. These key residues were mutated to enable a TCS protein to preferentially interact 

with a non-partner in vitro (Skerker, et al. 2008; Capra, et al. 2010). However, the extent of 

possible amino acid identities that allow TCS partners to preferentially interact in vivo has 

remained elusive until recent comprehensive work by Podgornaia and Laub (Podgornaia and 

Laub 2015). Their work focused on the PhoQ/PhoP TCS partners in E. coli, which control the 

response to low magnesium stress. PhoQ (HK) phosphorylates and dephosphorylates PhoP (RR) 

under low and high magnesium concentrations, respectively. Using exhaustive mutagenesis of 4 

residues of PhoQ (204 = 160,000 mutational variants) at positions that form the binding interface 

with PhoP, Podgornaia and Laub (Podgornaia and Laub 2015) were able to characterize all 

mutants based on their functionality in E. coli. It was found that roughly 1% of all PhoQ mutants 

were functional, enabling E. coli to exhibit comparable responses to magnesium concentrations 

as the wild type PhoQ. This finding uncovered a broad degeneracy in the sequence-space of the 

HK protein that still maintained signal transfer efficiency as well as interaction specificity with 

its partner.  
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 We ask whether amino acid coevolution inferred using DCA could capture the functional 

mutational variants observed in the comprehensive mutational study of PhoQ and if so, to what 

extent? Capturing this functionality requires that information gleaned from coevolution is 

sufficient to estimate the effect of mutations to PhoQ on its interactions with PhoP as well as on 

unwanted “cross-talk”. Hence, our question is important to determine if coevolutionary methods 

can be extended from studying two interacting proteins to studying an interaction network (e.g., 

systems biology). Further, this question is of particular interest to those who want to engineer 

novel mutations in TCS proteins that can maintain or encode the interaction specificity of a TCS 

protein to its partner or a non-partner, respectively.  

 To answer this question, we first infer a Potts model, H (see Eq. 1), which forms the basis 

for quantifying how mutations affect the interaction between a HK and RR protein. Focusing on 

the parameters of H that are related to interprotein coevolution, we construct a coevolutionary 

landscape to quantify TCS interactions,HTCS , for a given sequence of an HK and RR protein. 

HTCS  serves as a proxy for signal transfer efficiency, allowing us to quantify the effect on fitness 

of the interaction between any HK and RR protein. Further, we can assess how mutations affect 

fitness due to changes in the HK/RR interaction by computing the mutational change in HTCS  

between the mutant sequence, STCSmutant , and the wild type sequence, STCSWT : 

   ΔHTCS = HTCS(STCS
mutant )− HTCS(STCS

WT ) .    (2) 

Considering the concatenated sequence of PhoQ and PhoP, we compute Eq. 2 for the 204 PhoQ 

mutational variants. We find that mutants with the most favorable ΔHTCS  (e.g., most negative) 

were classified as functional HKs by Podgornaia and Laub (Podgornaia and Laub 2015)—i.e., 

true positive predictions. Next, we focus on mutations predicted to be favorable by Eq. 2 that 

were classified as non-functional in experiment. Expanding our analysis of the PhoQ mutants 
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beyond its interaction with PhoP, we consider how mutations affect the signal transfer efficiency, 

HTCS , between PhoQ and all of the RR proteins in E. coli. We find that many of these non-

functional mutants exhibit “cross-talk” interactions according to our model, accounting for their 

non-functionality. If we exclude these promiscuous variants, we can better isolate the true 

positive predictions that are functional from false positives that are non-functional. Our 

predictions also capture context-dependent mutational affects that were observed in experiment, 

i.e., epistasis. Finally, we estimate the mutational change in binding affinity in the PhoQ/PhoP 

bound complex using the Zone Equilibration of Mutants (ZEMU) method (Dourado and Flores 

2014), a combined physics- and knowledge-based approach for free energy calculations. 

Consistent with what we would expect, we find that mutations that destabilize the HK/RR 

interaction tend to be non-functional with very high statistical significance. Non-functional 

mutants are on average destabilized by ~2 kcal/mol with respect to functional mutants.  

 The work described herein demonstrates that a coevolutionary model (i.e., additive 

fitness landscape) built from sequence data can directly connect molecular details at the residue-

level to mutational phenotypes in bacteria. This has broad applications in systems biology, but 

also in synthetic biology since our computational framework can be used to select mutations that 

enhance or suppress interactions between TCS proteins. A more detailed description of our 

computational approaches can be found in the Materials and Methods section. 

 

Results 

Mutational change in coevolutionary landscape, ΔHTCS , for PhoQ/PhoP interaction 

We first focus on the parameters of the inferred Potts model (Eq. 3) that describe the coevolution 

between the Dimerization and Histidine phosphotransfer domain (DHp) and the Receiver (REC) 
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domain (Fig. 1A), which form the HK/RR binding interface (Fig. 1B). The interprotein statistical 

couplings (Fig. 1C) of Eq. 3 are used to construct a coevolutionary landscape, HTCS  (Eq. 5), as a 

proxy for signal transfer efficiency. For each of the 1,659 functional and 158,341 non-functional 

PhoQ-mutational variants identified by Podgornaia and Laub (Podgornaia and Laub 2015), we 

compute the mutational change, ΔHTCS , between PhoQ and PhoP. As an initial step, we only 

consider the PhoQ/PhoP sequence, i.e., we do not yet consider other RR proteins than PhoP. A 

histogram of ΔHTCS  is generated for all mutational variants (Fig. 2A). The distribution of the 

functional mutants tends more towards favorableΔHTCS  than the distribution of non-functional 

mutants, but more interestingly, the most favorable predictions of our model contain mostly 

functional mutations. This is made clear by a plot of the Positive Predictive Value (PPV) for the 

top N mutational variants ranked by ΔHTCS  (Fig. 2B) from most favorable to most deleterious. 

The top 25 mutational variants ranked by ΔHTCS contain 20 functional mutants and 5 non-

functional mutants (i.e., PPV=0.8).  

 

Sensor HAMP DHp ATPase REC Effector

Histidine Kinase (HK) A. Response Regulator (RR)

B.

-
TCS

 =  (    DHp sequence    ,     REC sequence    )

C.

i j

k

HK RR

Interprotein couplings

between HK and RR

residues
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Fig. 1. TCS domain interactions of interest. We focus only on HK proteins that have 

the following domain architecture from N to C terminus: sensor, HAMP, DHp, and 

ATPase. Likewise, we consider RR proteins that consist of a REC domain followed by an 

effector domain. (A) The interaction between the DHp and REC domains of the HK and 

RR proteins, respectively, form the TCS complex. Sequences of TCS partners are 

collected and stored as the concatenated sequence of the DHp and REC domains, STCS 

(See Materials and Methods). (B) A representative structure of the HK/RR TCS complex 

previously predicted for the KinA/Spo0F complex in B. subtilis (Cheng, et al. 2014). The 

HK homodimer is shown in red and blue while the receiver domain of the RR is shown in 

gray. The dashed box highlights the DHp and REC interface. This predicted complex is 

consistent with the experimentally determined crystal structure of HK853/RR468 of T. 

maritima (Casino, et al. 2009) as well as another computationally predicted TCS complex 

(Schug, et al. 2009). (C) Our proxy for signal transfer efficiency, HTCS (Eq. 5), is 

composed of the statistical coupling parameters that describe coevolution between 

interprotein residues (depicted in green). Hence, HTCS  naturally captures the context-

dependence of mutating a residue in the HK when a residue in the RR is also mutated, or 

vice versa (See Materials and Methods for more details). 
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Fig. 2. Effect of mutations on the PhoQ/PhoP interaction. (A) Considering the 

concatenated sequence of PhoQ/PhoP, a histogram of ΔHTCS  (Eq. 5) is plotted for the 

functional (blue) and non-functional (red) mutational variants reported by Podgornaia and 

Laub (Podgornaia and Laub 2013). The color purple shows parts of the plot where the 

blue and red histograms overlap. The dashed line roughly partitions the 200 most 

favorable mutational variants given by ΔHTCS , which contains more functional than non-

functional mutants. By definition,ΔHTCS = 0  corresponds to the wild type PhoQ/PhoP and 

ΔHTCS < 0  corresponds to mutations that we predict to be more favorable to PhoQ/PhoP 

signaling than the wild type. (B) We plot the positive predictive value (PPV) as a 

function of the N mutational variants ranked by ΔHTCS  from the most to least favorable 
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for the first 200 mutants. PPV=TP/(TP+FP), where true positives (TP) and false positives 

(FP) refer to the fraction of mutants that are functional or non-functional, respectively, in 

the top N ranked variants. The thin red lines denote that the top 25 ranked mutational 

variants have a PPV of 0.8. 

 

System-level analysis using ΔHTCS : functional mutants limit “cross-talk” 

Mutations that may enhance signal transfer efficiency between PhoQ and PhoP in vitro may still 

result in a non-functional PhoQ/PhoP system in vivo. This would occur if the mutations to PhoQ 

sufficiently encoded it to preferentially interact with another RR in E. coli. For this reason, we 

focused our computational analysis on the subset of mutational variants that preserve PhoQ/PhoP 

specificity by limiting “cross-talk” according to our coevolutionary model. 

 We first calculate the proxy for signal transfer efficiency, HTCS , between the wild type 

PhoQ sequence and all of the non-hybrid RR proteins in E. coli (Fig. 3A). We find that for wild 

type PhoQ, the most favorable HTCS  (most negative) is with its known signaling partner, PhoP. 

As a consistency check, we also plot HTCS  for different combinations of the cognate partners 

TCS proteins in E. coli (Fig. S1). This result is consistent with previous computational 

predictions that used information-based quantities (Procaccini, et al. 2011; Cheng, et al. 2014) to 

quantify interaction specificity.  

 Extending upon Fig. 3A, we assess “cross-talk” in our model by calculating HTCS

between each PhoQ mutant and all of the non-hybrid RR in E. coli. We exclude all mutant-PhoQ 

variants that have a more favorable HTCS  with a non-partner RR. These excluded mutants are 

excellent candidates for engineering specificity in E. coli. Applying our exclusion criterion, we 
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find that only 181 functional and 1,532 non-functional variants remain, i.e., 89% and 99% of the 

functional and non-functional variants, respectively, were removed. A histogram of the 

remaining (cross-talk excluded) mutants as a function of ΔHTCS  (Fig. 3B) shows that a filter 

based on interaction specificity is better able to isolate the true positive (functional) variants. 

Notably, the first 17 ranked variants are all functional variants. Once again, ranking the filtered 

variants by ΔHTCS from the most favorable to the least favorable, we can plot the PPV (Fig. 3C) 

for the top N ranked variants. We find that the cross-talk excluded PPV tends to lie above the 

original PPV from Fig. 2B.  

 

Fig. 3. Excluding mutational variants that are inferred to “cross-talk”. (A) A grid 

plot showing HTCS  (Eq. 5) computed for the wild type PhoQ sequence with all of the 

non-hybrid RR protein sequences in E. coli, respectively. The most favorable interaction 

(most negative) given by HTCS  is between PhoQ and its partner PhoP. (B) We plot the 
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Cross-talk excluded subset (181 functional 1,532 non-functional) in a histogram as a 

function of the ΔHTCS  similar to Fig. 2A. (C) We plot the PPV as a function of the N top 

mutational variants ranked by ΔHTCS  for the first 200 mutants. The PPV for the cross-talk 

excluded mutational variants from Fig. 3B are plotted in green while the original PPV 

(Fig. 2B) is shown in black. 

 

 

 Fig. 4. Capturing epistatic mutational effects. (A) Histograms of the 0, 1, 2, 3, and 4-

site mutants are plotted for the 181 functional and 1,532 non-functional mutational 

variants in our cross-talk excluded subset that is predicted using HTCS  (Eq. 5). (B) An 

example of mutational context-dependence predicted by HTCS is shown here, considering 

residues 254, 255, 258, 259 of PhoQ, which have the WT amino acid configuration 

AVST, respectively. Green arrows drawn from AVST indicate single point mutations that 
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are correctly predicted to result in a functional phenotype. Successive green arrows 

indicate double and triple point mutations from the WT that are correctly predicted to be 

functional. Likewise, red arrows indicate single point mutations from an amino acid 

configuration that are correctly predicted to result in a non-functional phenotype. The 

AVGY mutation (dashed line and circle) was found to be functional in experiment but is 

predicted to cross-talk by HTCS . (C) The schematic shows intraprotein coevolution (red) 

between residues i and k (of the HK) and interprotein coevolution (green) between 

residues i and j as well as k and j. As previous described in Fig. 1C, interprotein 

coevolution captures the effects of mutating the HK when the RR is also mutated (or vice 

versa). Epistasis between HK and RR proteins are naturally incorporated within HTCS . 

On the other hand, epistasis between the 4-mutational sites of the Podgornaia and Laub 

experiment is described in our model through the statistical couplings between the 4-

mutational sites (red in schematic). These additional parameters are added to HTCS to 

obtain HTCS
(epistasis )  (See Materials and Methods). (D) We plot the PPV as a function of the N 

top mutational variants ranked by ΔHTCS  for the first 200 mutants. The PPV predicted by 

HTCS  (Fig. 3C) is shown in green while the PPV predicted by HTCS
(epistasis )  is shown in blue.  

 

Mutational context-dependence in the coevolutionary landscape 

A significant finding of the Podgornaia and Laub study was the context-dependent nature of the 

many of the mutations. For example, individual mutations that may result in a non-functional 

phenotype may result in a functional phenotype when combined. It is well known that mutations 

may exhibit such a context dependence, or epistasis, i.e., mutations introduced together have an 
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effect on fitness that is not simply the combined effect of each mutation alone. Such effects 

would restrict the connectivity between functional mutations and act as constraints on TCS 

evolution (Podgornaia and Laub 2015).  

 We find that the functional predictions in Fig. 3 tend to be 3- and 4-point mutations, 

highlighting their non-trivial nature (Fig. 4A). While the effect of mutating a HK protein when 

its partner RR is mutated (and vice versa) is naturally captured in our model through interprotein 

statistical couplings (Fig. 1C), the mutational context-dependence (i.e., intraprotein couplings) of 

HK only mutations or RR only mutations is not explicitly contained within Eq. 5. Even with 

these limitations, the model is still able to distinguish between functional multi-point mutations 

that are composed of non-functional single-point mutations for the most favorable predictions, in 

accordance with experiment (Podgornaia and Laub 2015). One example is provided in Fig. 4B 

for the mutation of WT PhoQ from AVST at residues 284, 285, 288 and 289, respectively, to 

SVGY (i.e., a 3-point mutation). For single point mutations from AVST, HTCS  correctly predicts 

that SVST and AVSY are functional while AVGT is non-functional. For two point mutations, 

HTCS  correctly predicts that SVSY is functional while SVGT is non-functional. More 

interestingly, HTCS  finds that when the non-functional 2-point mutation SVGT is combined with 

a Tyrosine mutation to position 289 (i.e., SVGY), the functionality is recovered. It should be 

noted that the two-point mutation AVGY is predicted to have a favorable ΔHTCS  between PhoQ 

and PhoP, but is predicted to undergo cross-talk, and thus, is discarded despite being functional 

in experiment. 

  We next consider a model where epistasis between the 4-mutational sites explored by 

Podgornaia and Laub are explicitly introduced into Eq. 5 (See Eq. 6 in Materials and Methods). 

The epistatic effects of multiple HK mutations are captured by the statistical couplings of the 
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Potts model that describe the pairwise coevolution between the HK mutational sites. This is 

illustrated schematically in Fig. 4C. We find that such a model, HTCS
(epistasis )  (Eq. 6), is consistent 

with the original model, HTCS , in terms of its predictions and predictive quality (Fig. 4D). In 

particular, the prediction of functional phenotypes for the example in Fig. 4B yields identical 

results. Nevertheless, this model provides additional epistatic mutational effects that are not 

simply the added sum of the individual mutational effects.  

 Finally, we examine a model that only considers HK coevolution in SI Main Text. This 

model naturally includes the epistasis between the 4-mutational sites explored in experiment 

(Podgornaia and Laub 2015). From this model, we find that coevolution between HK residues 

alone is insufficient for capturing the functional phenotypes observed in experiment. 

Mutational change in the binding affinity using a combined physics- and knowledge-based 

approach 

We used ZEMu (See Materials and Methods) to compute the mutation-induced change in the 

binding affinity, ΔΔGTCS
ZEMu , between PhoQ and PhoP. The calculation converged for 42,985 

mutants (702 functional and 42,283 non-functional) from a randomly selected subset of the 204 

variants. We first examined a scatter plot of ΔHTCS  vs. ΔΔGTCS
ZEMu  (Fig. S6) to observe whether a 

functional relationship can be deduced from the computational data alone. The mutational 

change in the coevolutionary landscape, ΔHTCS , would in principle exhibit a non-linear 

dependence on ΔΔGTCS
ZEMu , while also depending on many other quantities including the binding 

affinity with other proteins. We find no obvious relationship between the two quantities in our 

current analysis.  
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 A histogram of ΔΔGTCS
ZEMu  is plotted for the 42,985 mutants in Fig. 5A. A histogram of 

ΔHTCS  for the same subset of mutants is shown in Fig. S7A. On the population level, functional 

mutations exhibit a mean ΔΔGTCS
ZEMu

 of 1.76 ± 0.06 kcal/mol lower than that of the non-functional 

mutants, with a Wilcoxon rank-sum test p-value < 2.2 ×10−16 . This indicates that destabilizing 

mutations of ~2 kcal/mol are sufficient for disrupting TCS. Furthermore, destabilizing mutations 

that are more than 2 standard deviations greater than the mean ΔΔGTCS
ZEMu  for functional variants 

are significantly less likely to be functional, with a p-value < 10-6 computed from a cumulative 

binomial distribution (based on the 6157 mutants above this threshold, 19 of which are 

functional). 

 We next examine the potentially deleterious effect of mutations that overly stabilize the 

binding affinity between PhoQ and PhoP. Although we find that all 56 mutants with 

ΔΔGTCS
ZEMu < −5 kcal/mol  are non-functional (Fig. 5A), this has no statistical significance (p-value 

~ 0.4). Fig. 5A illustrates our point that the functional mutations tend to have a neutral affect on 

ΔΔGTCS
ZEMu , while high ΔΔGTCS

ZEMu  is strongly associated with the loss of function. Although very 

low ΔΔGTCS
ZEMu  may visually appear to be enriched with non-functional mutants, this is based on a 

small number of mutants and does not have statistical significance.  
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Figure 5. Mutational change in binding affinity for PhoQ/PhoP interaction. A 

histogram of ΔΔGTCS
ZEMu  (See Materials and Methods), is plotted for the 702 functional 

(blue) and 42,283 non-functional (red) mutational variants analyzed in our study. The 

dashed lines denote ±2 standard deviations from the mean of the functional (blue) 

distribution.   

 

Discussion 

Treating a large collection of amino acid sequence data for TCS partner proteins as independent 

samples from a Boltzmann equilibrium distribution, we infer a coevolutionary landscape, HTCS . 

Specifically, HTCS  is proportional to the negative of the additive fitness landscape, which 

captures the coevolving amino acid combinations that give rise to interaction specificity in TCS 

systems. In the past, we were able to predict how a point mutation to a TCS protein affects its 

ability to transfer signal to its partner in vitro (Cheng, et al. 2014). Our present work shifts the 

paradigm of coevolution-based analysis towards systems biology by extending our analysis to 

include how those mutations affect “cross-talk” in a bacterial organism. We demonstrate that our 

most favorable predictions for multiple site mutations can accurately capture in vivo TCS 

functionality, consistent with the comprehensive mutational study of Podgornaia and Laub 

(Podgornaia and Laub 2015). This is not a trivial computational task, since inferring 

coevolutionary information from sequence data is highly underdetermined and estimates ~107 

parameters (for Eq. 3) from ~103 sequences of TCS partners. Adding to the problem complexity, 

it is plausible that the full functional sequence space has not yet being explored by evolutionary 

process (Capra and Laub 2012; Echave, et al. 2016). Despite this, the coevolutionary landscape 
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is predictive and identifies mutational variants that are not found in nature, e.g., none of the 

mutational sequences are included as input data in our model. We have demonstrated the 

feasibility of generating predictions using coevolution and the predictive power of such an 

approach will only systematically improve as more sequences of TCS partners are collected. 

 Similar predictions to those discussed herein can readily be used to engineer novel 

protein-protein interactions in TCS systems. Such a strategy would potentially complement 

already existing strategies to match novel inputs with outputs via modular engineering (Tabor, et 

al. 2011; Whitaker, et al. 2012; Ganesh, et al. 2013; Schmid, et al. 2014; Hansen and Benenson 

2016). The strength of our coevolutionary approach is that it makes possible an efficient search 

of sequence-space for mutations at arbitrary positions in either the HK or RR that desirably 

enhance or suppress its interaction with a RR or HK, respectively. It can also readily be applied 

to study the in vivo, system-level effect of mutating a TCS protein on insulating its interaction 

with a desired partner or enabling “cross-talk” with non-partners. Our study highlights an 

intuitive but key principle for selecting mutations to a TCS protein that encodes specificity in 

vivo: mutations must be selected to enhance protein-protein interactions with a desired partner 

while limiting protein-protein interactions with undesired partners. While also intuitive, we 

demonstrate that mutations that significantly destabilize the binding affinity result in the loss of 

signaling. Further, we estimate that destabilization of ~2 kcal/mol in the binding affinity between 

TCS partners is sufficient to disrupt TCS. 

  It is also important to note that coevolutionary methods described here for identifying 

mutational phenotypes (e.g., response to magnesium stress) is that they are not particular to TCS 

systems. This framework is transferable to other systems where molecular interactions coevolve 

to preserve function, opening the window to a large set of open problems in molecular and 
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systems biology. Our results further extend the idea that a combination of coevolutionary based 

methods, molecular modeling and experiment can be used to identify the proper amino acids 

sites and identities that can be used to identify mutational phenotypes. Our study highlights the 

important role of coevolution in maintaining protein-protein interactions, as in the case of 

bacteria signal transduction. Statistical methods that probe coevolution not only allow us to 

connect molecular, residue-level details to mutational phenotypes, but also to explore the 

evolutionary selection mechanisms that are employed by nature to maintain interaction 

specificity, e.g., negative selection (Zarrinpar, et al. 2003). Further investigations of other 

systems that are evolutionarily constrained to maintain protein-protein interactions could 

elucidate the extent at which our methods can be used in alternative systems. One potential 

example is the toxin-antitoxin protein pairs in bacteria, which was the focus of recent 

experimental work (Aakre, et al. 2015) elucidating the determinants of interaction specificity.  

 

Materials and Methods 

Sequence database for HK and RR inter-protein interactions: DHp and REC 

We obtain multiple sequence alignments (MSA) from Pfam (Finn, et al. 2014) (Version 28), 

focusing on the DHp (PF00512) and REC (PF00072) domains of the HK and RR, respectively 

(Fig. 1A). The first 4 positions (columns) of PF00512 were removed due to poor alignment of 

the PhoQ sequence at those positions. The remaining DHp MSA has a length of LDHp = 60 . Each 

REC MSA had a default length of LREC = 112 . Here, we considered HK proteins that have the 

same domain architecture as the PhoQ kinase from E. coli, i.e., DHp domain sandwiched 

between an N-terminal HAMP domain (PF00672) and a C-terminal ATPase domain (PF02518). 

The remaining HK (DHp) sequences were paired with a TCS partner RR (REC) by taking 
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advantage of the observation that TCS partners are typically encoded adjacent to one another 

under the same operon (Skerker, et al. 2005; Yamamoto, et al. 2005), i.e., ordered locus numbers 

differ by 1. Further, we exclude all TCS pairs that are encoded adjacent to multiple HKs or RRs. 

Each DHp and REC sequence that was paired in this fashion was concatenated into a sequence 

(Fig. 1A), STCS = (A1,A2,...,AL−1,AL )  of total length L where Ai  is the amino acid at position i 

which is indexed from 1 to q = 21  for the 20 amino acids and MSA gap. The DHp sequence is 

indexed from positions 1 to LDHp  and REC sequence from positions LDHp +1 to the total length 

of L = LDHp + LREC = 172 .  Our remaining dataset consisted of 6,519 non-redundant concatenated 

sequences. 

 

Inference of parameters of coevolutionary model 

An amino acid sequence s = (A1,A2,...,AL )  for a protein or interacting proteins can be viewed as 

being selected from a Boltzmann equilibrium distribution, i.e., P(s) = Z −1 exp(−H (s)) . The 

Boltzmann form of P was previously derived for an evolving population in the limit where the 

product of the population size and mutation rate is very small (Sella and Hirsh 2005). 

Specifically, it was shown (Sella and Hirsh 2005) thatH (s) = −vx(s) , where v  is the population 

size and x(s)  is the additive fitness landscape (i.e., log of the fitness). A high population size 

suggests many viable sequences that a protein can mutate to, which makes the population more 

robust to deleterious mutations. Related work (Halpern and Bruno 1998) modeled site-specific 

selection of sequences, which has been extended upon by numerous works (Tamuri, et al. 2012; 

Spielman and Wilke 2015; Bloom 2016). 
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 Under certain limiting conditions, H (s)  appears to share a correspondence with the 

energetics of protein folding (See review: (Sikosek and Chan 2014)). Assuming that the 

sequence diversity is completely due to stability considerations, H (s) = βE(s)  where E(s)  is the 

energy of the folded protein with respect to the unfolded state and β = (kBTsel )
−1  is the inverse of 

the evolutionary selection temperature from protein folding theory (Pande, et al. 1997, 2000; 

Morcos, et al. 2014). Several studies have reported strong linear correlation between mutational 

changes in H (s)  with mutational changes in protein stability (Lui and Tiana 2013; Morcos, et al. 

2014; Contini and Tiana 2015). However, H (s) = βE(s)  may not be an appropriate 

approximation for proteins that have evolved with interacting partners, for which sequence 

selection is plausibly influenced by additional factors such as binding affinities as well as 

binding/unbinding rates.  

 Often it is of interest to solve the inverse problem of inferring an appropriate H (s)when 

provided with an abundant number of protein sequences. Typical approaches to this problem 

have applied the principle of maximum entropy to infer a least biased model that is consistent 

with the input sequence data (Weigt, et al. 2009; Morcos, et al. 2011), e.g., the empirical single-

site and pairwise amino acid probabilities, Pi (Ai )  and Pij (Ai ,Aj ) , respectively. The solution of 

which is the Potts model: 

     
 
H (s) = − Jij (Ai ,Aj )− hi (Ai )

i=1

L

∑
j=i+1

L

∑
i=1

L−1

∑     (3) 

where Ai  is the amino acid at position i for a sequence in the MSA, Jij (Ai ,Aj )  is the pairwise 

statistical couplings between positions i and j in the MSA with amino acids Ai  and Aj , 

respectively, and hi (Ai )  is the local field for position i . We estimate the parameters of the Potts 
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model, {J,h} , using the pseudo-likelihood maximization Direct Coupling Analysis (plmDCA) 

(See Ref: (Ekeberg, et al. 2013) for full computational details). It is important to note that the 

mutational context-dependence (epistasis) between residues i and j is naturally captured in the 

model through the statistical couplings, Jij (Ai ,Aj ) .  

 Previous studies have applied DCA to a number of problems in structural biology. DCA 

has been used to identify highly coevolving pairs of residues to predict the native state 

conformation of a protein (Marks, et al. 2012; Sulkowska, et al. 2012; Sutto, et al. 2015), 

including repeat proteins (Espada, et al. 2015), as well as identify additional functionally relevant 

conformational states (Morcos, et al. 2013; Malinverni, et al. 2015; Sutto, et al. 2015) and multi-

meric states (Schug, et al. 2009; Weigt, et al. 2009; Morcos, et al. 2011; dos Santos, et al. 2015; 

Malinverni, et al. 2015). Structural and coevolutionary information share complementary roles in 

the molecular simulations of proteins (See review: (Noel, et al. 2016)). The Potts model (Eq. 3) 

obtained from DCA has been related to the theory of evolutionary sequence selection (Morcos, et 

al. 2014) as well as mutational changes in protein stability (Lui and Tiana 2013; Morcos, et al. 

2014; Contini and Tiana 2015). Additional work has applied DCA to protein folding to predict 

the effect of point mutations on the folding rate (Mallik, et al. 2016) as well as construct a 

statistical potential for native contacts in a structure-based model of a protein (Cheng, et al. 

2016) to better capture the transition state ensemble.  

 DCA and inference methods have also been applied to study problems in systems 

biology, such as the identification of relevant protein-protein interactions in biological 

interaction networks (Procaccini, et al. 2011; Feinauer, et al. 2016). Recently, a number of 

studies have focused on inferring quantitative landscapes that capture the effects of mutations on 

biological phenotypes (Ferguson, et al. 2013; Cheng, et al. 2014; Figliuzzi, et al. 2016) by 
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constructing models from sequence data (e.g., Eq. 3). Two separate studies, which focused on 

antibiotic drug resistance in E. coli (Figliuzzi, et al. 2016) and viral fitness of HIV-1 proteins 

(Ferguson, et al. 2013), respectively, inferred a Potts model (i.e., additive fitness landscape), H, 

and calculated mutational changes as ΔH. This approach is analogous to the approach adopted in 

this study. Likewise, a study examining the mutational effects on TCS phosphotransfer (Cheng, 

et al. 2014) constructed a mutational landscape from an information-based quantity. All of these 

approaches capture epistatic effects and rely on the accuracy of the inferred Potts model (Eq. 3) 

from sequence data. 

 

 

Mutational changes in coevolutionary landscape 

For the concatenated sequences of HK (DHp) and RR (REC) (Fig. 1A), we infer a Potts model 

(Equation 3). We focus on a subset of parameters in our model consisting of the interprotein 

couplings, Jij , between positions in the DHp and REC domains (Fig. 1C) that are in close 

proximity in a representative structure of the TCS complex (Fig. 1B). All local fields terms, hi , 

are included to partially capture the fitness effects that give rise to the amino acid composition 

observed at each site. These considerations allow us to construct coevolutionary landscape for 

TCS, which is a negative, additive fitness landscape: 

  
 
HTCS(STCS ) = − Jij (Ai ,Aj )×Θ(c − rij )

j=LDHp+1

LDHp+LREC

∑
i=1

LDHp

∑ − hi (Ai )
i=1

LDHp+LREC

∑   (5) 

where STCS  is the concatenated sequence of the DHp and REC domains, the double summation is 

taken over all interprotein statistical couplings between the DHp and REC domains, Θ is a 
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Heaviside step function, c is the a cutoff distance of 16Å which was determined in a previous 

study (Morcos, et al. 2014), and rij  is the minimum distance between residues i and j in the 

representative structure. Mutational changes in Eq. 5 are then computed as

ΔHTCS(STCS
mutant ) = HTCS(STCS

mutant )− HTCS(STCS
WT ) . Hence, mutational changes in the signal transfer 

efficiency are approximated from mutational changes in the additive fitness.  

 An additional model is considered to analyze the epistatic effects of the 4-point mutations 

explored in experiment (Podgornaia and Laub 2015). While Eq. 5 naturally captures the epistatic 

effect of mutating a residue in the HK when the RR has also been mutated (or vice versa), it does 

not explicitly contain the statistical couplings that capture the epistatic effects of HK only 

mutations. Hence, the statistical couplings between the 4-mutational sites of the HK (Fig. 4C) are 

explicitly added to Eq. 5: 

    fepistasis (STCS ) = − Jij (Ai ,Aj )
i, j∈mutational sites

∑    (6a) 

     HTCS
(epistasis)(STCS ) = HTCS(STCS )+ fepistasis (STCS )    (6b) 

In Eq. 6a, the summation contains the 6 statistical couplings between the 4-mutational sites 

explored by Podgornaia and Laub, i.e., positions 14, 15, 18 and 19 in our MSA of TCS partners,  

which map to positions 254, 255, 258, and 259 of PhoQ.  

 

Zone Equilibration of Mutants (ZEMu) calculation  

 

ZEMu consists of a multiscale minimization by dynamics, restricted to a flexibility zone of five 

residues about each substitution site (Dourado and Flores 2014), which is followed by a 

mutational change in stability using FoldX (Guerois, et al. 2002). ZEMu has been used to explain 
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the mechanism of Parkinson’s disease associated mutations in Parkin (Caulfield, et al. 2014; 

Fiesel, et al. 2015). The minimization is done in MacroMoleculeBuilder (MMB), a general-

purpose internal coordinate mechanics code also known for RNA folding (Flores and Altman 

2010), homology modeling (Flores, et al. 2010), morphing (Tek, et al. 2016), and fitting to 

density maps (Flores 2014).  

  We use the Zone Equilibration of Mutants (ZEMu) (Dourado and Flores 2014) method to 

predict the mutational change in binding energy between PhoQ and PhoP. ZEMu first treats 

mutations as small perturbations on the structure by using molecular dynamics simulations (See 

Ref. (Dourado and Flores 2014) for full computational details) to equilibrate the local region 

around mutational sites. ZEMu can then estimate the binding affinity between the mutant-

PhoQ/PhoP, ΔGTCS
ZEMu(mutant) , and the wild type-PhoQ/PhoP, ΔGTCS

ZEMu(WT) , using the 

knowledge-based FoldX (Guerois, et al. 2002) potential. This allows for the calculation of the 

mutational change in binding affinity as: ΔΔGTCS
ZEMu = ΔGTCS

ZEMu(mutant)− ΔGTCS
ZEMu(WT) .  

 ZEMu calculation was performed according to Ref: (Dourado and Flores 2014), with the 

following two differences. First, due to the large number of mutations we capped the computer 

time permitted to 3 core-hours per mutant, whereas in (Dourado and Flores 2014) the limit was 

48 hours. This meant that of 122802 mutants attempted, 42923 completed within the time limit, 

whereas in (Dourado and Flores 2014), almost all mutants converged. The major reason for non-

convergence in the current work involved mutation to bulky or constrained residues. Steric 

clashes produced by such residues force the error-controlled integrator (Flores, et al. 2011) to 

take small time steps and hence use more computer time. Exemplifying this, the amino acids F, 

W and Y are the most common residues for non-converging mutations at positions 285 and 288 

in PhoQ. The second difference was that we permitted flexibility in the neighborhood of all four 
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possible mutation sites, even when not all of them were mutated, whereas in (Dourado and 

Flores 2014) only the mutated positions were treated as flexible. This allowed us to compare all 

of the mutational energies to a single wild type simulation, also performed with flexibility at all 

four sites. 

 

Database of TCS partners, Potts model, and code for calculating Eq. 5 can be obtained from: 

http://utdallas.edu/~faruckm/PublicationDatasets.html 
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