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Abstract 

The similarity property principle states that similar compounds have similar properties. In 

this study, we demonstrate that validity this principle holds well when the drug targets are 

protein domains. We leverage the similarity property principle to explore the druggability 

of CATH-FunFams, a type of protein domain and we use the associations between drugs 

and CATH-FunFams to explore drug polypharmacology by considering how the drugs’ 

pharmacological effects arise from the molecular targets they interact with. Our results 

demonstrate that drug protein interactions are mediated by drug-domain interactions and 

that CATH-FunFams provide a reasonable annotation level for drug-target interactions, 

opening a new research direction in target identification. 
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Author Summary 

Similar drugs tend to target the same proteins and therefore tend to have the same 

biological action. In this work we assess this general trend, the Similarity Property 

Principle, and use it to investigate the potential of CATH Functional Families, a structurally 

and functionally coherent protein domain definition, as drug targets. We show that the 

interactions between drugs and their targets are mediated by these Functional Families, 

and that they provide a useful mean to identify new drug targets.   
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Introduction 

We are facing the so called "data deluge" in almost every aspect of scientific research. At the 

same time, we witness the increasing gap between the amount of raw biological data 

available and processed biological information, as well as the gap between this biological 

information and the actual new knowledge [1]. The concept of "dark matter" illustrates our 

current situation: only a small part of the available data has been integrated into new 

knowledge [2]. Systems approaches aim to cover this gap, leveraging data from disparate 

"omics" analyses to build network (and other) models for analysing and predicting drug 

action [3,4], and aim to develop tools to uncover new knowledge from this growing "dark 

matter" [5]. Such approaches have highlighted the potential limitations of viewing drug 

action from the perspective of a single target and have provided some support for the need 

for multi-target approaches in drug discovery [4,6,7]. The field provides a growing body of 

evidence against two principles that guide drug discovery: (i) compounds specifically target 

one particular and critical biological agent (often a protein); and (ii) this molecular target 

is involved in one function, namely a critical point or step in a disease process. Therefore, 

drugs act as "magic bullets" acting on one molecular target, affecting one biological process 

and thus effecting a cure with few other consequences. However, many drugs bind to 

multiple targets and molecular targets are involved in multiple processes and perform 

multiple biological functions [8,9]. Hence the ability of drugs to bind multiple molecular 

targets and to affect multiple biological processes (a characteristic referred to as 

polypharmacology) should not be considered as an exception [6,10,11]. 

Polypharmacological behaviour has a mechanistic aspect, in which a drug binds several 

molecular targets, and a functional aspect in which the drug perturbs several biological 

processes. It is often recognised as an unintended phenomenon [12] and the rational 
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design of polypharmacological ligands is less frequently undertaken and remains a 

challenging task [6,13]. A major difficulty is the analysis of the relationship between the 

structure and the biological activity of molecules interacting with different biological 

targets (structure-activity relationship; SAR) along with 

pharmacokinetic/pharmacodynamic modelling, in which drug concentrations (and the 

corresponding modulated target spectrum) vary over time. 

The similarity property principle (which states that similar compounds should have similar 

biological activity) considers molecular similarity as a guide to the biological action of a 

small molecule [14,15] and is at the core of any quantitative structure-activity relationship 

(QSAR) and chemogenomic approaches [16]. The general validity of this principle has 

however been questioned on the basis of a systematic exploration of the relationships 

amongst drug structures and their targets [17,18]. 

A druggable target is generally a protein with activity that can be modulated by a drug 

[19], i.e. a target is the mediator of a drug's activity. The activity of a compound can be 

considered at different levels in the biological hierarchy, ranging from macromolecules, to 

organelles, cellular or tissue types, organs, even at the species level; nevertheless, the 

biological activity of a small molecule is the result of its interaction with one or several 

biological targets at the molecular level. Target identification is a crucial task when 

considering application of polypharmacological compounds and it is important to identify 

synergistic combinations of targets, rather than single targets [4]. This analysis is often 

complicated by the fact that many binding events will be silent with respect to phenotypic 

modulation and emergent drug efficacy. 

Most human targets are proteins that are composed of more than one domain [20,21], but 

we lack a unified definition of protein domain. Under the accepted and general definition 
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that a protein domain is a functional and structural module within a protein, there are 

several ways to identify and classify protein domains [22]: classification based on structure, 

SCOP [23] and CATH [24]; classification based on sequence, Pfam [25]; and function 

oriented domain classifications such as the functional families classified in CATH, CATH-

FunFams [24,26]. In general terms, domains are compact and functional structural units 

that can be considered the evolutionary and structural building blocks of proteins. Since 

domains are units of structure [27] and there is a limited repertoire of domain types [28], 

they are combined to form different proteins with different overall functions [29]. 

Furthermore, protein-protein interactions are dominated by discrete domain-domain 

interactions [30]. Recent research suggests that protein domains mediate the interactions 

between a drug and its targets [16,31,32]: protein domains are a major factor in the 

polypharmacology of approved and experimental drugs [33]; binding sites tend to lie 

completely in a domain or at the interface of multiple domains [32]; there are privileged 

druggable protein domains [34]. These results support the idea that a particular structural 

domain can be the druggable entity in a protein target. Since proteins have a modular 

structure and domains are repeatedly found in different proteins, the reason why a 

compound binds different protein targets can be that they share a domain that is the actual 

target for the compound. Furthermore, since protein domains determine protein function, 

the association of drugs with domains will inform on the biological processes they perturb, 

offering a rich perspective of drug polypharmacology. 

In this study, we assess the pharmacology of these structural and functional building blocks 

of protein targets.  We leverage the similarity property principle to show that protein 

domains are the druggable entities within targets and direct the biochemical interactions 

and biological functions of drugs. Furthermore, we show that these units of protein 

structure and protein function explain the polypharmacology of approved drugs, enabling a 
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joint exploration of drugs pharmacological effects, and their mechanisms of action –i.e. the 

domains they bind. 

Results 

Similarity property principle 

The similarity property principle (SPP) establishes that drugs with similar molecular 

structure are likely to have the same properties. For clarity, these properties are the modes 

of action and the mechanisms of action. The mode of action of a drug describes the 

functional changes produced by the drug on a living system [35], that is the drug's 

pharmacological effect, while the mechanism of action usually refers to the targets through 

which a drug produces its pharmacologic effect [36]. 

Similar drugs have similar mechanisms of action 

We considered two different types of protein domain definitions: Pfam-A and CATH-

FunFams to investigate the relationship between drug similarity and similarity in the 

mechanism of action. 

Fig 1 shows the similarities of the interaction profiles of drugs as a function of their 

molecular similarity, for the three types of molecular targets analysed (proteins, Pfam-A 

domains and CATH-FunFams). High values of the Jaccard association index indicate that a 

pair of drugs have similar interaction profiles, thus where the association index = 1, the 

two drugs have the same targets. For proteins and CATH-FunFams similar drugs (i.e. Tc ≥ 

0.65, see Supporting Information) tend to have similar interaction profiles, that is they tend 

to bind the same targets, while different drugs show different interaction profiles. For 

Pfam-A domains the interactions profile similarities are relatively flat, with no marked 
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difference based on drug similarity showing low variation between different and similar 

drugs. 

This is expected, as related domains in many different proteins would collapse into a single 

Pfam-A family and result in higher Jaccard values. To a lesser degree, this applies to CATH-

FunFams, which on average show more intermediate Jaccard values. This is because CATH-

FunFams tend to separate domains according to their functional similarity and multi-

domain context. 

Similar drugs are involved in the same biological processes 

Gene Ontology (GO) is a comprehensive vocabulary, representing molecular functions, 

biological processes and cellular locations that has become the standard to describe and 

annotate the cellular functions of genes and proteins [37,38]. We used the available GO 

annotations of proteins and CATH-FunFams as a proxy of the drugs modes of action. 

Although GO Biological Process (GOBP) annotations do not represent proper modes of 

action, they are a useful approximation of the biological processes that are perturbed by the 

action of drugs. To our knowledge there is no GO annotation of Pfam-A families, thus we 

performed the analysis of the biological processes affected by drugs with Proteins and 

CATH-FunFams. We produced datasets of drug-GOBP associations for CATH-FunFams and 

proteins to evaluate the similarity property principle in terms of the drugs mode of action. 

Fig 2 shows that GOBP terms are correlated with drug molecular similarity, both in the 

protein (left panels) and the CATH-FunFam levels (right panels). We observe the same 

behaviour in the drug-GOBP association as observed above in the analysis of drug-targets 

associations, although the similarity property principle is more evident with GOBP inherited 

annotations. Drugs with similar molecular structure perturb the same biological processes, 

while different drugs tend to act on different biological processes. 
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Our data complies with the similarity property principle, regardless of how we measure the 

molecular similarity between drugs and how we calculate the similarity of their target 

profiles (see S4 Fig and S5 Fig). This illustrates that the tendency of similar drugs to have 

the same targets and functions is an inherent property of drugs and targets. Our drug-

domain associations are almost as good as the known drug-protein associations; therefore 

we consider it as a validation of our drug-domain associations, and further analysed them 

to study drug polypharmacology. 

Drug polypharmacology through protein domains 

Led by the idea that the modes of action of a drug (i.e. its pharmacological effects) can be 

understood through its mechanisms of action (i.e. its targets), we analysed the modes of 

action that stem from the drug’s associations with proteins and with CATH-FunFams. We 

defined the polypharmacology potential of each drug as the number of different GOBP 

terms the drug is associated with, as an approximation of the drugs capacity to perturb 

biological processes and thus get an insight into the functional aspect of drug 

polypharmacology. Fig 3 suggests that the association of drugs with CATH-FunFams unveils 

a polypharmacology potential that is not evident from the annotation of drugs with protein 

targets. It is therefore possible that polypharmacology at the domain level can be used as an 

indicator to flag drugs affecting multiple biological pathways. 

We further looked into the relationship between the mechanistic and functional aspects of 

drug polypharmacology by analysing the correlation between the number of targets 

(proteins or CATH-FunFams) and the number of GOBP terms a drug is associated with. 

There are two possible scenarios: drugs can affect multiple biological processes because 

they target multiple proteins (or protein domains) which are associated with specific 

biological processes, or they can alter several biological processes because they have targets 
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that are involved in multiple functions. Fig 4 shows that the latter is the case, drugs target a 

few proteins and CATH-FunFams, which are involved in multiple biological processes, to 

affect several functions. This also implies that even drugs specific to a single target can have 

a considerable functional polypharmacology potential. 

This effect is more marked for CATH-FunFams than for proteins. This means that drugs 

tend to have less domain targets than protein targets, which is a consequence of the multi 

domain architecture of proteins (a drug that targets several proteins is associated with the 

common domain in these proteins). Furthermore, CATH-FunFams are annotated with more 

functions than proteins, which is a consequence of the limited repertoire of domains that 

combine to form proteins. The annotation for a single protein might be informative for one 

process, but the domain within that protein that binds the drug occurs in other paralogous 

protein contexts that are used in several other biological processes, and therefore has a 

richer functional annotation. 

Mapped CATH-FunFams contain drug binding sites 

As outlined in Materials and Methods, we mapped small molecule binding to CATH-

FunFams, aiming to identify the CATH-FunFam domain that mediates small molecule 

binding. To evaluate our mapping, we examined the resulting set of CATH-FunFams for 

potential binding sites. That is, if these CATH-FunFams mediate drug action at the level of 

protein domains, they should contain drug-binding sites. 

Out of the 70 CATH-FunFams identified as drug targets by our drug-domain association 

scheme (see S1 Table), only 29 have a crystal structure in PDB. For comparison, we also 

assembled a set of CATH-FunFams that have a crystal structure but were not among the 70 

CATH-FunFams resulting from our mapping. We found that 90% of the 29 CATH-FunFams 
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our mapping identified as targets have cavities where binding of prodrugs or drug-like 

molecules is possible. Out of a set of 5054 CATH-FunFams not identified as drug targets 

and with defined structure, only 51.4% have cavities capable of binding drug-like molecules 

Thus, when comparing the set of CATH-FunFams that resulted from our mapping with all 

other CATH-FunFams, we found that the former has a greater proportion of CATH-

FunFams with druggable cavities (p-val = 6.2⋅10-4, Fisher exact test). This suggests that 

the set of CATH-FunFams we identified using our mapping is enriched for potential drug 

targets. 

The high structural and functional coherence of the CATH-FunFams enables us to explore 

the idea that members of a CATH-FunFam protein family are potential targets of the drug 

that is associated with that CATH-FunFam. We analysed four cases of drugs that: (i) have 

been associated with CATH-FunFams, (ii) the CATH-FunFams associated to the drug 

include human proteins among their members, and (iii) are present in the PDB as drug-

target complexes. We selected four examples of complexes between drugs and CATH-

FunFams shown in Fig 5. All 5, 8, 62 and 494 structural domains within the CATH-

FunFams associated with the drugs: exemestane, epinephrine, vorinostat and 

acetazolamide, respectively, were pairwise aligned with SSAP and superposed. The drug-

binding residues inferred onto members in each of the FunFams are highly conserved in 

their amino acid residue type and structural location. The mean RMSD for the aligned 

domain pairs across all four families is 0.64Å ± 0.62, illustrating a high structural 

coherence. 

Despite the limited structural data, our analysis shows a high structural conservation in the 

binding sites of all the proteins comprising CATH-FunFam, as illustrated by the examples 
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shown in Fig 5. Therefore, our analysis suggests that the protein members of a CATH-

FunFam are potential targets of the drug that has been associated with that CATH-FunFam. 

Discussion 

Drug-domain associations from drug-target data 

The design of new drugs is often based on the development of molecules that are similar to 

previously known drugs. They are screened against a limited number of proteins selected 

on the basis of safety concerns and phylogenetic relationships with the primary targets 

relevant for a particular drug discovery project. This often results in biased drug target 

datasets that could affect our investigation into the application of drug polypharmacology 

through drug-domain associations. We show that the drug-target data compiled from 

ChEMBL, one of the most relevant resources of bioactivity data for drug-like molecules, is 

not substantially biased towards phylogenetically close proteins (see Supporting 

Information). Therefore, the association of drugs with protein domains is a consequence of 

the modular structure of proteins rather than the result of a bias of drugs to target proteins 

with a particular domain composition. 

Mechanisms of action and modes of action 

In this study, we have demonstrated that similar drugs tend to affect the same biological 

processes (same mode of action) and tend to target the same proteins (same mechanism of 

action), complying with the similarity property principle. Furthermore, when we consider 

CATH-FunFams as drug targets this observation is still apparent. We propose that this is 

due to the natural grouping of domain targets into families of evolutionary relatives sharing 

similar structural and functional properties. Our results suggest that the similarity property 

principle applies well to our drug-domain association scheme, using CATH-FunFams, and 
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the idea that protein domains are the drug targets within proteins. We showed that Pfam-A 

domains are less suitable for applying this principle. This is largely because these are much 

broader families which sometimes group together relatives having rather different 

structures and functions. 

We would like to emphasize that whilst we have demonstrated that the similarity property 

principle applies to our set of drugs as a whole, there are many examples of structurally 

similar drugs that do not share similar target profiles and, vice-versa, structurally dissimilar 

drugs that have the same targets. Others have reported this already and, for this reason, 

were led to challenge the similarity property principle for approved drugs. It is difficult to 

compare these earlier studies and the current study directly as the former used approved 

and experimental drugs and target annotations from DrugBank [17], while in this study, 

we examine approved drugs and target annotations derived from experimental data in 

ChEMBL. Moreover, while we use the full structure of drugs for our pairwise similarity 

analysis and a statistically significant Tc similarity threshold, previous studies transformed 

drug structures to scaffolds and evaluated molecular similarity in terms of matching 

substructures and topological equivalence. Finally, we evaluate the similarity of target 

profiles using association indices while other studies use another statistic, AOF, to measure 

the similarity of target profiles. All these factors may contribute to the differences in our 

observations and conclusions. Nevertheless, with regard to generality, we provide in this 

study a strong case for the similarity property principle, which we evaluate on the level of 

individual proteins, and evolutionary meaningful groupings based on CATH-FunFams and 

Pfam-A domains. 

Drug promiscuity and polypharmacology 
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Our analysis shows that drug promiscuity is greatest on the level of individual proteins, and 

much reduced on the level of protein domains. This is not unexpected, because the three-

dimensional structure of protein domains is largely conserved, providing a shared 

recognition element for small molecule binding. We have previously observed this using a 

probabilistic drug-domain mapping [33], and using a heuristic small molecule-domain 

mapping [32]. In this study, we further show that FunFams provide a useful abstraction to 

rationalise drug promiscuity. This is because, as mentioned already, CATH-FunFams cluster 

together proteins sharing similar sequence patterns reflecting similar structures and 

functions. Structural and functional similarity of the domains within a CATH-FunFam tends 

to be preserved even when the domain occurs in different multi-domain contexts (i.e. 

different proteins). Hence, CATH-FunFams capture the multiple biological functions 

affected by promiscuous drugs.  

Nevertheless, we find that 41% of drugs keep their multi-target behaviour even when the 

target considered is a protein domain, as in the case of the CATH-FunFams (see S1 Table). 

Roughly half of them (47% of drugs with more than one CATH-FunFam target) are 

associated with two or three CATH-FunFams that belong to the same CATH superfamily. 

This may be due to the conservative nature of clustering domain sequences into CATH-

FunFams. The functional classification protocol used to cluster sequences into CATH-

FunFams applies rather cautious and generic thresholds regardless of the superfamily and 

this can sometimes result in relatives with very similar functions being assigned to separate 

CATH-FunFams in some superfamilies. In such cases where the functions of a CATH-

FunFam can be defined in more specific terms, it seems clear that the over-splitting of a 

functional family might overlook its drug binding function. 

CATH-FunFams as drug targets 
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We have provided fundamental support to the idea suggested by previous research that 

protein domains provide a useful level of abstraction for a systematic understanding of 

small molecule bioactivity and drug action [16,31-33,39,40]. We examined further this idea 

to test whether protein domains can be druggable and we show in this work that CATH-

FunFams have the potential to be the druggable entities within drug targets. Moreover, 

because of their high structural and functional coherence, our assessment of the 

druggability of CATH-FunFams suggest that the relatives within a CATH-FunFam are 

potential targets of the drugs that are associated to that CATH-FunFam.  

In summary, our work supports the idea that drug protein interactions are mediated by 

drug-domain interactions. The identification of CATH-FunFams as a reasonable annotation 

level for drug-target interactions opens a new research direction in target identification 

with potential application in drug repurposing. 

Materials and Methods 

Gathering drug-target datasets 

We compiled an initial drug-protein target dataset with 531 drugs and 557 human targets 

by querying ChEMBL release 20. ChEMBL allows us to define the drug-target relationship 

based on the concentration at which the compound affects the target, providing us a way to 

restrict our dataset to biologically meaningful drug-protein associations. We considered a 

drug as a small molecule with therapeutic application (THERAPEUTIC_FLAG =1), not 

currently known to be a pro-drug, reporting a direct binding interaction with single protein 

(ASSAY_TYPE = 'B'; RELATIONSHIP_TYPE = 'D'; TARGET_TYPE = 'SINGLE PROTEIN'), 

with a maximum phase of development reached for the compound of 4 (meaning an 

approved drug). In order to exclude non-specific interactions between small molecules and 
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biological targets we impose the filter that the activity against a human protein target 

should be stronger than 1 μM, where activity includes IC50, EC50, XC50, AC50, Ki, Kd, 

pchembl_value ≥ 6 [41]. 

All data processing, statistics analysis and results plots were produced using the R 

computing environment [42] and the R library ggplot2 [43]. 

Domain family resources 

We used two different definitions of protein domains: Pfam-A domains from Pfam release 

27.0 [41], and CATH-FunFams from CATH-Gene3D v12.0 [26,42]. Pfam-A entries in the 

Pfam database are based on manually curated sequence alignments and can be used to 

recognise family members even for remote phylogenetic relationships. CATH-Gene3D is a 

large collection of CATH [24] domain predictions for genome sequences ~20 million [43]. 

CATH is a protein domain classification system that makes use of a combination of manual 

and automated structure- and sequence-based procedures to decompose proteins into their 

constituent domains and then classify these domains into homologous superfamilies 

(groups of domains that are related by evolution); domain regions in CATH are more 

clearly defined than in other domain resources by the use of structural data which is more 

highly conserved than the sequence. CATH superfamilies map to at least 60% of predicted 

domain sequences in completed genomes using in-house HMM protocols –and as high as 

70-80% if more sophisticated threading-based protocols are used [44]. CATH-Gene3D is 

the starting point to derive functionally coherent families by clustering domain sequences 

within a CATH superfamily using an in-house protocol [26]. The most recent version of this 

method (FunFHMMer) distinguishes functional families on the basis of differences in 

specificity determining residues [45].  CATH-FunFams group together relatives likely to 
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have highly similar structures [46]and functions and have been highly ranked in the CAFA 

international Critical Assessment of Functional Annotation [47]. 

We used the heuristic developed by Kruger et al. [32] to map drugs in ChEMBL to protein 

domains, to obtain our drug-domain datasets from the drug-protein data. 

Molecular similarity calculation 

We retrieved the chemical table representing the chemical structure record of 2015 

approved drugs (regardless of their targets) from ChEMBL release 20 and we obtained their 

MACCS molecular fingerprints. We computed each pairwise Tanimoto similarity coefficients 

(Tc) using the RDKit package RDKit: Cheminformatics and Machine Learning Software; the 

Tc similarity quantifies the fraction of features common to the molecular fingerprints of the 

pair of drugs to the total number of features of the molecular fingerprints of each drug in 

the pair [48]. 

We performed a significance analysis of the molecular similarity for our set of multi-target 

drugs, in order to choose a threshold Tc which will define a statistically significant level of 

similarity between any pair of drugs in our dataset. Based on the shape of the Tc curves 

(see S1 Fig), we assumed that the data fit a normal distribution. For all the drugs we could 

gather from ChEMBL (2015 drugs), we computed the Tc similarity between each drug and 

the remaining 2014 drugs. From these distributions of Tc values, we extracted the 

cumulative distribution function 𝐹(𝑡) that gives the probability of having a similarity less or 

equal than a given Tc value. A significance level (p-value) defined as 𝑝 = 1 − 𝐹(𝑡) was 

assigned to every drug for each Tc value, according to Maggiora et al. [14]. 

Measuring pairwise associations of drug interaction profiles 
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We used the Python module Networkx to transform each dataset into a bipartite graph that 

connects drugs with targets (protein or domains) in order to compute the similarity of the 

interaction profiles of any pair of drugs. For each drug in the bipartite graph, its interaction 

profile is the set of targets (proteins or domains) the drug is linked to. We analysed the 

interaction profile similarity between two drugs by means of the Jaccard (𝐽*+) association 

indices, which measure the similarity between the interaction profiles of each pair of drugs 

[49], defined as: 

𝐽*+ =
𝑛* ∩ 𝑛+
𝑛* ∪ 𝑛+

 

where  𝑛* is the set of targets of drug 𝑎  and 𝑛+  is the set of targets of drug  𝑏. 

GO Functional annotations 

We produced two datasets of drug-GOBP associations corresponding to each type of target 

with available GO annotation, by inheriting the GOBP annotations of proteins and CATH-

FunFams to the drugs associated with them. We extracted GOBP terms for protein targets 

from the Gene Ontology Annotation (UniProt-GOA) Database [50]. To ensure we were 

using high quality annotations we restricted to manually curated annotations derived from 

experimental evidence in published scientific literature. Protein relatives within a functional 

family (CATH-FunFam) are likely to share highly similar functions. Therefore, CATH-

FunFams are annotated with GO terms probabilistically in order to ensure their functional 

coherence. We obtained the most significant GOBP terms annotated to CATH-FunFams 

(Benjamini-Hochberg FDR corrected p-val 0.05). 

The semantic similarity among GOBP terms was evaluated with the graph-based algorithm 

described in [51] and implemented in the R package GOSemSim [52]. Two GOBP terms 

were defined to be different if their semantic similarity was below 0.4. 
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Druggability screening 

We used the Fpocket platform [53] to detect cavities in the structure of selected domains 

that can bind drug-like molecules. Fpocket is a fast protein pocket prediction algorithm that 

identifies cavities on the surface of proteins and ranks them according to their ability to 

bind drug-like small molecules. Thus, Fpocket assesses the ability of a given binding site to 

host drug-like organic molecules in terms of a druggability scoring function described in 

[54]. Fpocket is released under an open source license at fpocket.sourceforge.net. 

Structural alignment 

To explore whether CATH-FunFams associated with drug binding consist of members with 

a similar binding pocket and similar amino acid residues, we looked in detail at four CATH-

FunFams associated with binding the compounds acetazolamide, epinephrine, exemestane, 

and vorinostat. Structural domains from these four different CATH-FunFams were pairwise 

structurally aligned using SSAP [55]. SSAP scores were used to construct a distance matrix 

and maximum spanning tree which was then used to derive a multiple superposition of the 

structural relatives. Data on residues involved in binding each of the drugs of interest were 

extracted from the NCBI IBIS resource [56] using the following PDB IDs as queries: 3ML5 

for acetazolamide; 4LDOA for epinephrine; 3S7S for exemestane; 4LXZ for vorinostat. 

These four PDB IDs were chosen as they were the only PDBs in each CATH-FunFam with 

drug binding information. These drug-binding residue positions were mapped onto the 

other structural domains using the SSAP alignment data. When producing the figures in 

PyMOL (www.pymol.org), the number of redundant structural domains in the 

acetazolamide and vorinostat alignments was reduced to improve clarity. 
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Figures 

 

Fig 1. Correlation of drugs interactions profiles with drugs molecular similarity. Each circle 

is the average Jaccard index for the three drug-target datasets at a given bin of Tc similarity 

(bin size 0.01). The size of the circles is proportional to the number of drug pairs in the 

corresponding Tc bin. The vertical dashed line indicates the drug similarity threshold, Tc = 

0.65 (see Supporting Information). 

 

 

Fig 2. Correlation of drugs inherited GO annotations with drugs molecular similarity. Each 

circle is the average Jaccard index for the inherited GOBP annotations derived from 

proteins (left panel) and CATH-FunFams (right panel) at a given bin of Tc similarity (bin 

size 0.01). The size of the circles is proportional to the number of drug pairs in the 

corresponding Tc bin. 
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Fig 3. Drug polypharmacology potential of approved drugs. Distribution of drug 

polypharmacology potential for the two types of targets with GO annotations measured as 

the frequency of the number of GOBP terms associated to each drug through drug-protein 

mapping and drug-CATH-FunFam mapping. The vertical dashed line indicates the drug 

similarity threshold, Tc = 0.65 (see Supporting information). 
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Fig 4. Correlation between mechanistic and functional polypharmacology. The number of 

GOBP terms of each drug is plotted as a function of its number of targets, for CATH-

FunFam and protein targets. 

 

Fig 5. Conservation of the binding sites within CATH-FunFams. Structural alignment of the 

CATH-FunFams associated with: A) acetazolamide (CATH ID: 3.10.200.10-FF1430), B) 

epinephrine (CATH ID: 1.20.1070.10-FF44570), C) exemestane (CATH ID: 1.10.630.30-
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FF29451) and D) vorinostat (CATH ID: 3.40.800.20-FF2860), and the drug-target 

complexes of these four drugs. The protein domains are all in grey except for the ligand 

binding residues, which have been mapped across the domains, coloured yellow. The drug 

molecules are in black. 
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S1 Appendix. Additional analysis performed on the drug-protein and drug-domain datasets. 

S1 Table. Topology parameters of the bipartite drug-target graphs. 

S1 Fig. Threshold Tanimoto similarity of approved drugs. 

S2 Fig. Structural variability of drugs and bioactive compounds. 

S3 Fig. Fraction of drug targets in each k-core of the domain co-occurrence networks. 

S4 Fig. Association indices with MACCS fingerprints. 

S5 Fig. Association indices with ECFP4 fingerprints. 
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