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Abstract 

Dispersal kernels are the standard method for describing and predicting the relationship between dispersal 

strength and distance. Statistically-fitted dispersal kernels allow observations of a limited number of 

dispersal events to be extrapolated across a wider landscape, and form the basis of a wide range of theories 

and methods in ecology, evolution and conservation. Genetic parentage data are an increasingly common 

source of dispersal information, particularly for species where dispersal is difficult to observe directly. It is 

now routinely applied to coral reef fish, whose larvae disperse over many kilometers and are too small to 

follow directly. However, it is not straightforward to estimate dispersal kernels from parentage data, and 

existing methods each have substantial limitations. Here we develop and proof a new statistical estimator for 

fitting dispersal kernels to parentage data, applying it to simulated and empirical datasets of reef fish 

parentage. The method incorporates a series of factors omitted in previous methods: the partial sampling of 

adults and juveniles on sampled reefs; the existence of unassigned dispersers from unsampled reefs; and 

post-settlement processes (e.g., density dependent mortality) that follow dispersal but precede parentage 

sampling. Power analyses indicate that the highest levels of sampling currently used for reef fishes is 

sufficient to fit accurate dispersal kernels. Sampling is best distributed equally between adults and juveniles, 

and over more than ten populations. Importantly, we show that accounting for unsampled or unassigned 

individuals – including adult individuals on partially-sampled and unsampled patches – is essential for a 

precise and unbiased estimate of dispersal.  

 

Keywords: Connectivity; parentage analysis; self-recruitment; ghost patches; Great Barrier Reef; coral reef 

fish. 
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Introduction 

The pattern and strength of dispersal play a defining role in ecology and evolution, particularly in 

ecosystems where suitable habitat is patchily distributed (Clobert et al. 2001; Bullock et al. 2002). However, 

dispersal is a difficult process to observe, particularly when dispersing individuals are small, numerous and 

hard to follow (Cowen & Sponaugle 2009; Jones et al. 2009). A wide variety of approaches have been 

developed to measure dispersal events. These include tracking individual trajectories using radio or GPS 

devices; mark-recapture across multiple patches; and inverse modelling using the location and species 

identity of propagules and adults (Clobert et al. 2001; Bullock et al. 2002; Clark et al. 2008; Broquet & Petit 

2009). In recent years, population and individual-based genetic methods have begun to offer unique and 

powerful insights into dispersal (Jones et al. 2009; Broquet & Petit 2009).  

Hypervariable molecular markers allow sampled juveniles to be assigned to sampled parents, and can 

thereby provide individual dispersal vectors. The approach was first used to estimate dispersal and gene flow 

in plant communities (Ellstrand & Marshall 1985), has been applied to birds (Woltmann et al. 2012), and 

mammals (Telfer et al. 2003). It is increasingly being used to observe larval dispersal events in marine fish 

metapopulations, particularly on coral reefs (Jones et al. 2005b; Almany et al. 2007; Planes et al. 2009; 

Christie et al. 2010; Buston et al. 2012; Harrison et al. 2012; Almany et al. 2013; D’Aloia et al. 2015). 

Parentage analysis has been used to conclusively answer open ecological questions (Almany et al. 2007; 

Jones et al. 2009), and provide suggestive evidence about the role of connectivity in spatial management 

(Harrison et al. 2012). However, parentage assignment data generally only report a small number of 

dispersal events, at a particular time, and between a subset of locations. Many questions in ecology and 

management tools in conservation demand a more expansive description of dispersal.  

We therefore require statistically robust methods for extrapolating limited parentage data to predictions 

about dispersal in the broader landscape. The most common approach at present is to estimate how dispersal 

strength relates to the distance between habitat patches, since isolation-by-distance is a natural way to 

conceive of dispersal dynamics. Operationally, this involves fitting a parametric relationship – a dispersal 

kernel – to a set of observed dispersal events (Clobert et al. 2001; Nathan et al. 2012). Previous analyses 

have fit dispersal kernels to parentage datasets using a range of different methods (Jones et al. 2005a; Jones 

& Muller Landau 2008; Buston et al. 2012; Almany et al. 2013; Hopf et al. 2015; D’Aloia et al. 2015). At 

their most basic, these methods involve calculating the average distance travelled by juveniles that were 

sampled and assigned to parents (Woltmann et al. 2012), or fitting a regression line (Telfer et al. 2003; 

Buston et al. 2012) directly to the distances travelled. In essence, these methods use each parentage 

assignment as a datapoint relating distance to dispersal strength. While this assumption is broadly 

reasonable, the raw number of assignments should not simply be regressed against inter-patch distance. The 

fit of dispersal kernels to parentage data will be influenced by a set of factors that are generally not included 

in current fitting methods. (1) Even the most extensive parentage datasets contain only subsamples of the 

adult populations. The data therefore contains a large numbers of juveniles – generally the majority – that 

cannot be assigned to any parents. These unassigned juveniles could be the offspring of adults on “ghost 
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patches”, that is, patches that are completely unsampled (Beerli 2004; Wang 2014). They could also be the 

offspring of unsampled adults from patches where adults were only partially sampled (Jones & Ardren 

2003). Both options must be considered by the method. (2) Parentage datasets contain finite samples of the 

juvenile populations, and the datasets vary spatially in sampling intensity (Jones & Muller Landau 2008). (3) 

These juvenile samples were not collected immediately following the dispersal phase, and therefore are the 

result of dispersal, filtered by post-settlement mortality processes (Moran & Clark 2012). These factors – 

each the result of partial sampling – can have a dramatic effect on the interpretation of a given parentage 

sample. First, unassigned juveniles contain valuable information that should not be ignored. Second, 

partially-sampled and unsampled adult populations can substantially change estimates of kernel shape and 

mean dispersal distance (see Figure S1 for a simple illustration). 

All previous estimates of larval dispersal kernels for coral reef fish have ignored at least one of these factors. 

In this paper, we propose a novel likelihood estimator for dispersal kernels that incorporates each, and 

demonstrate its application to a case study of reef fish larval dispersal on the Great Barrier Reef. We 

generate simulated genetic parentage datasets to investigate the power and statistical properties of our 

estimator under logistical constraints, which limit the number of juveniles sampled, the proportion of adults 

sampled at each patch, and the total number of patches sampled. Finally, we show that methods which do not 

incorporate these factors will produce biased and inaccurate estimates of dispersal. 

 

A likelihood function for parentage-based dispersal data 

The metapopulation comprises 𝑃 habitat patches, each with a population of 𝑁! individuals (we assume an 

approximately equal sex ratio on all patches). The metapopulation consists of individuals in three stages. 

“Adults” are reproductively mature individuals that produce dispersers (e.g., larvae) that move according to a 

dispersal kernel. If these offspring arrive at a habitat patch, they become “settlers”, and attempt to recruit to 

the local population. At this point they suffer density-dependent mortality; those that survive become 

“juveniles” and may be sampled for parentage.  

Juveniles are sampled from a subset 𝐒𝐉 of patches, which has 𝑠! elements. A proportion 𝜋! of the adults on 

each reef 𝑖 are sampled, with 𝜋! = 0 for ghost patches. Each sampled juvenile is either assigned to a sampled 

adult, or classified as having unknown parentage. This count data populates matrix 𝐌, with the columns 

indicating the patch where the juvenile was sampled, and the row indicating the natal patch. The final row 

contains the number of unassigned juveniles. The count data in 𝐌  are a sample from the juveniles on each 

patch, which are themselves samples of the settlers. We assume that both the juveniles and settlement pools 

are large, so that we can model recruitment and juvenile collection as samples with replacement. We also 

assume that each disperser, regardless of its origin, has an equal probability of successfully settling (e.g., 

there is no local adaptive advantage (Warner 1997) or cost to long duration/distance dispersal (Burgess et al. 

2013a)).  
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The settlement pool on each patch is determined by a dispersal kernel 𝜌 𝑘,𝑑!" , which assumes dispersal is 

isotropic, spatially invariant, and based on the distance 𝑑!" between patches 𝑖 and 𝑗. The kernel is a 

probability density function whose shape is defined by the parameter set 𝑘. One commonly-used kernel is the 

generalised Gaussian function (Largier 2003; Bode et al. 2011; Nathan et al. 2012): 

𝜌 𝑘,𝑑 =
𝑘𝜃

𝚪 1
𝜃
exp − 𝑘𝑑 !  

Eq. 1 

where 𝜃 is a shape parameter that yields the standard Gaussian when 𝜃 = 2, the Ribbens function when 

𝜃 = 3, and the Laplacian or negative exponential when 𝜃 = 1. The coefficients that precede the exponential 

term in Eq. 1 normalise the function to ensure that it is a probability distribution. However, because these 

terms occur on both the numerator and denominator of terms in the likelihood function (Eq. 2), they do not 

affect the fit and could be safely ignored during fitting. Note that since the kernels are isotropic, the average 

displacement of an individual larvae is zero (since the displacement of every larvae that disperses northward 

is balanced by larva that travels south). We therefore define the mean dispersal distance as the expected 

distance travelled by a larvae in a single compass direction: 

𝑚 𝑘 = 𝑥 ⋅ 𝜌 𝑘, 𝑥
!

!!!

⋅ 𝑑𝑥 

Eq. 2 

According to a particular dispersal kernel, the proportion of the settlers on patch 𝑗 that come from sampled 

adults on reef 𝑖 will be: 

𝑞!" 𝑘 =
1 − 1 − 𝜋! !   𝑁!   𝜌 𝑘,𝑑!"

𝑁!  𝜌 𝑘,𝑑!"!
!!!

. 

Eq. 3 

The numerator in Eq. 2 calculates the number of settlers who dispersed to patch 𝑗, that were created by at 

least one sampled parent on patch i. The denominator divides this by the total number of settlers arriving at 

patch 𝑗, from both sampled and unsampled adults, turning it into a probability that a sampled juvenile on 

patch j comes from patch i. This denominator recreates the effect of any density-dependent settlement 

mortality process that is neutral to the source of the settlers. Both the numerator and denominator could be 

modified by the per-capita fecundity of the females, the proportion of successfully fertilised eggs, and the 

mortality during the dispersal phase. However, if we assume that these do not vary between patches, they 

will not alter the fit. Equation 2 depends heavily on the population size on potential source patches, 𝑁! (Fig 

1a). These must therefore be either sampled, or estimated using observed densities on comparable sampled 

habitat.  
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In most parentage datasets, a large proportion of the juveniles cannot be assigned to any of the sampled 

adults. The dispersal kernel also predicts this proportion, which either come from ghost patches, or from 

unsampled adults on sampled patches: 

𝑞! 𝑘 = 1 − 𝑞!" 𝑘   
!

!!!

=
1 − 𝜋! !  𝑁!   𝜌 𝑘,𝑑!"!

!!!

  𝑁!  𝜌 𝑘,𝑑!"!
!!!

. 

Eq. 4 

Applying Eq. 2 and Eq. 3 to the parentage matrix 𝐌, the log likelihood of observing the set of attributed and 

unattributed samples, given dispersal kernel 𝜌 𝑘,𝑑  is therefore: 

𝐿𝐿 𝑘|𝐌 = ln
𝑅!"
𝐌!"

+ 𝐌!" ln 𝑞! 𝑘 + 𝐌!" ln 𝑞!" 𝑘
!

!!!!∈𝐒!

!

!!!

, 

Eq. 5 

Where 𝑅!" = 𝐌!"! , the total number of recruits sampled on patch j. The index variable 𝑋 in 𝐌!" refers to 

the final row in the parentage matrix (i.e., unallocated juveniles, so 𝑋 = 𝑠! + 1). The very first term of Eq. 5, 

a sum over multinomial coefficients, does not change for different parameter sets, and should therefore be 

ignored since it can be large enough to pose numerical issues. Confidence intervals can be generated by 

repeatedly finding the maximum likelihood fit for bootstrap resamples of the data, using source reefs as 

resampling units.  

 

Applying the method to reef fish dispersal in the Keppel Islands Group 

We begin by applying this estimator to an empirical genetic parentage dataset from the Keppel Islands 

Group, an archipelago of continental islands in the southern section of Australia’s Great Barrier Reef (Figure 

1A). The genetic parentage dataset samples Plectropomus maculatus, a commercially- and recreationally-

targeted species of grouper (Serranidae). The species is common in the approximately 700 ha of fringing 

reefs that are found in the Keppel Islands. 

An earlier dataset (Harrison et al. 2012) reported adult and juvenile samples of P. maculatus, collected 

during 2007-2008, and these data have since been supplemented by additional sampling, and re-analysis of 

previously sampled juveniles with an enlarged adult dataset (Williamson et al.). The new dataset contains 

440 adults and 506 juveniles from sampling efforts at 28 sites across the group (Figure 1); 58 of the juveniles 

were assigned to at least one adult parent. The summary parentage matrix, the habitat area of each location, 

and the inter-reef distances are given in the Supplementary Information. We apply our kernel estimator to 

identify the best-fit larval dispersal kernel from the set of thin- and fat-tailed generalised Gaussian functions; 

bootstrap resampling of sample locations produced 95% confidence intervals around this fit.  

 

Power analyses for simulated reef fish datasets 
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The collection and analysis of parentage data is both expensive and multi-dimensional: a patch must be 

visited, and adults and/or juveniles caught, genotyped (sometimes destructively), and then genetically 

matched. Total sampling effort must be shared between adults and juveniles, and across multiple patches. 

We perform a series of simulation-based power analyses to assess how these decisions affect the accuracy of 

the best-fit dispersal kernel. To do this, we (1) simulate dispersal and the resulting genetic parentage 

relationships, (2) create subsamples of juveniles and adults, and (3) analyse these simulated datasets using 

the fitting method described above.  

Simulating dispersal: We begin by simulating a dispersal event for a single coral reef fish species across all 

321 patch reefs in the Cairns Management Region of the Great Barrier Reef. A real seascape allows the 

power analyses to reflect the variation in natural inter-patch distances. The species’ characteristics are 

broadly based on coral trout (genus Plectropomus) species, a target of recreational fishers and a focus of 

genetic parentage analysis and larval kernel estimation (Harrison et al. 2012; Almany et al. 2013; Hopf et al. 

2015).  Each reef produces an amount of larvae proportional to its area, assuming that adult coral trout on the 

GBR exist at densities of around 3,500 km-2 (Cornish & Kiwi 2006), and mate randomly. We model the 

distance travelled by the larvae – which are obligate dispersers – using a random choice from a set of four 

variants of the generalised Gaussian (Eq. 1) for 𝜃 = 1, 2, 3, 0.5 . The chosen dispersal kernel is 

parameterised with a value of 𝑘 that gives a mean dispersal distance m that is either “long” (𝑚 = 15  km) or 

“short” (𝑚 = 5  km). The first three kernels are thin-tailed, the last is fat-tailed (see Figure S2 for both kernel 

shapes and parameter values). Not all larvae that arrive on a given reef survive post-recruitment density-

dependent mortality, which we model using the Beverton-Holt function (Bode et al. 2012). We assume that 

mortality applies to settling larvae independent of their origin reef (but see: Burgess et al. 2013a). 

This dispersal simulation creates a two-generation parentage dataset that can be repeatedly sampled in a 

simulation-based power analysis. A subset of the reefs within a contiguous region is randomly chosen for 

sampling (Figure 1A); from each reef we sample a proportion of the adult population and a given number of 

individuals from the post-density-dependent juvenile population. We use the average density of coral trout 

on the GBR to translate a proportional adult sample into a number of adult individuals (e.g., 1% of adults on 

a 1 km2 reef is equivalent to 35 individuals).  

Fitting sample parentage data: We take each juvenile in turn and identify its source reef, if either parent was 

sampled. Although individual larvae will depart from and arrive at specific locations within each reef, we 

measure dispersal distances using the centroids of the source and destination reefs. While incorporating the 

precise locations of the adults and juveniles may hypothetically offer a more precise parameterisation, (1) 

inter-reef distances are generally much larger than reef dimensions, (2) dispersers are not necessarily 

spawned at the location where an adult was sampled (e.g., for aggregative spawners), and (3) juveniles did 

not necessarily settle at the precise location where they were sampled (White 2015). Parentage data are 

summarised in a simulated parentage matrix M, with the final row containing those juveniles whose parents 

were not in the sampled set. 
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We use our estimator (Eq. 4) to find the maximum likelihood parameter fit to these data, using the four 

candidate dispersal kernel functional forms. We repeat the sampling and fitting procedure 1,000 times to 

estimate confidence intervals, taking each sample from a different part of the metapopulation to average over 

the effects of a heterogeneous patch distribution (Figure 1A). We then calculate and report the mean 

dispersal distance m of the fitted kernel, and calculate how frequently the estimator identifies the true kernel 

shape (expressed as a percentage of the simulated datasets). 

Power analyses: Our first power analysis assesses the performance of parentage analyses undertaken at the 

intensity and scale of contemporary sampling efforts. The case-studies in Table 1 involve sampling of 

between approximately 750 and 7,000 individuals (adults and juveniles) across 16 to 66 sites. We calculate 

the ability of this level of sampling to accurately estimate the two mean dispersal distances. We apply three 

scenarios of total sampling intensity – low sampling effort (750 individuals across 20 patches); intermediate 

effort (2,400 individuals across 40 patches); and high effort (6,000 individuals across 60 patches). In each 

case, total sampling effort is equally shared between adults and juveniles. At the same, we also calculate the 

performance of directly fitting a kernel to assigned juveniles (Telfer et al. 2003; Buston et al. 2012), ignoring 

all the factors we have discussed to this point. We simply calculate the maximum likelihood kernel fit, using 

the dispersal kernel to calculate the likelihood of each event (an assigned juvenile) as a function of the 

distance between parent(s) and assigned juvenile. We also estimate the accuracy of each case-study in Table 

1, by calculating the width of the 95% confidence bounds, assuming that the best-fit parameter was correct. 

The remaining power analyses aim to inform how a given sampling budget should best be distributed. In 

general, total parentage sampling effort is distributed along three primary dimensions: the number of 

sampled (1) juveniles, (2) adults, and (3) sites. Total sampling effort is the product of these three; different 

effort allocations affect the accuracy of the estimated kernel. We outline four additional power analyses 

below, and on the basis of the results recommend how total sampling effort should be distributed to best 

estimate the kernel shape and the mean dispersal distance. For all power analyses we calculate the 

performance of a range of total sampling intensities, comprising 500, 1000, 2500, 3250 and 5000 individuals, 

and consider species with both long- and short-distance dispersal kernels. 

Power analysis 2 considers how to best distribute sampling effort between juveniles and adults. A focus on 

sampling juveniles generates a larger number of dispersal events, however, more adult samples give a higher 

probability that each event will be usefully attributed to a source and destination reef. Assuming that both 

adults and juveniles are sampled from the same set of 30 reefs, we sample the genetics individuals spread 

equally across reefs. We share this sampling effort between adults and juvenile individuals in different 

proportions, ranging from 5% adults (and therefore 95% juveniles) through to 95% adults.  

In power analysis 3, we consider the distribution of sampling effort across space. Sampling across a larger 

number of patches increases our ability to sample the kernel tail (D’Aloia et al. 2015), but it means that we 

sample fewer individuals on each patch, and therefore see more unassigned juveniles. Assuming that 

sampling will be equally focused (50:50) on adults and juveniles, we sample the genetics of individuals 

collected from between 5 and 90 different patches. We note that, while the spatial scale of the sampling will 
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scale on average with the number of patches (i.e., a larger number of patches is generally distributed over a 

larger area), the absolute scale in kilometers will depend on the density of patches in the sample area (Figure 

1A).  

In power analysis 4, we consider the implications of incomplete sampling of adult populations on sampled 

patches. When a sampled juvenile cannot be assigned to one or both parents, the kernel fitting procedure 

must decide if it came from a ghost patch (usually a long-distance disperser), or from unsampled adults on a 

sampled patch (usually a short-distance disperser or self-recruiter). Low intensity adult sampling sends 

conflicting messages to the estimator because it makes both options a possibility. We sample 500 juveniles 

across 30 reefs, and apply adult sampling proportions that range between 1% and 100%. Note that, unlike the 

previous power analyses, these simulations have unequal total sampling numbers. The fit will therefore 

improve monotonically as adult sampling increases. 

Power analysis 5 calculates the impact of ignoring ghost patches, unsampled adults and unassigned juveniles 

into our fitting methods. We create parentage data for sampled individuals distributed equally across adults 

and juveniles on 30 reefs. We contrast the mean dispersal distance estimated using the methods we propose 

in Eq. 4, or estimated by fitting a dispersal kernel to the assigned samples only, without considering 

unsampled factors. That is, we ignore (1) the unassigned juveniles, (2) the unsampled patches, and (3) the 

presence of unsampled adults on sampled patches.  

 

Results 

Figure 1C illustrates the best-fit kernels for P. maculatus dispersal, measured by the Keppel Islands dataset. 

The data was best fit with the Ribbens kernel (Eq. 1 with 𝜃 = 3), but each of the thin-tailed kernels predicts 

an approximately equal mean dispersal distance (22.5 km, 24.2 km, 26.9 km and 35.1 km for 𝜃 = 1, 2, 3 and 

4 respectively). The best-fit Gaussian kernel (𝜃 = 2) fit within the 95% confidence intervals of the best-fit 

Ribbens kernel, and had a relatively strong AIC weight (0.15). Each of these best-fit kernels predicts that the 

majority of larval settlement within the Keppels group is sourced from other reefs in the group, and also that 

a large proportion of the larval output of the group recruits to local reefs. The final column in Table 1 

indicates the estimated accuracy of three different datasets that have been used to fit larval dispersal kernels. 

Only the parentage dataset of Elacatinus lori is sufficiently powerful to produce narrow confidence bounds 

around the mean dispersal distance of the species, if the methods we outline here were applied.  

In our first power analysis, we calculate the expected performance of current levels of sampling (Figure 2). 

For a species with a mean dispersal distance of 15 km, low sampling effort (1,000 individuals across 20 

patches) provides an estimate between 5.7 km and 42.6 km (38% to 285% of the true value); intermediate 

effort (2,000 individuals across 40 patches) provides an estimate between 9.5 km and 28.7 km (64% to 

191%); and high effort (7,000 individuals across 70 patches) provides an estimate between 13.2 km and 18.9 

km (88% to 126%). The results are more precise for the species with shorter mean dispersal distance of 5 

km, where low sampling effort provides an estimate between 2.5 km and 12.0 km (50% to 240%); 
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intermediate effort provides an estimate between 4.2 km and 6.4 km (83% to 130%); and high effort 

provides an estimate between 4.7 km and 5.5 km (94% to 111%). In all cases, the straightforward approach 

of directly fitting kernels to observed parentage assignments provided poor, biased underestimates of mean 

dispersal distance (Figure 2). The 95% confidence intervals only once included the true distance (for high-

intensity sampling of long distance dispersers).  

Our second power analysis considers the distribution of sampling effort between juveniles and adults (Figure 

3 A-B). The performance of the estimator does not vary substantially with this proportion allocation. The 

best results are achieved by allocating the sampling effort evenly, but the outcomes are essentially the same, 

as long as allocations do not fall below 25% of sampling effort for either adults or juveniles. Datasets outside 

this range tend to provide biased estimates of the mean dispersal distance, particularly for longer distance 

dispersers. 

The third analysis considers the distribution of sampling effort across space. The most accurate and precise 

estimates of dispersal distances are achieved by focusing sampling effort on a small number of well-sampled 

patches. Sampling individuals over a wider area results in a less precise estimate of the kernel, for both long- 

and short-distance dispersers (Figure 3 C-D). Spreading a small number of samples over a large space results 

in substantial underestimates of the mean dispersal distance. For larger sampling budgets, the size of the 

sampling region has a smaller influence on the fit precision. 

The fourth analysis addresses incomplete adult sampling. The results show that the estimator is unbiased, 

regardless of the proportion of the adult population sampled (Figure 3 E-F), and is consistently precise if the 

proportion of the adult population sampled remains above 5%. However, once the proportion fell below this 

level, the performance of the fit declined dramatically, particularly for lower total sampling budgets. Unlike 

the previous figures, this power analysis keeps all other sampling decisions constant as it increases the 

proportion of adults sampled. These results would therefore not justify increasing the sampled adult 

proportion above 10%, since the additional adults would have little impact on the fit, but would reduce the 

number of juveniles or patches sampled. 

The final power analysis measures the impact of ignoring ghost patches and unassigned juveniles when 

fitting kernels. Not including these populations has a negative effect on estimator performance – specifically, 

it causes large underestimates – particularly when fewer individuals were sampled, and for short dispersers 

(Figure 4). In conditions when the inclusion of unsampled patches produced accurate and precise estimates 

of the dispersal kernel (i.e., 5,000 individuals sampled across 30 reefs), ignoring the effects of unsampled 

adults meant that the 95% confidence intervals no longer enclosed the true value. 

 

Discussion 

Our power analyses demonstrate that, when fitting dispersal kernels and estimating dispersal distance, it is 

essential to account for the presence of ghost patches and unsampled adults. Fitted relationships between 

distance and dispersal strength that do not consider these adults, and particularly direct fits of kernels to 
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assigned juveniles, are likely to be inaccurate. Our results indicate that to accurately characterise a dispersal 

kernel using parentage analyses, researchers should ideally collect at least 5,000 samples from around 10 

patches. The samples should be allocated as evenly as possible between adults and juveniles, while ensuring 

that at least 5% of the adults on each patch are sampled. While quantitatively useful for planning future 

estimates, many of our conclusions are qualitatively unsurprising. For example, greater total sampling effort 

produces better quality fits, as does sampling larger proportions of the adult population on each reef. Other 

conclusions were less immediately obvious. For example, we show that total effort is best distributed 

relatively equally between adults and juveniles. However, a strong emphasis on adults would result in a 

higher proportion of assignments, which could plausibly have given better estimates of the kernel. Sampling 

is also best concentrated on a relatively small number of sites compared to the dispersal ability of the 

species, greatly increasing the likelihood of positive assignments. However, it was also intuitively possible 

that an intermediate number of patches would have performed best, since this would have given a broader 

cross-section of the kernel shape, including the tail. 

On the basis of these results, only some of the currently available parentage datasets are powerful enough to 

provide reasonably accurate estimates of species’ dispersal kernels (Table 1). While some studies have 

sampled in excess of 10% of the adults (Saenz-Agudelo et al. 2011; Almany et al. 2013), others are much 

lower or unknown (Christie et al. 2010; D’Aloia et al. 2015). Many have achieved sample sizes in excess of 

5000 (D’Aloia et al. 2015), but others have been based in very limited sampling (Christie et al. 2010; 

Harrison et al. 2012). While our results show that current datasets are large enough to accurately characterise 

dispersal kernels, this is only true if managers apply appropriate fitting methods. In particular, we focus on 

two improvements to previous approaches: first, we incorporate unassigned juveniles, both by including the 

influence of ghost patches, and by correcting for unsampled adults on partially sampled reefs. Although 

these factors are understood to be important (Beerli 2004; Jones et al. 2005a; Wang 2014), they have not yet 

been incorporated into kernel estimators for species in coral reef ecosystems, where both are ubiquitous. 

Second, we acknowledge that the juveniles in parentage datasets are sampled after post-settlement density 

dependence has occurred. As a result, the proportion of dispersers who travel from patch i to patch j 

(dispersal: the predictions of a kernel) is very different the proportion of juveniles on patch j who can be 

assigned to adults on patch i (recruitment: the observations of a parentage analysis). This difference between 

dispersal and recruitment was highlighted by Burgess et al. (2014); our results (e.g., Supplementary Figure 

S1) demonstrate that the difference must also be taken into account when fitting dispersal kernels. 

Although our method includes more factors than previous efforts, it nevertheless makes simplifying 

assumptions about the processes that generate parentage data. First, we assume that parentage assignment is 

completely accurate, but the allocation error of parent-offspring relationships for reef fish species has been 

estimated at <5% for false-positives, and <1% for false-negatives (Harrison et al. 2012). While very low, 

these mis-assignments will lower the precision of our estimates. Moreover, the amount of sampling effort 

directed at the adult populations will affect these rates (Harrison et al. 2013b; Christie 2013; see: Harrison et 

al. 2013a) independent of our modelled effects of sample size on precision. These facts should be 

incorporated into the fit statistic. The likely result will be an increase in the uncertainty of the estimates but 
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not their bias, and a greater emphasis on sampling parents than is current seen in our results. Second, the 

estimator assumes binomial sampling with replacement, implying that the settlement pool is much larger 

than the number of settlers, and that the number of juvenile samples is a small proportion of the total number 

of juveniles. Larger proportions would require a different sampling model, and some estimate of the total 

number of settlers and juveniles.  Third, we assume a great deal of spatial homogeneity in a series of key 

dispersal processes: mortality in the pelagic environment and upon settlement; adult density and fecundity; 

and the strength of density dependence. Such assumptions are probably incorrect in most ecosystems, 

although evidence is generally scarce. For reef fish species, each of these processes is thought to vary in 

space, and/or with the origin of the dispersers (Ruttenberg et al. 2005; Sponaugle & Grorud-Colvert 2006; 

Burgess et al. 2013b; Hixon & Webster), although the amount and patterns of variation are unknown for 

almost all species in almost all locations. Our assumptions of homogeneity therefore reflect data limitations. 

Finally, our estimator only predicts proportional dispersal kernels, rather than the absolute number of 

spawned individuals who travel a given distance. The latter dispersal kernels cannot be constructed without 

additional information – specifically, estimates of settlement numbers before density-dependent mortality 

occurs – a very difficult quantity to measure (Almany & Webster 2006). 

Each of these assumptions and simplifications could be corrected with alterations to the estimator, if 

appropriate data could be collected. However, a much broader concern is the applicability and utility of 

kernel descriptions of dispersal in ecology. This is a particular concern for coral reef fish, whose ecology is 

governed by obligate dispersal, and which are highly dispersive species in an advective and turbulent 

environment. Kernels use smooth probability distributions, which essentially assume that the dispersal 

process is homogeneous and temporally-consistent. Propagules radiate out from each natal patch in a 

spatially-invariant and isotropic pattern; where advection is included, it is modelled as a consistent 

displacement of this smooth pattern (Almany et al. 2013; D’Aloia et al. 2015). The strength of dispersal to 

nearby patches is determined entirely by the distance between them, but in reality the density of habitat 

patches will influence dispersal, as locomotive individuals choose between different settlement options 

(Gerlach et al. 2007), or choose to delay settlement in the hope of finding more suitable habitat. Importantly, 

biophysical models of larval dispersal, based on a complex understanding of oceanographic processes and 

forced and validated by extensive data, predict dispersal patterns that are highly variable in both space and 

time, at multiple scales (James et al. 2002; Cowen 2006; Bode et al. 2012). It is possible that biophysical 

dispersal – if averaged over a sufficiently long timespan – approaches a smooth kernel (Cowen & Sponaugle 

2009), and that long-term management decisions can be based on such time-averaged descriptions of 

dispersal. However, it is currently unclear whether coral reef fish dispersal in particular, and ecological 

dispersal in general, can be accurately described using dispersal kernels. On the other hand, the inaccuracy of 

kernel descriptions of dispersal may not automatically preclude them being useful for management. If 

smooth kernels capture essential elements of dispersal dynamics – for example, the mean distance travelled – 

then decisions based on these imperfect descriptions may still satisfy management objectives if they respond 

primarily to mean dispersal distance (Runge et al. 2011; Moore & Runge 2012). That is, kernels may not 
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accurately capture all the processes of dispersal, but they may reflect enough of the underlying dynamics to 

plan marine reserve networks (HALPERN et al. 2006), or manage fisheries (Bode et al. 2016). 

The contrast between the biophysical  and kernel descriptions of dispersal therefore creates an important 

challenge for spatial ecologists and conservation biologists. Mechanistic, biophysical models of dispersal are 

almost certainly more accurate than the kernel-based descriptions, and explicitly include factors (e.g., spatial 

variation; temporal fluctuations) that are known to fundamentally alter ecological processes and conservation 

management (Chesson & Warner 1981; Amarasekare 2003; Berkeley et al. 2010). However, most ecological 

(Bode et al. 2011; Okubo & Levin 2013), evolutionary (Skellam 1951; Levin et al. 2003; Nathan 2006) and 

management theory (Hastings & Botsford 2003; Neubert & Parker 2004; Arim et al. 2006; White et al. 

2008; Botsford et al. 2009), and almost all of our spatial planning tools (Moilanen & Wintle 2006; 

Lehtomaki et al. 2009; Carroll et al. 2010; Laitila & Moilanen 2013), are based on dispersal kernels, rather 

than connectivity matrices (the output of biophysical models). These two descriptions of dispersal must be 

reconciled, or the simpler, kernel-based description must be refuted. This is especially true for the 

understanding and management of reef fish biodiversity, where dispersal plays such a pivotal role in 

demography (Cowen 2002; Bode et al. 2006), community dynamics (Salomon et al. 2010; Bode et al. 2011), 

and spatial management (Hastings & Botsford 2003; Almany et al. 2013; Green et al. 2014). Our 

development and testing of accurate dispersal kernel fitting methods is an essential step in this process. 
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FIGURES AND TABLES 

 

Figure 1: (A) Location of the reefs on the Great Barrier Reef, Australia, used for the power analysis simulations. Red 

polygons exemplify sets of 20, 40, and 60 reefs (from north to south) used to simulate parentage data and fit dispersal 

kernels. Inset panel shows the scale of the two dispersal kernels used for the power analyses. (B) Location of reefs in 

the Keppel Islands group, for the empirical fitting example. Green polygons indicate reefs; grey polygons are islands. 

Blue lines indicate larval exchange between reefs that were identified by parentage (directionality not shown). (C) Best-

fit parameterisations for four larval dispersal kernel shapes. The Ribbens kernel (95% confidence intervals shaded in 

green) provided the best fit to the data. 
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Figure 2: Accuracy of the kernel estimator for three different sampling intensities: low (750 individuals across 20 
patches); intermediate (2,400 individuals across 40 patches); and high (6,000 individuals across 60 patches). Error bars 
enclose 95% of the power analysis simulations. Shaded areas indicate the results of fitting dispersal kernels directly to 
the distances travelled by assigned juveniles (areas enclose 95% of the simulations). Left hand results for each sampling 
intensity are fitting the short-distance (5 km) disperser; right hand bars are fitting the long-distance (15 km) disperser.  
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Figure 3: Accuracy of the kernel estimator for different allocations of sampling effort, measuring mean dispersal 

distance (y-axis). Different panels show the effect of distributing total sampling effort in different ways between adults 

and juveniles (A-B), and among a different number of reefs (C-D); and the effects of sampling larger proportions of the 

adult population (E-F). Colours show different total sampling intensities (legend in panel F, for clarity, not all are 

shown in each panel). Panels in the left column (A,C,E) are for the short-distance (5 km) disperser; the right column 

(B,D,F) shows the long-distance (15 km) disperser. Dashed line indicates the true mean dispersal distance. All error 

bars enclose 95% of the simulations. Numbers indicate the percentage of simulations where the true kernel shape was 

correctly identified. 
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Figure 4: Effect of incorporating partial sampling (unsampled adults, ghost populations, and unassigned juveniles) into 

the kernel estimator. Black lines show results for the estimator that includes partial sampling; grey lines show results 

when the estimator ignores partial sampling. Numbers denote the percentage of simulations where the kernel shape was 

correctly identified. Dashed line shows the true mean dispersal distance for the short-distance (A) and long-distance (B) 

disperser; error bars enclose 95% simulated parentage datasets. Results are shown for four levels of total sampling 

effort, distributed evenly between adults and juveniles across 30 reefs. 
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Parentage analysis 
study 

Sampling 
scale 

(approx.) 

Adults  Juveniles  Best-fit kernel 95% 
Confidence 

intervals Total # Sites Total # Sites Kernel  m ln(k) 

P. maculatus 
Keppels Island Group, 

Australia 
30 km 

466 
(30%) 

19 
493 

(58; 12%) 
19 

Laplacian 
 

12.2 
km -2.5 5.9 – 71.3 

km 

Elacatinus lori 
Carrie Bow Cay, Belize 

41 km 
3,033 
(3%) 

30 
4,122 

(120; 3%) 
30 

Laplacian 
 

2.8 
km -1.02 2.7 – 2.9 km 

P. areolatus 
Manus Island, PNG 

55 km 
416 

(43%) 
1 

782 
(76; 10%) 

66 Ribbens 14.5 
km -3.4# 6.4 – 26.4 

km 

Amphiprion percula 
Kimbe Bay, PNG 

50 km 
506 

(100%) 
1 

469 
(122; 26%) 

4* N/A N/A N/A N/A 

Stegastes partitus  
Exuma Sound, Bahamas 

140 km 
314 

(N/A) 
11 

437 
(2; <1%) 

7 N/A N/A N/A N/A 

A. polymnus 
Bootless bay, PNG 

30 km 
452 

(100%**) 
8 

491 
(100; 20%) 

8 N/A N/A N/A N/A 

 

Table 1: Details of case studies used to define parameter ranges. All values are taken from the references or their 

supplementary information. Juvenile sample column indicates number of samples, with the number and percentage of 

parentage assignments in parentheses. Adult column shows the number and estimated percentage of the adult 

population sampled. The final column shows the estimated accuracy of each dataset, measured with 95% confidence 

intervals, if the methods described in this paper were applied. *Each site in the Kimbe bay dataset contained multiple 

locations that other studies would have classified as sites. ** Except for one site, of which 50% were sampled. #We 

assumed that both juveniles and adults were sampled from the same set of patches. PNG = Papua New Guinea. 
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