
Modeling Chromosome Maintenance as a Property
of Cell Cycle in Saccharomyces cerevisiae

Jesse P. Frumkin⇤†,1, Biranchi N. Patra⇤, Anthony Sevold⇤, Kumkum Ganguly‡, Chaya
Patel⇤, Stephanie Yoon⇤, Molly B. Schmid⇤, and Animesh Ray⇤

⇤School of Applied Life Sciences, Keck Graduate Institute, Claremont, California
†Mathematics Department, Claremont Graduate University, Claremont, California
‡Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States

ABSTRACT

A healthy cell must maintain chromosome integrity during each phase of the cell cycle. Yet during the cell cycle, defects in
DNA repair, DNA synthesis, and chromosome transmission can cause chromosome instability. Here, we build a cyclical model
for chromosome maintenance by assaying the genetic interactions of pairs of genes that each normally functions to maintain
chromosomes. First, we confirm that 19 genes affect chromosome maintenance by overexpressing the respective genes using
an assay for chromosome instability. We then introduce plasmids containing these 19 genes into 18 deletion mutant strains
each of which is known to cause chromosome maintenance defect. By conditionally overexpressing each of the 19 genes in
each of the 18 deletion strains, we observe 34 cases of synthetic dosage lethality, 58 of synthetic dosage sickness, and 26
of suppression (out of 349 combinations tested). Ordinarily, given a large matrix of genetic interactions, it is computationally
intractable (and NP hard) to compute all permutations of the arrangements of the rows and columns, which is necessary for
finding an optimum arragement of entries for a given pattern of functional significance. Here, using our small yet dense matrix
we rearrange the matrix into an optimal cycle. By optimally reordering the matrix representation of these genetic interactions
using integer linear programming, we find that the optimal order of the functions of the genes approximates the temporal order
of processes during the yeast cell cycle. To further validate this theoretical approach, we computed in silico genetic interactions
derived from a predetermined cyclical model and confirmed that the predicted cycle was consistent. These results suggest that
matrices from other genetic experiments could be computationally rearranged using this method to reveal an underlying cycle
that is biological meaningful.

Introduction
With the advent of genome-level techniques for rapid identification of gene function, it is becoming important to develop rapid
methods for generating hypotheses for their mechanisms of action. One way to investigate the mechanisms by which these
genes may participate jointly in a common biological process, such as chromosome maintenance or in another related biological
function, is to combine loss-of-function and gain-of-function mutations in the same strain and explore their synthetic phenotype
if any. For example, certain loss-of-function mutations that affect chromosome maintenance interact with other genes that
affect chromosome maintenance when overexpressed.1–4 The phenotypes of pairs of loss-of-function and gain-of-function
combinations often can reveal synergistic or suppressive effects, allowing the genes to be placed relation to one another in the
context of a molecular model defining the process if at least one of the interacting partner’s molecular function is known. These
genetic interactions represent n x m matrices of vectors, which contain numerical data that represent positive or negative genetic
interactions between the respective genes. Such matrices embody the information contained therein, and have the potential to
provide insights when they are appropriately combined with additional data.5 Here we investigate the method of seriation6 to
provide insights on the cell biological mechanisms of a set of genes that affect chromosome maintenance.

The maintenance of proper chromosome copy number and stability during cell division is a highly controlled phenomenon
requiring programmed expression of at least 723 genes in the yeast Saccharomyces cerevisiae.7 Some of the genes known to
affect chromosome stability and maintenance function in DNA repair, replication, recombination, chromosome segregation and
cell cycle control. The molecular mechanisms of chromosome stability/copy number control for the remaining genes are poorly
understood, but are important for understanding mechanisms of human disorders such as birth defects, and cancers.

The involvement of a large fraction of these genes in chromosome stability and copy number control was inferred from
the effects of loss of function mutation in the given gene on chromosome stability.8–12 Others were implicated from their
adverse effects on chromosome stability when these genes were over-expressed.13 It is likely that more such genes remain to be
discovered.
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We began by discovering a set of genes whose over-expresion results in increased chromosome instability. We chose 18
of these genes and combined them with a set of deletion mutations that were known to also cause chromosome instability10

and assayed their combined effects on cell growth properties, anticipating that synergistic effects on chromosome stability
would affect cell viability–a phenomenon termed Synthetic Dosage Lethality.14 The resulting matrix of genetic interactions
was analyzed by integer linear programming (seriation), a relatively new technique inspired by the famous ”Traveling Salesman
Problem,” to deduce the optimal cycles among the rows and columns given the unsorted matrix of genetic interactions
(minimizing the sum of 18-dimensional Euclidian distances exhibited by the 18 genes), and found one optimal arrangement
among 355,687,428,095,999 alternative possible arrangements. We found that the order of the respective functions of the
optimally sorted genes predicted the cyclical functions of some of these genes during cell cycle. We tested this inferred property
through assessing the gene’s effects on the relative phases of the cell cycle and confirmed that the optimal order reflected their
anticipated effects.

Materials and Methods
Strains
Chromosome stability assays and Fluorescence Activated Cell Sorting (FACS) assays were performed on cultures of the
diploid strain YPH275 of S. cerevisiae (MATa/MATa ura3-52 lys2-80 ade2-101 trp1-D1 his3-D200 leu2-D1 CF [TRP1 SUP11
CEN4]), provided by Prof. Phil Hieter.15 Synthetic dosage lethality and suppression were assayed by transforming individual
haploid deletion mutant strains from the gene knockout strain library16–18 and the parental strain BY4741 (MATa his3D1 leu2D0
met15D0 ura3D0) as control (available from Open Biosystems) with selected plasmids.

Plasmids
The MORF (Movable Open Reading Frame) library consists of two-micron plasmids each having one tagged gene of interest
under the control of a GAL promoter.19 Strains of E. coli containing the MORF plasmid library were obtained from Dr.
Elizabeth Grayhack and Dr. Eric Phizicky (University of Rochester Medical School, Rochester, NY). Individual MORF clones
were verified by sequencing, and were introduced into the appropriate yeast strains by transformation, and confirmed upon
recovery by resequencing.

Chemicals and Media
Chromosome instability reported by discrete red sectors on pink colonies was assayed on synthetic yeast growth media lacking
uracil, which contained 5 to 6 mg per L of adenine (minimal adenine) to optimize color formation.20 Plates containing 2%
galactose plus 1% raffinose were used to induce gene expression regulated by the GAL promoter on MORF plasmids while
plates containing 2% glucose were used to repress gene expression regulated by the GAL promoter. Enriched yeast growth
medium was YP with added glucose (YPD).20

Transformation of MORF Plasmids into Yeast
To induce overexpression of genes, we transformed liquid cultures of cells obtained from uniformly pink colonies of YPH275
with plasmids selected from the MORF library. YPH275 cultures were incubated with aeration at 30�C for 2 days in 100mL of
YP media including either 2% glucose (YPD) or 1% raffinose (YPRaff).20 Approximately 2.5 x 1011 cells were centrifuged
into a pellet that was resuspended in 10mL of transformation buffer (0.20 M LiAc, 0.10 M dithiothreitol, 40% mass per volume
of polyethylene glycol, 2.6% mass per volume of dimethyl sulfoxide, and 500 µL of single-stranded DNA). Aliquots of 300 µL
were mixed with 5 µL of plasmid DNA that was extracted using the Miniprep Kit from Qiagen. The mixture was heated for 30
minutes at 45�C and then mixed with 540 µL of YPD media. 100 µL aliquots were plated onto glucose-containing media
lacking uracil and grown for two or three days at 30�C; the transformants were frozen in 8% dimethyl sulfoxide.

Chromosome Stability Assay
YPH275 transformants were single colony purified on YPD plates, followed by plating on synthetic dextrose media lacking
uracil to select for the plasmids. The plasmids were resuspended in water, diluted, and plated for single colonies on media
containing (1) glucose (synthetic dextrose containing minimal adenine and lacking uracil) and (2) galactose (galactose plus
raffinose media containing minimal adenine and lacking uracil). After one week of growth at 30�C, plates were shifted
(in multiple replicates for each strain) to 4�C and incubated for two weeks to allow red sectors to darken. In some sets of
experiments, plates remained at that temperature for an additional two weeks to allow any non-specific pink color to fade
without compromising the darkening of the red sectors.

The number of sectors per colony was assumed to follow a Poisson(µ) distribution where P(X = x) = e�µ µx

x! , x � 0.
Because the sum of n Poisson(µ) distributions is a Poisson(nµ) distribution, the total number of sectors on a plate having
n colonies is Poisson (nµ), or e�nµ (nµ)x

x! . A Poisson regression to model the mutation rate per colony µ was performed
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using an offset to adjust for the number of colonies on each plate; specifically, we optimized the b parameter vector in
logsi = logni + b1x1 + b2x2 + ...bnxn, where si is the number of sectors on plate i, ni is the total number of colonies on
plate i, and x j equals one or zero to represent the jth gene*sugar interaction.21 (Note that the constant term b0 was omitted
from the model so that each eb j could be interpreted as the mutation rate for the jth gene*sugar.) The significance of the
differences between the estimated parameters b j were computed using a Z-Test using the Z values for each parameter estimate
b j. Significant differences between b j for a gene on galactose versus the empty vector on galactose were determined by using a
Bonferonni adjusted p value threshold of 0.01. The Poisson Regression was generated using SAS Software (University Edition).
This technique builds on that of a dissertation,22 which instead reported a test of dependence of sector frequency on sugar type
without using the Poisson distribution to quantify the rates of mutation per colony.

Screening MORF Library Plasmids for Identifying Candidate Chromosome Instability Genes
Plasmid DNA comprising the entire MORF library was partitioned into sets including about 384 individual MORF plasmid
DNA preparations. These DNA preparations were pooled into mixtures of 384 plasmids that were used to transform the strain
YPH275 (with the expectation that only one MORF plasmid would generally be introduced into any particular transformant
cell). 10µl of transformants were spotted in a dilution series on solid synthetic media plates (containing galactose, raffinose,
minimal adenine, and no uracil) using a Beckman Coulter Biomek FXP liquid handler robot; YPH275 transformed with the
empty MORF vector plasmid BG1766 was the negative control and pGAL::CLB5 or pGAL::YRB1 MORF plasmid was the
positive control. Colonies were allowed to form, allowed to develop colony color, and dilution spots with separable colonies
were examined for increased frequencies of red sectors relative to the negative control. Putative hit plasmids were extracted
from the corresponding colonies, plasmid DNA confirmed by sequencing. Increased rates of plasmid instability were confirmed
by retransformation into YPH275 followed by the Chromosome Stability Assay method described above.

To perform additional hypothesis-driven experiments using preselected plasmids, experiments were performed as above,
but without the first step of pooling MORF plasmids and without the later step of confirming the DNA sequence of plasmids
after observing frequent sectors.

Synthetic Dosage Interaction
Individual MORF plasmids were introduced by transformation into specific haploid deletion mutant strains selected from the
yeast knockout library. Transformants were selected on synthetic dextrose plates lacking uracil, and single colony purified.
The BioRad SmartSpec 3000 optical density reader was used to establish equal titers among the transformants and to dilute
each 10, 100, and 1000-fold. Four dilutions (1x, 10x, 100x and 1000x) were spotted in duplicate onto galactose-containing
and glucose-containing solid synthetic media lacking uracil (the glucose-containing media was a control to check whether all
strains at all dilutions grew equally). Three replicates of each experiment were plated and incubated at 30�C.

Growth of a given transformant in a deletion mutant strain was compared with the growth of the transformant containing the
same plasmid in the wild-type background strain BY4741 on the same plate by photographing and estimating the extent of growth
at each dilution. The empty MORF vector plasmid was used as a control. Some genetic interactions were repeatedly validated
to ensure consistency. When the growth of the deletion mutant strain carrying the MORF plasmid was indistinguishable
from that of the wild-type background strain carrying the same MORF plasmid in all dilutions, the interaction received a
score of 4. Scores of 1, 2 or 3 represented poorer growth of the mutant compared to the wild-type discernible at the various
dilutions; thus, score 1 represented the most affected strain, whereas score 3 represented the least affected. The interaction
score of 7 represented higher levels of growth of the mutant strain carrying the MORF plasmid compared to the wild type strain
carrying the same MORF plasmid (the quantity seven was chosen so that the lowest score and the highest score are numerically
equidistant from the score for normal growth).

Seriation of Matrices of Genetic Interaction
An unsorted matrix M was built using 19 row vectors of MORF plasmids, including the empty vector plasmid, and 18 column
vectors of deletion mutants. As noted above, we used a score of 1 to represent synthetic dosage lethality, 2 or 3 to represent
levels of synthetic dosage sickness, 4 to represent normal growth or that data were not available, and 7 to represent suppression.
Given the matrix of genetic interactions M, it is computationally intensive (and NP hard) to find the one optimal arrangement
of the 19 row vectors of M that minimizes the sum over all of the 18-dimensional Euclidean distances between the rows
of data vectors.23 Nevertheless, the optimal rearrangement of the row vectors that minimizes this sum of 18-dimensional
Euclidean distances can be solved using integer linear programming24, 25 because the total number of row vectors in our work is
sufficiently small.

This optimization task is similar to the famous ”Traveling Salesman Problem”, except that the two-dimensional Euclidean
distance between two cities in the traditional Traveling Salesman Problem is replaced here by the 18-dimensional Euclidean
distance between the data vectors of scores in rows i and j of our matrix M. Specifically, if we denote our 18-dimensional
Euclidean distances dij, our optimization task is to find a vector xij comprised of zeros and ones (where one represents the
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adjacency between rows i and j), while minimizing D(x)=Âi> j dijxij subject to the constraints that Âm
j=1 xij = 2, xij � 0, i=1,2,...n,

i 6= j, and xij = xji. This optimization problem was solved using Mathematica Version 10,26 by using the ”FindShortestTour”
function, specifying the ”Method” ”IntegerLinearProgramming” and the ”Distance Function” of ”EuclideanDistance”.

To sort the columns in addition to the rows, the resulting matrix was transposed and ”FindShortestTour” was used to re-sort
the transposed matrix using the same method and distance function.

Fluorescence Activated Cell Sorting Analysis
To measure the effects of MORF plasmids on the percentage of cells in G1, we prepared cultures of YPH275 for scanning by
Imaging Flow Cytometry.27 Transformants were grown at 30�C in 96-well plates that contained 200 µL of synthetic dextrose
media lacking uracil. After two days of growth, 10 µL of cells were inoculated into fresh 96-well plates and grown overnight
in synthetic complete media with raffinose and lacking uracil. For 16 hours at 30�C, the pGAL promoters were induced
using synthetic complete media with 2% galactose and lacking uracil, and cell density was monitored to obtain cultures at the
exponential growth phase. Approximately 2 x 106 cells at the mid exponential phase were harvested by centrifugation and fixed
using 70% ethanol by gently mixing at 4�C. The fixed cells were collected by centrifugation, which were then washed in water.
The cells were treated with 1 mg/ml RNAse A (Sigma) for 4 hours at 37�C. After centrifugation, the pellets were incubated
with 1 mg/ml of Proteinase K (Invitrogen) for 1 hour at 50�C. Cells were collected by centrifugation and re-suspended with 1
µM of SYTOX green (Invitrogen) in 50mM Tris (pH 7.5).

Cells were scanned by an imaging flow cytometer, Amnis ImageStreamX (Amnis Inc., Seattle, WA). 25,000 cell images
were acquired and the intensity of the DNA image (green channel; 480-560nm) was recorded along with the aspect ratio of the
cell image (brightfield). The Mathematica26 function ”FindClusters” was used to compute four clusters based on standardized
Z-scores of the intensity and aspect ratio in each experiment (where each Z-Score is xi�xmean

s , where xi is a raw observation,
xmean is the mean of those raw observations, and s is the standard deviations of those raw observations. Compared to the other
clusters, the cluster for G1 was assumed to have the high aspect ratio and low DNA intensity. The percentage of cells in G1 was
estimated by dividing the number of cells in the G1 cluster by the total number of cells. Note that this technique builds on that
of a dissertation22 which instead assumed predetermined thresholds of DNA intensity and aspect ratio to demarcate cells in G1.

Results

Identifying Genes Causing Chromosome Instability Upon Overexpression
The yeast strain YPH275 is a diploid that is homozygous for the ade2-101 ochre mutation, and also contains the dominant
ochre-suppressor gene SUP11 on a supernumerary chromosome fragment.15 The loss of the supernumerary chromosome or
the SUP11 gene is signaled by the accumulation of a red pigment in the colony (or colony sector) due to defective adenine
biosynthesis in the absence of SUP11. In principle, the loss of SUP11 can also result from ectopic gene conversion to
sup11 present at the allelic locus, but this frequency is generally low compared to the frequency of loss of SUP11 by mitotic
nondysjunction or recombination. The increased frequency of red colonies/sectors on galactose relative to the background
levels on glucose is a measure of chromosome instability induced by the MORF plasmids.28

With the expectation that many genes that affect the stability and copy number of chromosomes when overexpressed remain
to be identified, we took two independent approaches, which are described below.

1) In a model independent approach, we screened the entire Movable Open Reading Frame library (MORF) using a
technique13 having a high false negative rate; using this technique Ouspenski and colleagues discovered 30 genes that induce
chromosome instability upon over-expression but had estimated that 58 genes had remained to be discovered. Using this screen
technique followed by validation, we confirmed eight MORF plasmids as capable of inducing chromosome instability when
over-expressed on galactose, including XRS2, HFI1, ELG1, CLN1, GRX2, NOP6, SPC19, and GPG1 (we also confirmed the
positive control YRB1). Using the same assumptions as Ouspenski [13, see p. 3002], we estimate to have missed at least 40
additional genes using this technique. These genes belong to pathways known to participate in chromosome maintenance, DNA
replication, recombination, repair, and cell cycle progression.

(2) Our second approach was an intuition-dependent approach. We had noted the possibility that abnormal expression
of meiosis related genes in mitotic cells might cause mitotic chromosome instability. To explore this further, we chose 25
meiosis-related genes (DMC1, DON1, GIP1, HFM1, HOP1, HOP2, MCK1, MEI5, MEK1, MER1, NDJ1, NDT80, REC8,
SAE3, SET3, SPO1, SPO11, SPO13, SPO19, SPO20, SPO22, SPO73, SPO75, SPO77, and ZIP2) and tested these for galactose
induced chromosome instability. Only two of these genes, NDT80 and REC8, induced chromosome instability in our assays
(i.e, a hit-rate of 8%. Predominantly red sectors, characteristic of the clonal loss of the supernumerary chromosome, against
a light pink colony background (characteristic of the ochre-suppressed ade2-101 phenotype) that are unaccompanied by
white sectors (characteristic of cells with additional copies of the supernumerary chromosome) occurred in strains containing
pGAL::NDT80 and pGAL::REC8. This observation indicated that mostly chromosome loss were induced by these genes
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without non-disjunction, or that hyperploidy and/or SUP11 dosage might be toxic to those strains, causing selective loss of
aneuploid cells.

In addition to testing meiosis-specific genes, we also tested various genes that function in mitotic cell cycle control and
genes that had been previously assayed during a screen for dosage suppression.29 We screened 295 of these plasmids and
retested 40 of these to confirm 17 additional genes that induce chromosome instability (about 6% of the 295 screened). The
confirmed genes include BMT5, CDC4, CDC5, CDC20, CDH1, CWC24, HMLa2, IME2, MCM3, MOT2, NRM1, SLD3, SLM4,
SPO7, YDR387C, YGL182C, and YLR053C. (Note that HMLa2 is ordinarily silenced, but is regulated by an inducible pGAL
promoter in the MORF library.) In addition, we reconfirmed the positive control CLB5.

We quantified the chromosome loss rate per colony (µcolony) induced by the MORF plasmids relative to that by the empty
vector BG1766 by Poisson regression as described in Methods. Table 1 shows the results of these computations. The sets 2, 5,
7, 8, 9, 10, 11 and 12 include genes identified by the chromosome instability screen described above that was similar to that of
Ouspenski et al. Set 4 includes genes identified by screening genes that normally function during meiosis. The sets 1, 3, and 6
include genes that were chosen because of their role in cell cycle control or because they were assayed during a screen for
dosage suppression. In view of the results in set 6, we propose naming the uncharacterized ORF YDR387C to CIN10.

Note that some sector-inducing genes are not reported because red sectors were difficult to distinguish visually from pink
sectors. The excluded results are those of pGAL::YML007-C, pGAL::YAR023C, pGAL::MES1, and pGAL::MHT1. In addition,
one batch, Set 7, the positive control had a small number of colonies plated and hence an insignificant mutation rate per colony.

Seriation of a Matrix of Genetic Interactions to Form a Genetic Model for Chromosome Instability Induction
We hypothesized that some of the genes might be affecting chromosome stability due to their adverse effects on the cell cycle.
If true, it is predicted that these genes should affect relative lengths of the cell cycle in a predictable manner. One way to
numerically identify whether a set of vectors have systematic effects on a cyclically timed series of events is to conduct seriation
analysis on the matrix of vectors. Based on the µcolony estimated as described in the above section, 19 plasmids were chosen for
matrix seriation analysis. The corresponding genes are CDC4, CLN1, ELG1, YGL182C, NRM1, NDT80, IME2, REC8, CDC5,
YRB1, CLB5, MOT3, CDC20, XRS2, YDR387C, MOT2, HMLa2, CSE4 and HHT2 (of which CSE4 and HHT2 were included
despite undetermined mutation rates). These 19 MORF plasmids were introduced into 18 deletion mutant strains, each of
which gene deletions were previously reported to cause defective chromosome maintenance [10, Supplementary Table S3]. The
resulting 331 combinations (11 strains could not be constructed for technical reasons) were assayed for synthetic growth defect
or suppression of growth defects as described in Methods. The resulting matrix of suppression, synthetic dosage lethality, and
synthetic dosage sickness is illustrated in Figure 1. Not shown are the rows for pGAL::HHT2, pGAL::CDC4, pGAL::CLN1,
and pGAL::HMLa2, which are identical to the row for the empty vector. Note that this matrix has no dimension of time: the
possibility that the MORF plasmids might be exhibiting the genetic interactions observed here might have to do with any
temporally cyclical phenomenon (such as the cell cycle) is implicit. The matrix was seriated by Integer Linear Programming
(see Methods) for optimizing the total of the Euclidean-distance metrics between pairs of row vectors. The optimum sequence
of the rows in the matrix had a total space of 355,687,428,095,999 permutations. The observed optimal order of the MORF
genes following seriation is given in Figure 1. When we listed the genes Gene Ontology annotations30 of the deletion mutant
genes, we recognized that the observed series form a kinetically coherent model approximating the temporal order of cell
biological events that occur during cell cycle:

1. DNA damage sensing (e.g., TOF1, RAD9, MEC3);

2. Kinetochore-centromere cohesion (e.g., IML3, CHL1);

3. Helicase activity (e.g., CHL1);

4. Spindle checkpoint delay (e.g., MAD2);

5. DNA stress response (e.g., SPT21; DDC1, MMS22, RAD54);

6. Attachment of kinetochore to microtubules (e.g., MCM21);

7. Initiation of anaphase (e.g., MAD1);

8. The progression through the spindle assembly checkpoint (e.g., CHL4);

9. Chromosome segregation (e.g., MCM22);

10. Inhibition of cohesion between sister chromatids (e.g., RAD61);

5/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044339doi: bioRxiv preprint 

https://doi.org/10.1101/044339
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Re-linking sister chromatid cohesion to DNA synthesis (e.g., CTF4). This function is followed cyclically by DNA
damage sensing again.

We predict that one gene of unknown function, LGE1, has a similar function to the cyclically adjacent genes MCM21
(functioning in kinetochore attachment) and MAD1 (functioning in the spindle checkpoint). We predict that the dubious open
reading frame YLR235C is similar to the cyclically adjacent DNA damage sensing genes RAD9 and MEC3, perhaps because the
deletion of YLR235C overlaps with the deletion of TOP3 (topoisomerase III).

To arrange the overexpressed genes and the respective annotations30 of those genes, we again minimized the total of the
n-dimensional Euclidean distances rather than maximizing that total. The model arrangement is:

1. Regulation of the G1 to S transition (e.g., CDC4, CLN1);

2. DNA replication and repair (e.g., ELG1);

3. Exit from G1 (e.g., NRM1)

4. Kinetochore function (e.g., CSE4)

5. Positive regulation of meiosis (e.g., NDT80, IME2)

6. Sister chromatid cohesion during meiosis (e.g., REC8)

7. Various functions during meiosis or mitosis (e.g., CDC5)

8. G1 to S transition (e.g., YRB1)

9. DNA synthesis during S phase (e.g., CLB5)

10. Regulation of stress response (e.g., MOT3)

11. Finish stage of Mitosis (e.g., CDC20)

12. Double Strand Break Repair (e.g., XRS2)

13. Regulation of DNA replication (e.g., MOT2). MOT2 is followed cyclically by G1 functioning genes again.

This second sequence is similar to the first sequence above. Each predicts that DNA repair is followed by kinetochore
function, followed by stress response, followed by completion of mitosis, followed by DNA synthesis. This second model
includes an excursion into meiosis after exiting G1 because meiosis-specific genes were used to build the matrix.

Evaluating the Model Using Fluorescence-Activated Cell Sorting
Does the order of the overexpressed genes in the model correctly predict the order of the respective functions of the genes
during the cell cycle? To validate the model, we tested whether genes that function to transition the cell cycle out of G1 reduces
the percentage of cells in G1,31 while genes that function to transition the cell cycle out of M Phase do the opposite. The
percentage of cells in G1 are inferred by clustering two-dimensional data consisting of (1) normalized DNA fluorescence and
(2) normalized aspect ratio of the brightfield image. Of importance to note here is that chromosome instability induced by
plasmid overexpression was conducted in the diploid strain YPH275, whereas the temporal sequence of events were inferred
from the synthetic genetic interaction matrix based on cell viability in haploid cells. Therefore the model validation experiments
by FACS were conducted in the diploid YPH275 background.

Figure 2 shows the percentage of diploid cells in the G1 phase of the cell cycle for YPH275 strains carrying the respective
MORF plasmids, when grown in the presence of galactose. The order of the genes in this figure is sorted to match the order of
the cycle in Figure 1. Recall that the genetic interaction data for CDC4, CLN1, and HMLa2 that are reported Figure 1 are
identical to that of the empty vector. Data are not shown for AIM26, a gene of unknown function that was not tested for genetic
interactions. With AIM26, we observed that the percentage of cells in G1 was 10%, 10%, and 11%. Data for pGAL::NRM1 are
excluded due to technical difficulties.

Encouragingly we see further evidence of a cycle. The arrangement from BG1766 to pGAL::IME2 to pGAL::CDC5 to
pGAL::YRB1 to pGAL::MOT3 progresses toward a peak significantly (p=0.0062, Jonckheere-Terpstra Test, a non-parametric test
for ordered differences among classes). Furthermore, the arrangement from pGAL::MOT3 to pGAL::CDC20 to pGAL::YDR387C
to pGAL::MOT2 to BG1766 declines from that peak significantly (p=0.0024, Jonckheere-Terpstra Test). Hence, the arrangement
supports a cyclically ordered model. Other overexpressed genes, including pGAL::CDC4, pGAL::CLN1, and pGAL::HMLa2
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are not implicated in genetic interactions in this work and, therefore, it is reasonable that those percentages of cell in G1 do not
appear to be trended (assuming that the data for pGAL::HMLa2 includes one outlier point).

We observed that pGAL::CDC20, induces a high percentage of cells in G1, while pGAL::CLB2 induces one of the lowest
percentage of cells in G1 (data for pGAL::CLB2 that is not in Figure 2: 8%, 8.5%, and 8.4%, respectively, in three replicate
experiments). These results are intuitively understandable given previous observations that CDC20 functions in a manner
opposite to that of CLB2.32, 33

Seriation of a Matrix of in silico Genetic Interactions Involving CDC20 and CLB2

The mitotic spindle checkpoint ensures that chromosomes are properly aligned and oriented in preparation for the metaphase-to-
anaphase transition. Loss-of-function mutations of the spindle checkpoint genes mps1, mad1, mad2, mad3, bub1, or bub3, all
of which affect this process, cause chromosome instability.10, 34–37 In the presence of a functional M-phase spindle checkpoint,
cells will usually undergo proper cell division but do occasionally bypass checkpoint arrest and undergo premature chromosome
segregation. This latter effect has been called “mitotic slippage” or “adaptation”, and can occur after periods of cell cycle
checkpoint arrest.38 The consequences of one generation of mitotic slippage may often include aneuploidy and inviability.39, 40

The spindle checkpoint genes noted above encode proteins that regulate the sequestration and subsequent release of Cdc20p
to trigger the metaphase-to-anaphase transition at the appropriate time.41–43 Since such mechanisms are generally thought to
be important for chromosome copy number stability and genetic interactions, we used a system of coupled linear differential
equations to model cell cycle events,32 and systematically varied certain parameters for behavior of the numerical solutions that
could simulate irregularities in cell cycle oscillations and thus might predict chromosome instability and dosage suppression.

In the model, protein concentration, phosphorylation, protein complex formation, etc., of the minimal components of cell
cycle regulation are modeled using kinetic rate laws combined with algebraic constraints and conditional logic as described
previously by Chen and her colleagues.32 Alteration of parameters in this mathematical model can simulate gene deletion, gene
dosage effects, binding affinity changes, and several other perturbations.32 For example, setting the rate constant for Cdc20p
basal synthesis k0s,Cdc20 to a higher value simulates a higher level of CDC20 gene expression driven by the GAL promoter:

Cdc20T
dt = k0s,Cdc20 + k00s,Cdc20[Mcm1]� kd,Cdc20[Cdc20T ]

where [Cdc20T ] is the total concentration of active and inactive Cdc20p, k0s,Cdc20 is the rate constant for basal synthesis,
k00s,Cdc20 is the rate constant for Mcm1p-dependent synthesis of Cdc20p, [Mcm1] is the concentration of Mcm1p protein, and
kd,Cdc20 is the rate constant for Cdc20p degradation. The reasons for using these exact variables were defined previously.32

Cell cycle arrest was numerically simulated in the model in a systematic manner, resulting in loss of periodicity of protein
concentrations and loss of execution of a proper sequence of cell cycle milestone events [32, see the “robustness criteria”].
Upon mathematically generating cell cycle blocks through a primary perturbation, we systematically searched the parameter
space in the system of equations to identify secondary perturbations that would allow resumption of the cell cycle. See Figure 3.
Changes of values in parameters that would cause the simulated cell cycles to resume their periodic behavior were noted. For
the purpose of this investigation, we focused on the simulated gain-of-function perturbations.

In this manner, we identified five genes that bypassed the arrest induced by loss (or “in silico mutation”) of genes that
act downstream from the checkpoint signaling genes. (Conceptually, the suppression in model effectively restores the signal
that the checkpoint condition has been satisfied.) Specifically, the model predicts that CDC15 should suppress a downstream
cdc14 mutation; TEM1 over-expression should suppress a downstream cdc15 or cdc14 mutation; and either CDC20 or CDH1
overexpression should suppress a downstream tem1, cdc15, or cdc14 mutation, etc.

If the seriation approach is a valid way to deduce cyclical models from genetic interactions, then we expect that seriation of
the genetic interaction data should reproduce the underlying qualitative assumptions about the progression of events in the
predetermined cell cycle model. For example, in the model Tem1p reacts with Cdc15p, which reacts with Cdc14p, which
reacts with Cdc20p; therefore we expect that seriation should result in a similar ordering. Encouragingly, we computed that
seriation of the matrix of the in silico genetic interactions results in the arrangement of genes that closely matches the order of
the respective function of the genes in the model (see Figure 4).

Discussion
The 34 phenotypes of synthetic dosage lethality, 38 of synthetic dosage sickness, and 26 of suppression are novel according to
BioGrid (www.thebiogrid.org). Our overexpression-induced sectoring phenotypes are novel in Saccharomyces cerevisiae as
well, other than the positive controls YRB1,13 and CLB5.28 Nevertheless, mechanisms that might suggest chromosome instability
have been explored by others, including works that study CDC5 overexpression44, 45 and CDC20 overexpression.43, 46–49

Suppression was most pronounced for combinations that included CDC20: 12 out of 18 combinations suppressed the
deleterious effects of CDC20 overexpression. This is intuitive because CDC20 causes increased white sectors indicative of a
chromosome gain or gene copy number gain (reported in this work). On the other hand, the various deletion mutations each
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is known to cause increased frequency of chromosome loss.10 Thus, the suppression phenotype can be simply explained by
mutually compensatory effects of the respective genetic perturbations.

In this work, pGAL::MOT3 also caused frequent chromosome gain events as signaled by the occurrence of predominantly
white sectors even in the absence of adjacent red sectors. Hence, colonies overexpressing pGAL::MOT3 appeared similar to
pGAL::CDC20. Indeed CDC20 and MOT3 each cause a high shift to the percentage of cells in G1 (this work).

MOT3 encodes a prion that affects Ty transposable elements,50 yet pGAL::MOT3 was not previously implicated in
chromosome instability until this work. Nevertheless, it has been reported that loss of spt4 function affects Ty transposable
elements51 and also induces chromosomal instability.52 Furthermore, spt4 loss of function can increase the growth of yeast
cells.53 Hence, transposable elements may be one of the few genetic elements affecting both chromosome instability and
increased growth, both of which are both hallmarks of cancer.

The white-sectored colonies, observed using pGAL::CDC20 and pGAL::MOT3, could result from SUP11 expression. The
SUP11 ochre suppressor gene, can increase the rate of spontaneous nondisjunction during meiosis.54 Unlike the suppression
observed using pGAL::CDC20, there are the extensive synthetic dosage lethal interactions between the deletion mutations and
three meiosis-specific genes, IME2, NDT80, and REC8.

IME2 encodes a meiosis-specific serine-threonine protein kinase that activates the early stage of meiosis. The activation
triggers the transcription factor Ndt80p; the latter is a master controller of middle-sporulation genes and is a member of the
transcription factor family that includes p53.55 Overexpression of IME2 in haploid cells reduce cell division rate, possibly due
to a G2/M phase delay.31 The observation that all 18 deletion mutant strains in combination with IME2 overexpression exhibit
synthetic dosage lethality may indicate a non-specific toxicity of Ime2p. Alternatively, the effect of IME2 overexpression could
be due to a specific effect on chromosome dynamics that is enhanced in combination with each of the 18 deletion mutations that
are also known to affect chromosome dynamics. Similarly, with NDT80, synthetic dosage lethality interactions were obtained
using 17 out of 18 deletion mutants tested (the strongest was with ctf4D).

No direct genetic or physical interactions were reported previously between REC8, a meiosis-specific protein required
for maintaining sister-chromatid cohesion and preventing sister-chromatid recombination, and TOF1, a gene necessary for
sister-chromatid cohesion following DNA damage. The synthetic dosage lethal interaction reported here between REC8 and
tof1D establishes this connection, consistent with the idea that both genes are part of a single mechanism that controls sister-
chromatid cohesion. Similarly, MEC3 encodes a sliding clamp protein for replication fork movement, with no reported direct
physical or genetic interaction with REC8 or TOF1. The synthetic dosage lethal interaction reported here between REC8 and
mec3D illustrates a further mechanistic link between replication fork movement and sister-chromatid cohesion/recombination.

Paradoxically, overexpression of NDT80 lengthens the replicative lifespan of yeast,56 despite that pGAL::NDT80 is toxic
upon overexpression using glycerol-containing media.19 REC8 overexpression also affects the replicative lifespan57 and
yet induces sectors (this work). Note that the red sectors observed using NDT80 and REC8 in the work are not caused by
nondisjunction because no white sectors were observed.

Suppression and synthetic dosage lethality among several genes helped us establish novel functional connections between
pairs of genes. For example, CDC5, which encodes a polo-kinase important for several functions in mitosis including DNA
damage-repair, exhibits strong synthetic dosage lethality with the ddc1D, which encodes a DNA damage checkpoint protein.
The synthetic dosage lethality is understandable if one assumes that excess Cdc5p activity exhibits dominant negative effects
on DNA-damage repair, which would be expected to interact synergistically with ddc1D mutation. This theory is supported
by the observation that CDC5 overexpression alone inhibits growth, which is suppressed by ctf4D, which is required for
sister-chromatid cohesion at repair-replication forks.

XRS2, which encodes a protein essential for nonhomologous end joining at DNA double-strand breaks, exhibits synthetic
dosage lethality interaction with iml3D, which would normally encode an outer kinetochore protein required for pericentromeric
cohesion during mitosis. This synthetic dosage lethality can be interpreted as a dominant negative effect of XRS2 overexpression
on DNA repair by nonhomologous end joining. The DNA repair interacts synergistically with DNA breaks likely associated
with the loss of centromeric cohesion in the iml3D mutant. Indeed, XRS2 overexpression is associated with slower growth,
likely induced by genotoxic stress due to reduced nonhomologous end joining, which is suppressed by both ddc1D and spt21D
mutations. DDC1 encodes a DNA-damage checkpoint protein. Its absence is expected to prevent DNA damage checkpoint arrest
in cells with reduced repair by nonhomologous end joining, and thus should restore growth rate at the expense of chromosome
instability. This could explain the synthetic suppression interaction of XRS2 overexpression with spt21D mutation, because
SPT21 abrogates transcription of two histone genes HTA2-HTB2 and HHF2-HHT2 that are required for chromatin-mediated
signaling at broken DNA ends and triggering of DNA damage-induced checkpoint arrest.

Based these intuitive results, we expect that other matrices of genetic interactions derived form other experiments could
reduce to a simple intuitive cycle. We have demonstrated that analyzing a matrix using integer linear programming to minimize
the adjacent n-dimensional Euclidean distance results in a cyclical model that is both optimal and harmonious.

8/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044339doi: bioRxiv preprint 

https://doi.org/10.1101/044339
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements
We thank Eric Phizicky and Elizabeth Grayhack for supplying the MORF library; Phil Hieter for supplying strain YPH275;
Raghavan Vasudevan, Vikashni Padmakumar, and Kankshit Bheda for transformations and plasmid purification; Arvind
Kothandaraman, Rishov Chatterjee, and Hardeep Chiraya for laboratory logistics; Jose Salazar and Tanya Ferguson for Biomek
FXP liquid handler support; Bryan Kraynack and Kirilynn Svay for training; Herbert Sauro, Alpan Raval, Craig Adams, Ali
Nadim, and Susan Kane for discussions. This work was supported by grants from the National Science Foundation (#0527023,
#0523643, #0523643 and #0941078), and the National Institutes of Health (# 1R01GM084881-01) to Animesh Ray. Part of the
work was supported by the LANL National Flow Cytometry Resource (NFCR) funded by the National Center for Research
Resources of NIH (Grant P41-RR01315). We thank Dr. Babetta L. Marrone (Director, NFCR) for helpful discussions on image
analysis.

References
1. Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype.

Genetics 143, 95 (1996).

2. Measday, V. & Hieter, P. Synthetic dosage lethality. Methods in enzymology 350, 316–326 (2002).

3. Measday, V. et al. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for
chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America 102, 13956
(2005).

4. Baetz, K., Measday, V. & Andrews, B. Revealing hidden relationships among yeast genes involved in chromosome
segregation using systematic synthetic lethal and synthetic dosage lethal screens. Cell cycle (Georgetown, Tex.) 5, 592
(2006).

5. Raval, A. & Ray, A. Introduction to biological networks (CRC Press, 2013).

6. Kuentzer, F. et al. Optimization and analysis of seriation algorithm for ordering protein networks. In Bioinformatics and
Bioengineering (BIBE), 2014 IEEE International Conference on, 231–237 (IEEE, 2014).

7. Stirling, P. C. et al. The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes
and functional roles for ASTRA complex components. PLoS genetics 7, e1002057 (2011).

8. Spencer, F., Gerring, S. L., Connelly, C. & Hieter, P. Mitotic chromosome transmission fidelity mutants in Saccharomyces
cerevisiae. Genetics 124, 237–249 (1990).

9. Smith, S. et al. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening
in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 101, 9039
(2004).

10. Yuen, K. W. Y. et al. Systematic genome instability screens in yeast and their potential relevance to cancer. Proceedings of
the National Academy of Sciences 104, 3925 (2007).

11. Kanellis, P. et al. A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in
preventing DNA lesions. PLoS genetics 3, e134 (2007).

12. Andersen, M. P., Nelson, Z. W., Hetrick, E. D. & Gottschling, D. E. A genetic screen for increased loss of heterozygosity
in Saccharomyces cerevisiae. Genetics 179, 1179 (2008).

13. Ouspenski, I. I., Elledge, S. J. & Brinkley, B. R. New yeast genes important for chromosome integrity and segregation
identified by dosage effects on genome stability. Nucleic acids research 27, 3001 (1999).

14. Boone, C., Bussey, H. & Andrews, B. J. Exploring genetic interactions and networks with yeast. Nature Reviews Genetics
8, 437–449 (2007).

15. Hieter, P., Mann, C., Snyder, M. & Davis, R. W. Mitotic stability of yeast chromosomes: a colony color assay that measures
nondisjunction and chromosome loss. Cell 40, 381–392 (1985).
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Figure 1. Seriation of genetic interactions results in a cyclical matrix. We report synthetic dosage lethality
(represented as small blue circles), two levels of synthetic dosage sickness (two progressively lighter shades of
blue), unchanged growth (yellow), and suppression (large red circles). To seriate the matrix, the rows (columns) of
the matrix of genetic interactions are rearranged using integer linear programming to minimize the sum of the
n-dimensional Euclidean distances over all pairs of adjacent n-dimensional row vectors (column vectors). The
spatial distances of separation between adjacent rows and adjacent columns are proportional to the n-dimensional
Euclidean distance between two separated rows or columns, respectively. The resulting order of the genes forms a
model of the order of the respective functions of the genes during the cell cycle. The first row (column) is adjacent
to the last row (column). Not shown are the rows for pGAL::HHT2, pGAL::CDC4, pGAL::CLN1, and pGAL::HMLa2,
which are identical to the row for the empty vector.
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Figure 2. The percentage of cells in G1 measured by Fluoresence Activated Cell Sorting (FACS). The arrangement
peaks with pGAL::MOT3. The order of genes is arranged to match the order of the cycle in Figure 1. Recall from
Figure 1 that pGAL::CDC4, pGAL::CLN1 and pGAL::HMLa2 had no genetic interactions and are thus similar to the
empty vector. Data for pGAL::NRM1 are excluded because the results were irreprodicible among replicates.
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Figure 3. Simulations of the timecourse of in silico cellular mass (MASS), budding (BUD), development of origins of
replication (ORI) and spindle formation (SPN) in a wildtype model32 (left), cdc14D deletion model (center) and a
model with CDC20 overexpression in a cdc14D deletion background. Deletion of cdc14D was simulated by zeroing
the parameter representing the basal synthesis rate of Cdc14 protein, while CDC20 overexpression was simulated
by increasing the basal synthesis rate of CDC20 from 0.006 to 1.5 dimensionless units.
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Figure 4. Seriation of in silico genetic interactions results in a cyclical matrix where the first row (column) is
adjacent to the last row (column). We represent the in silico dosage suppression as black cells in the matrix. To
seriate the matrix, the rows (columns) of the matrix of genetic interactions are rearranged using integer linear
programming to minimize the sum of the n-dimensional Euclidean distances over all pairs of adjacent n-dimensional
row vectors (column vectors). The predicted order of the genes reproduces the ordering of events in the underlying
model that was used to simulate the dosage suppression (e.g., Tem1p reacts with Cdc15p, which reacts with
Cdc14p, which reacts with Cdc20p).
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Table 1. The Rate of Chromosomal Loss per Colony (µcolony) by Conditional Overexpression Using Diverse Sets of
Genes

Gene µcolony Gene µcolony Gene µcolony Gene µcolony
Set 1 Set 3 Set 6 Set 9
MOT2 0.28 * MCM3 0.80 * CDC4 0.25 * CLN1 0.73 *
NRM1 0.26 * CDC5 0.47 * YDR387C 0.07 * GRX2 0.52 *
CDC20 0.21 * CLB5 0.34 * CLN1 0.07 * NOP6 0.42 *
CLB5 0.09 * IME2 0.19 * BMT5 0.06 * SPC19 0.34 *
YLR053C 0.08 * SLD3 0.09 * HMLa2 0.05 * YRB1 0.32 *
SPO7 0.07 * CWC24 0.05 * SLM4 0.05 * GPG1 0.28 *
CDC6 0.05 * YIL025C 0.02 YGL182C 0.05 * YFL051C 0.18
CDH1 0.03 * SMC2 0.02 YOS1 0.02 GSP2 0.16
MIX23 0.03 PAN6 0.01 YAL069W 0.02 DAS1 0.14
YHM2 0.02 BMH2 0.01 MOT3 0.02 GSH2 0.10
BFR1 0.02 CLB2 0.01 RPS24B 0.02 Vector 0.05
ARP9 0.02 PRP16 0.01 AIM26 0.02 Set10
RRT6 0.02 TTI2 0.01 PGD1 0.02 YRB1 0.66
YDR476C 0.02 SUA7 0.01 CLN2 0.01 COQ10 0.00
PGA1 0.02 Vector 0.01 Vector 0.01 Vector 0.00
TTI2 0.02 YKL202W 0.01 SYS1 0.01 Set 11
Vector 0.01 VPS9 0.00 CKA2 0.01 YRB1 0.28 *
YNL198C 0.01 WSC2 0.00 RPL16A 0.01 ERP4 0.05
CDC40 0.01 PTR2 0.00 PCL9 0.00 Q0130 0.04
MBB1 0.01 MSB3 0.00 CLB5 0.00 YPL071C 0.04
FAD1 0.01 TRP1 0.00 Set 7 Vector 0.04
SWT1 0.00 Set 4 YRB1 0.84 YNL226W 0.03
SRB2 0.00 NDT80 0.79 * RPL20A 0.08 ADY4 0.02
Set 2 CLB5 0.36 * ORC1 0.05 Set 12
XRS2 0.54 * REC8 0.35 * SRP14 0.03 SPC19 0.41 *
YRB1 0.39 * Vector 0.07 RHO4 0.01 GRX2 0.39 *
HFI1 0.06 * Set 5 Vector 0.00 CLN1 0.28 *
MSM1 0.04 YRB1 0.60 * Set 8 Vector 0.00
SYC1 0.03 ELG1 0.33 * YRB1 0.78 *
JID1 0.02 DCG1 0.01 POL32 0.08
YER152C 0.02 Vector 0.00 Vector 0.02
Vector 0.02 YJL077W-B 0.02
YGL082W 0.01 RET3 0.01

TFB5 0.01
*These chromosomal loss rates per colony (µcolony) are significantly different from that of the vector in the same experimental
set (Z-test, Bonferroni-adjusted p ¡ .01). The Z-test was used to compare the chromosomal loss rates based on the Poisson
parameters estimated from a Poisson regression. See Methods.
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