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ABSTRACT Previously we reported the inability of genomic prediction methods based on linear models to
accurately predict trait values composed of an epistatic genetic architecture. We also reported non-parametric
genomic prediction methods applied to the same data produced reasonably accurate predictions. The
difference led us to propose analyses by paired parametric and non-parametric methods to the same data
could be used as a diagnostic for epistatic genetic architectures in typical plant breeding populations. The
suggested computational diagnostic was based on evaluation of 14 genomic prediction methods applied to
eight sets of simulated conditions consisting of three factors, each with two levels. Because the potential set
of factors that might affect accuracies of genomic predictions is unknown, there is a need for a systematic
approach to identify combinations of factors that impact estimates of accuracy. Herein we propose the
application of response surface methods to systematically identify conditions that maximize the difference
between estimated accuracies of genomic prediction methods. The results indicate that genetic architecture
and repeatability at their upper boundaries for complete epistasis and repeatability have the greatest influence
on the differences between parametric and non-parametric estimated prediction accuracies. Further, the
surface is very steep in the vicinity of the boundary conditions, indicating that the proposed diagnostic is of
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limited value for discovery of epistatic genetic architectures.

INTRODUCTION

The application of molecular markers as surrogates for selection
in genetic improvement of quantitative traits began over 35 years
ago (Goodman and Stuber 1980; Goodman et al. 1980). With emer-
gence of ubiquitous genomic marker technologies, Fernando and
Grossman (1989) and Lande and Thompson (1990), proposed sim-
ple regression based marker assisted selection methods for genetic
improvement of animals and plants. Anticipating the development
of technologies capable of assaying tens of thousands of genomic
markers on a few thousand phenotyped samples Meuwissen et
al. (2001) proposed leveraging mixed models (Henderson 1975)
to obtain predicted phenotypes for use in Genomic Selection (GS).
Since their proposed methods a growing number of methods have
been adopted to provide predicted phenotypes of individuals, or
cultivars (Efron et al. 2004; Gianola et al. 2006; Maenhout et al.
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2007; Park and Casella 2008; Piepho 2009; Usai et al. 2009; Pérez et
al. 2010; Long et al. 2011). In the context of genetic gain, the impact
of GS is to increase the selection intensity and decrease the time
between cycles of selection with some reduction in the correlation
between selection and response units. In aggregate the applica-
tion of these methods are referred to as Genomic Selection (GS)
or Genomic Prediction (GP) methods depending on whether the
emphasis of the application is placed on selection, i.e., genetic gain
or accuracy of prediction. Herein we refer to the methods as GP
methods. Also, we distinguish GP methods as either parametric
or non-parametric (Gianola et al. 2010), although the latter might
be better described as machine learning methods.

With the proliferation of GP methods, there have also been pub-
lished reviews (de los Campos et al. 2013; Gianola et al. 2010) and
comparisons of the methods (VanRaden et al. 2009; Daetwyler
et al. 2010; Jannink et al. 2010; de los Campos et al. 2010; Clark
et al. 2011; Heslot et al. 2012 ; Riedelsheimer et al. 2012; Lorenz
2013; Howard et al. 2014; Thavamanikumar et al. 2015). The
primary metrics for comparing GP methods include estimating
Pearson’s correlation between predicted and actual phenotypes or
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estimated correlation divided by estimated heritability (Boddicker
et al. 2014). Most of the comparative studies obtained estimated
accuracies among GP methods using simulated data sets in which
a true genotypic trait value is known.

Initial comparisons of GP methods focused on impacts of simu-
lated numbers and magnitudes of additive quantitative trait loci
(QTL) on the estimated accuracies of parametric methods. Most of
these studies found that BayesB provided more accurate estimates
of predicted values when the simulated numbers of QTLs are small
but the magnitude of each QTL was simulated with large additive
genetic effects (VanRaden et al. 2009; Daetwyler et al. 2010; Jannink
et al. 2010). On the other hand, as the number of simulated QTLs
increase and their individual magnitudes decrease all parametric
methods (except linear regression) produce similar estimates of
accuracy. Experimental studies on traits with a presumed known
number of QTL tend to support the simulation studies (Clark et
al. 2011; Thavamanikumar et al. 2015), although Riedelsheimer
et al. (2012) did not find differences among parametric models
in predicting traits with presumed large QTL effects. Machine
learning techniques are also popular in GP to capture nonadditive
effects. Heslot et al. (2012) compared several machine learning
methods (reproducing kernel Hilbert space, neural network, ran-
dom forest, and support vector machine) and techniques (bagging
and boosting methods), but found no superior method in terms of
accuracy of prediction.

To date parametric methods use models that ignore non-linear
interactions, e.g., epistasis and genotype by environment interac-
tions, in complex quantitative traits (de los Campos et al. 2010,
Heffner et al. 2009, Hayes et al. 2009). These components are
ignored primarily because the specific interactions are unknown
and it is computationally difficult to search among all possible
combinations of interactions (Moore 2009). Howard et al. (2014)
compared estimates of accuracy among ten parametric and four
non-parametric methods in a factorial design consisting of progeny
types (F2 and backcross), heritability (0.3 and 0.7) and genetic ar-
chitecture (additive and epistatic). From among the eight combi-
nations of factors, only genetic architecture affected differences
among estimated accuracies of the methods; for additive genetic
architectures there were no significant differences of estimated
accuracies among the methods, whereas non-parametric methods
produced more accurate predictions than parametric methods for
genetic architectures consisting of epistatic genetic effects. Indeed,
parametric methods had no ability to predict the phenotypes, sug-
gesting an analytical diagnostic could reveal underlying unknown
genetic architecture in experimental data.

In addition to genetic architecture of the trait, there are other fac-
tors that may affect differences of estimated accuracies. These
include resource allocation in terms of sample size, number of
families, number of lines per family, numbers of marker loci, num-
ber of replicated field trials (Lorenz 2013), population structure in
terms of numbers and relatedness among families (Hickey et al.
2015), proportion of phenotypic variability that can be attributed
to additive and non-linear components, etc. To date, some of these
additional factors have been investigated, but in an ad hoc manner.
A more systematic approach is needed to find the conditions under
which various GP methods will produce the best predictions.
Response Surface Methods (RSM) were developed and introduced
by Box and Wilson (1951) to experimentally search for combina-
tions of factors that will maximize a response metric. The goal
is to reduce the number of experimental treatment combinations
needed to find the maximum desirable response (Naylor 1969).
Myers et al. (1989) summarized the extensive applications of RSM
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to engineering systems. Bezerra et al. (2008) summarized appli-
cations in analytical chemistry and more recently RSM have been
applied to pharmaceutical production (Koyamada et al. 2004), wa-
ter purification (Nair et al. 2014), food processing (Afoakwa et al.
2014) and fermentation systems (Zhang et al. 2010). Importantly
for our consideration are applications of RSM to development of
machine learning methods (Gonen and Alpaydin 2011). Despite
clear efficiencies of RSM, we have found no evidence of their appli-
cation in development and evaluation of GP methods. Herein we
introduce RSM as an effective and efficient means to find situations
in which application of both parametric and non-parametric GP
methods can be used to diagnose the underlying genetic architec-
ture of a trait. Specifically, in response to a proposed computational
diagnostics (Howard et al. 2014) our goal is to find the combination
of factors and factor levels for which the nonparametric methods
outperform the parametric methods in terms of prediction accu-
racy.

MATERIALS METHODS

Response Metric and Genomic Prediction Methods

We define prediction accuracy as the correlation between the pre-
dicted and the true simulated phenotypes. Our primary response
of interest is the difference between prediction accuracies gener-
ated by parametric and non-parametric methods. BLUP describes
the best linear unbiased properties used to estimate fixed effects
and predict random effects in a mixed linear model (Henderson
et al. 1959, Henderson 1963). In the context of GP it consists of a
random effect parameter for the realized relationship matrix that
is estimated with marker genotypic scores (Bernardo 1994; Hayes
et al. 2009). Because Howard et al. (2014) found that BLUP values
were as accurate as other parametric GP methods for backcross and
F2 populations and BLUP has been implemented in the R package
rrBLUP (Endelman 2011) we chose it to represent the parametric
GP methods. The Support Vector Machine (SVM) is a nonpara-
metric machine learning technique that can model the relationship
between the marker values and the phenotypes using a linear or a
nonlinear function (Vapnik 1995; Hastie et al. 2009; Howard et al.
2014). Because Howard et al. (2014) found that predicted values
from the SVM were as accurate as other non-parametric GP meth-
ods for backcross and F2 populations and it has been implemented
in the R package kernlab (Karatzoglou et al. 2004) we chose it to
represent the non-parametric GP methods.

Simulation Design

We used cross validation, where we divided simulated data into
training sets and testing sets. The training sets were used to fit
the models, and the testing sets were used to calculate the ac-
curacy of prediction for each GP method. We determined the
differential between prediction accuracies for each GP predic-
tion method as a function of the number of QTL, interactions
among QTL, heritability, sample size, and number of markers.
Because previous analyses (Howard et al. 2014) found little dif-
ferential among prediction accuracies for GP methods associated
with differences among types of plant breeding populations (F2,
BC, DH and RIL) we simulated only BC families. Simulations
were conducted using the R package QTL Bayesian Interval Map-
ping (Yandell et al. 2012). R can be accessed at http:/ /www.r-
project.org, the qtlbim package can be obtained by library qtlbim
(Yandell et al. 2007) and the reference manual at http://cran.r-
project.org/web/packages/qtlbim/qtlbim.pdf. The simulated
genome had 10 chromosomes, each having the same length. The
markers were distributed throughout the genome in such a way
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that each chromosome had the same number of markers equally
spaced along the length of each chromosome. Likewise, QTL
were distributed uniformly among the chromosomes. Cooper et al.
(2002) discussed the potential contribution of multi-way gene in-
teractions to an adaptive surface: if the average number of genetic
interactions is greater than two the adaptive surface is becomes
sufficiently rough that responses to selection are limited. Because
plant breeding populations have responded to selection for at least
70 years, we simulated only two-way gene interactions among QTL
when epistasis was included in the simulation model. No missing
genotypic values and no missing phenotypic values were simu-
lated in any data sets. Errors associated with phenotypic values
were sampled from a normal distribution. For each combination of
factors (Table 1) 20 replicates were simulated. Each replicate was
subsequently divided into 25 pairs of training and testing data sets
by sampling without replacement 80% of the simulated BC family
members to provide a training set and used the remaining 20% of
the members to provide a testing set. In total, this resulted in 500
replicates for each combination of factors.

Factor || Levell | Level 2
n 200 1000
m 50 400
qtl 10 50
epi 0 0.5
h 0.2 0.5

B Table 1 Specification of the two levels of five factors include
n, number of segregating progeny, m, marker number, QTL num-
ber, proportion of genetic variance due to epistasis and heritabil-
ity. Epistasis 0 means that all of the genetic variance is additive
variance, 0.5 epistasis means that half of the genetic variance is
additive and the other half is epistatic.

RSM Strategy

To estimate prediction accuracies for all factor combinations con-
sisting of two levels per factor would require a minimum of 27
treatment combinations in a full factorial treatment design. When p
is large and the range of possible values of each factor also is large,
finding the combination of the p factors that define the response
surface increases dramatically. For example if five levels per factor
were needed to identify multiple peaks on the surface, then a mini-
mum of 57 factor combinations would be needed. In addition if
statistical inference about the variability in the estimated response
is desired, then at least some of the treatment combinations need to
be replicated. Fortunately, our goal is not to describe the response
surface, rather to maximize the differential response between types
of GP methods. Thus, there is no need to investigate all possible
sets of factor combinations, rather to find the regions where the
differential between types of GP methods is largest.

Let ph; denote the true phenotypic values at factor combination i
and let ph; denote the estimated phenotypic values at factor combi-
nation i. The response, y depends on a set of design variables x;,4,
Xm, XQTL Xepis and xj,, where x;,,4 is the number of individuals in
the simulated backcross population , x;, is the number of markers,
xqrL is the number of QTL, x,; is the proportion of genotypic
variability due to interactions among QTL (epistasis), and xy, is the
proportion of phenotypic variability due to genotypic variability
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(heritability). The model can be written as

Y = f(Xind, Xm, XQTL, Xepir Xn) + €, 1)

where y is the response, f is the unknown, possibly complex re-
sponse function, which depends on the design variables x;;,1, X,
XQTL/ Xepis and xj,, and € ~ iid N(0, (7‘,2). The expected value of the
response function can be written as

E(y) = E[f (Xind, Xm, XQTL, Xepis X)) + €] )

= f(Xind, Xm, XQTL, Xepis Xn)- ®3)
Because there are five factors under consideration, where each
factor could have multiple, m, levels possible for each of these
continuous parameters, a full factorial design would require m° ex-
perimental treatment combinations. To search the space defined by
these parameters for the maximum differential among GP methods
we adopted a steepest ascent strategy (Myers, 1976). In the steep-
est ascent approach an initial experiment is designed such that
only two of the m possible values for each factor is sampled and
many of the potential interactions among factors are confounded.
Specifically our initial experiment was a half fractional factorial
design consisting of 2P~ = 16 factor combinations, where each
combination was represented by 500 replicates to estimate the dif-
ferential response between GP methods. The initial values for each
factor combination are listed in Table 1.
Initially, we use a first-order polynomial to approximate the
response function, f, so that

E(y) = Bo + B1Xind + B2Xm + BaxQrr + BaXepi + Bsxn,  (4)

where B is the intercept, B1, is the regression coefficient associated
with the number of individuals, B, is the regression coefficient
associated with the number of markers, B3 is the regression co-
efficient associated with the number of QTL, B4 is the regression
coefficient associated with the proportion of genetic variation due
to epistasis, and S5 is the regression coefficient associated with
heritability. After completing the analyses of the initial fractional
factorial the next set of conditions for a second set of conditions is
determined by calculating a ‘base value’ from which increments
to each factor that maximize change in response can be calculated.
The base value is calculated as the average of the estimated low
and the high levels of the factors. The increment is calculated as the
product of LevelrLevel2 _ 1 ore]1 and the corresponding movement
values (Myers et al. 1989) which determine which direction and
magnitude we have to move on the response surface for each factor.
This process is then repeated until estimated increments are less
than some arbitrarily small value |i;| for experimental condition r.

Data Availability

The simulated data, the R code used for simulating the data, and
the R code for the parametric BLUP and nonparametric SVM
can be found at http:/ /gfspopgen.agron.iastate.edu /Supplemen-
tary%?20Resources1.html.

RESULTS

Averages of 500 estimated prediction accuracies for BLUP, SVM
and the difference between the methods for the initial 16 combi-
nations (Table 2) were analyzed using analysis of variance. The
results indicated that the best fit model included no interactions
among factors with the following estimates of the differences be-
tween low and high values for each of the initial factors:

PpLup—svm = —1.431072 —9.2710 %ind — 1.3810 °m  (5)
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Treatment Combination BLUP | SVM | Diff
200 ind, 50 m, 10 QTL, O epi, 0.5 h 0.62 0.59 | -0.02
1000 ind, 50 m, 10 QTL, O epi, 0.2 h 0.40 0.37 | -0.03
200 ind, 400 m, 10 QTL, 0 epi, 0.2 h 0.23 0.22 | -0.01
1000 ind, 400 m, 10 QTL, O epi, 0.5 h 0.63 0.61 | -0.02
200 ind, 50 m, 50 QTL, 0 epi, 0.2 h 0.05 0.05 | 0.00
1000 ind, 50 m, 50 QTL, 0 epi, 0.5 h 0.29 0.27 | -0.03
200 ind, 400 m, 50 QTL, O epi, 0.5 h 0.28 0.28 | -0.01
1000 ind, 400 m, 50 QTL, O epi, 0.2 h 0.23 0.21 | -0.02
200 ind, 50 m, 10 QTL, 0.5 epi, 0.2 h 0.14 0.13 | -0.01

1000 ind, 50 m, 10 QTL, 0.5 epi, 0.5 h 0.48 0.51 | 0.03

200 ind, 400 m, 10 QTL, 0.5 epi, 0.5h 0.27 028 | 0.01

1000 ind, 400 m, 10 QTL, 0.5 epi, 0.2 h 0.22 0.19 | -0.03
200 ind, 50 m, 50 QTL, 0.5 epi, 0.5 h 0.06 0.05 | -0.01
1000 ind, 50 m, 50 QTL, 0.5 epi, 0.2 h 0.08 0.07 | -0.01

200 ind, 400 m, 50 QTL, 0.5 epi, 0.2 h 0.05 0.05 | 0.00

1000 ind, 400 m, 50 QTL, 0.5 epi, 0.5 h 0.25 0.23 | -0.02

B Table 2 Mean accuracy of BLUP, mean accuracy of SVM, and
the response (difference of mean accuracy of SVM and mean
accuracy of BLUP) for 16 treatment combinations.

~7.77107°QTL + 2.64102epi + 1.71102h
Note that the model had the largest estimated coefficient for
epistasis, thus changes to this factor will have the greatest impact
on increasing estimated differences between predictive accuracies.
We chose a basis to be 1% of epistasis corresponding to ﬁ =4
design units. The basis influenced the increment (A) of the other
factors, and the change values of the four other factors are:

( %;0:26 ) 4= 00014 ©)
for individuals,
( %}ﬁj ) 4= —0.0002 @
for markers,
(%) 4= 00118 ®
for QTL, 2
(%) 4—25943 ©)

for heritability. The resulting increment for the number of indi-
viduals, number of QTL, and the number of markers were close
to zero, which indicated that the levels for these variables did not
need to be changed for the next set of experimental runs. The
proportion of genetic variability due to epistasis and magnitude
of heritability are the only factors that needed to change in order
to expect significant changes on the response surface. A Base+3A
will produce values that are near the boundary limits for epistasis,
and heritability. It is not expected that further changes to 1, the
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number of individuals, m, the number of markers, and the number
of QTL will improve the differential y between estimated predic-
tion accuracies for types of GP methods.

The response values from additional experiments are larger, in
most cases, than the response values were for the 16 initial treat-
ment combinations (table 3). The maximum difference in estimated
prediction accuracies of GP methods was found to consist of 597
backcrossed progeny, 225, markers, and a genetic architecture con-
sisting of 29 QTL in which all of the genetic variability is due to
epistasis and the genetic variability is responsible for 100% of the
phenotypic variability.

Runs Treatment Combination BLUP | SVM | Diff.
Base+A 599ind,225m,30QTL,0.5epi,0.74h 0.36 0.37 | 0.01
Base+2A 599ind,225m,30QTL,0.75epi,1h 0.29 0.33 | 0.04
Base+3A 598ind,225m,29QTL,1epi,1h 0.01 0.07 | 0.06
Base+4A 598ind,225m,29QTL,1epi, 1h 0.01 0.07 | 0.06
Base+5A 597ind,225m,29QTL,1epi, 1h -0.01 0.07 | 0.08
Base+6A 597ind,225m,29QTL,1lepi,1h -0.01 0.07 | 0.08
Base+7A 596ind,225m,28QTL,1epi, 1h 0.00 0.07 | 0.07
Base+8A 596ind,225m,28QTL,1epi, 1h 0.00 0.07 0.07
Base+9A | 595ind,225m,28QTL,1epi, 1h 0.00 0.06 | 0.06
Base+10A | 594ind,225m,28QTL,1epi, 1h -0.01 0.06 | 0.07

B Table 3 Mean accuracy of BLUP, mean accuracy of SVM, and
the response (difference of mean accuracy of SVM and mean
accuracy of BLUP) for the additional treatment combinations for
the additional runs.

DISCUSSION

Howard et al. (2014) proposed a computational diagnostic to reveal
epistatic architectures based on estimated differential prediction
accuracies generated by parametric and nonparametric GP meth-
ods. Their study reaffirmed that application of methods using
incorrect linear models produce results that are worse than ma-
chine learning methods, while methods that do not require model
specification perform almost as well as methods with correctly
specified linear models. The challenge facing plant breeders is that
the underlying genetic architecture of complex and quantitative
traits are unknown. To our knowledge only one experimental
study has supported the proposed computational diagnostic of
epistasis. Clowers et al. (2010) found that parametric genomic pre-
diction methods were not predictive of response to cold shock in
Drosophila, whereas nonparametric methods produced reasonably
accurate predictions. Since the underlying genetic architecture for
this highly heritable trait is known to consist of more than a dozen
interacting genetic loci, their application of a computational diag-
nostic to data representing a reasonable number of markers and
sampled progeny were able to reveal an epistatic genetic architec-
ture for the trait.

The goal of the research reported herein was to identify condi-
tions under which the proposed computational diagnostic could
be applied and interpreted. The critical first step was to establish
objective measurable criteria that matched the goal. Specifically,
we investigated combinations of sample size, number of markers,
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number of QTL, proportion of genetic variability due to interac-
tions among QTL and proportion of phenotypic variability due
to genotypic variability (heritability) for which nonparametric GP
methods outperform parametric methods. An alternative objective
might have been to identify the combination of factors that would
maximize accuracy of predictions for each type of GP method, but
such an alternative would not have addressed the goal. Because
each of the five variable factors could assume an infinite number of
possible positive values a systematic approach was needed for the
investigation. To minimize the number of simulated experimental
combinations, we chose to use the steepest ascent strategy from
among Response Surface Methods.

The results indicate that the initial upper values for number of
progeny, number of markers and number of QTL did not need
much change in order to maximize the response. Fernando and
Garrick have learned that if the training population is small
(<1,000) or large (>100,000) GP methods produce asymptotically
equivalent prediction accuracies, but sample sizes between these
extremes will result in differential prediction accuracies (personal
communication). Because the reproductive biology of most crop
species is not capable of producing samples consisting of tens of
thousands of (BC, DH or RIL) progeny such sample sizes would
not be considered unless data from multiple families are combined
(Hickey et al., 2014). We hypothesize that variability of relation-
ships among families will affect differential responses among GP
methods for these intermediate numbers of progeny in the training
data sets.

Heritability and the proportion of genetic architecture due to epis-
tasis with values at the upper boundary of 1.0 have the greatest
influence on the differences between parametric and nonparamet-
ric estimated prediction accuracies. Note that estimated prediction
accuracies reported herein are not identical to results previously
reported (Howard et al. 2014). This is likely due to differences
in simulated genomic structures between the studies. Howard
et al., (2014) simulated variable length chromosomes, and herein
we simulated uniform length chromosomes. Consequently, the
relative genomic locations and linkage disequilibria among the
simulated QTL were not the same in both studies. Future work
should examine how genomic structure and/or linkage disequilib-
ria can influence differential estimated prediction accuracies of GP
methods.

We also learned that the surface is very steep in the vicinity of
the boundary conditions, (data not shown) indicating that the
proposed diagnostic is probably of limited value for discovery of
epistatic genetic architectures for most traits of agronomic impor-
tance. Virtually all molecular genetic models of genetic expression
include regulatory motifs that depend on expression of other ge-
netic loci in cell signaling networks (Eungdamrong and Iyengar
2004), while estimates of genetic variance components for most
agronomic traits are ascribed to additive genetic effects. The seem-
ing paradox between molecular and quantitative genetic models
has been the subject of considerable modeling efforts (Cheverud
and Routman 1995; Aylor and Zeng 2008) that have yet to resolve
the issue. And, results reported herein indicate that the proposed
computational diagnostic by Howard et al. (2014) will not con-
tribute to resolution of the issue except in extreme situations where
contributions of epistasis and heritability are at their respective
boundary conditions.

We did not investigate a comprehensive set of factors that could
affect differential prediction accuracies among GP methods. For
example, we did not include variability among factors such as
genetic relationships among multiple families (Hickey et al. 2014),
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disequilibrium among QTLs and genotype by environment inter-
action effects used in training and testing populations. Thus, we
found a local maximum for the response and future work will be
needed to determine if this is a global maximum. The next set of
evaluations should include factors such as family structure (eg.
multiple families versus single family), multiple environments,
family relationship between individuals in the training and testing
sets, disequilibrium among QTL, and chromosomal distribution of
the QTL. We hypothesize that the difference between parametric
linear models and non-parametric machine learning methods in
terms of prediction accuracy will grow larger on a more complex
surface. However, the interpretation of the diagnostic will not be
based solely on genetic architecture such as we found in our local
optima, rather it will be confounded with a number of possible
non-linear and probably interacting factors.

We demonstrated that a steepest ascent RSM can be used to find
the conditions under which the differential is maximized. Potential
hundreds of combinations of non-linear interacting factors reduced
to investigation of only n experimental combinations. Even though
we illustrated the implementation of RSM using a GP example, the
methodology can be applied to development of any data analysis
technique. We hypothesize that application of RSM to develop-
ment of analytics for biological 'big data’ challenges from genomes
to field systems will be effective and efficient at finding the optimal
conditions for employing the methods. Indeed Gonen and Alpay-
din (2011) have demonstrated the use of RSM in development of a
machine learning method.
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