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Abstract 

Motivation: Accurately identifying binding sites of transcription factors (TFs) is 

crucial to understand the mechanisms of transcriptional regulation and human disease.  

Results: We present incorporating Find Occurrence of Regulatory Motifs (iFORM), an 

easy-to-use tool for scanning DNA sequence with TF motifs described as position 

weight matrices (PWMs). iFORM achieves higher accuracy and sensitivity by 

integrating the results from five classical motif discovery programs based on Fisher’s 

combined probability test. We have used iFORM to provide accurate results on a 

variety of data in the ENCODE Project and the NIH Roadmap Epigenomics Project, 

and has demonstrated its utility to further understand individual roles of functional 

elements. 

Availability: iFORM can be freely accessed athttps://github.com/wenjiegroup/iFORM. 

Contact: shuwj@bmi.ac.cn and boxc@bmi.ac.cn  
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Introduction 

Gene regulation is coordinately regulated by interactions of many transcription factors 

(TFs), many of which bind DNA in the promoters and enhancers preferentially at 

characteristic sequence ‘motif’ that is a short pattern and tends to be conserved by 

purifying selection. Identifying and understanding of these motifs can provide critical 

insight into the mechanisms of transcriptional regulation and human disease. However, 

accurate identification of these motif binding sites is still challenging because a single 

TF will often recognize a variety of similar sequences. 

 

Over the past several decades, many classical algorithms have been developed to 

discovery DNA regulatory motifs. FIMO (Grant, et al., 2011), Consensus(Hertz and 

Stormo, 1999; Stormo and Hartzell, 1989), and STORM (Schones, et al., 2007) have 

unitary function of motif scanner, while RSAT (Thomas-Chollier, et al., 2011) and 

HOMER (Heinz, et al., 2010) provide multiple functions in analysing regulatory 

sequences in general. Table S1 summarized the features of iFORM and these five 

algorithms as motif scanner. Each of these methods has its own merits in identifying 

potential TF binding, however, it is still a critical challenge to integrate superiorities 

and to preclude inferiorities of these complementary methods. Several studies have 

demonstrated that higher accuracy and sensitivity can be achieved by incorporating 

multiple motif discovery programs (Harbison, et al., 2004; MacIsaac and Fraenkel, 

2006; Tompa, et al., 2005), however, this will result in considerable computational 
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overhead for scoring the huge number of discovered motif instances obtained with 

different programs.  

 

We describe incorporating Find Occurrence of Regulatory Motifs (iFORM), a 

software tool for scanning DNA sequence with TF motifs described as position weight 

matrices (PWMs) by integrating five classical motif discovery methods. We used 

Fisher’s combined probability test to convert the resulted p-values obtained from the 

five methods to a χ2 statistic, which follows a chi-squared distribution. We then 

applies false discovery rate analysis to estimate a q-value for each motif instance. By 

systematically assessing the accuracy of prediction performance, iFORM achieve 

higher accuracy and sensitivity relative to five classical algorithms. Although iFORM 

integrated five methods, it is efficient, allowing for scanning sequences at a rate of 

3.5Mb/s on a single CPU. Additionally, we have illustrated the use of iFORM by 

producing high-quality genome-wide maps of the TFBSs for 542 TFs within DHSs of 

133 human cell and tissue types that were generated in the ENCODE Project 

(Consortium, 2012) and the NIH Roadmap Epigenomics Mapping Consortium 

(Bernstein, et al., 2010) in our recent studies. We also demonstrated the utility of 

iFORM to further understand individual roles of functional elements in gene 

regulation and disease based on these maps.  
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Results 

Implementation of iFORM 

iFORM integrated the motif instances identified by five classical algorithms including 

FIMO (Grant, et al., 2011), Consensus(Hertz and Stormo, 1999; Stormo and Hartzell, 

1989), STORM (Schones, et al., 2007), RSAT (Thomas-Chollier, et al., 2011) and 

HOMER (Heinz, et al., 2010) based on Fisher’s method. iFORM was built using C, 

Perl, and Python, and the overview of workflow is illustrated in Fig. S1. To improve 

the efficiency, we extracted the core source code of the function of motif discovery 

from these five algorithms and integrated them in the framework of iFORM, instead 

of just combining the resulted p-values obtained from these algorithms.  

 

iFORM accepts DNS sequences in FASTA format or genomic coordinates in BED or 

GFF formats, and takes as input one or more TF motifs (represented as PWMs) that 

can be collected form an existing motif database or generated from the MEME 

algorithm, or even defined by user self. For each motif instance, iFORM computes a 

χ
2 statistic that obtained by combining p-values resulted from the five algorithms 

using Fisher's method, and converts these statistics to p-values using chi-squared 

distribution. Finally, iFORM used a bootstrap method (Storey, 2002) to estimate false 

discovery rates (FDRs), and reported for each p-value a corresponding q-value, which 

is defined as the minimal FDR threshold at which the p-value is deemed significant 

(Storey, 2003).  
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iFORM outputs a ranked list of motif instances, each with an associated χ2 statistic, 

p-value and q-value. The list is illustrated as an HTML report, as an XML file in 

CisML format (Haverty and Weng, 2004), as a plain text file and as tab-delimited files 

in gff and wig formats suitable for input to the UCSC Genome Browser (Speir, et al., 

2016).  

 

Performance assessment of iFORM 

Since iFORM integrates five classical algorithms based on Fisher’s method, it is 

expected that iFORM can achieve higher accuracy and sensitivity comparing with the 

five methods. To test it, we first examined the CTCF motif instances that are 

identified by these six methods separately. We found that many of the CTCF binding 

sites, which are well annotated by DNase-seq, DGF, and corresponding TF ChIP-Seq 

data in H1 cells, can only be discovered by iFORM, and cannot be detected by other 

five classical methods (Fig. S2A). To systematically assess the accuracy of prediction 

performance for each motif instance, we used receiver operation curves (ROCs) and 

corresponding the area under the curve (AUC) on the “gold-standard” data of six TF 

ChIP-seq data in GM12878 cell provided in a previous study (Pique-Regi, et al., 2011) 

(Fig. 1A and Fig. S). Our results suggest that our method iFORM showed both higher 

sensitivity and specificity than other five classical method.  

 

To further validate the predicated TF binding sites, we used the method presented by 

Roger Pique-Regi et al (Pique-Regi, et al., 2011) to generate the “gold-standard” data 
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for many TF ChIP-seq that were produced from different laboratories and from 

different cells/tissues. Using our newly generated “gold-standard” data of CTCF in 

GM12878 cell, we obtained similar ROCs as presented in Fig. 1A (Fig. 2B). In 

addition, similar ROCs also obtained for the newly generated “gold-standard” data of 

CTCF in GM12878 produced from different labs (Fig. S2B-D), and for the newly 

generated “gold-standard” data of CTCF in other cells (Fig.S2E). Across these 

“gold-standard” data, our iFORM illustrates higher AUCs than other five algorithms. 

These results suggest that iFORM manifested superior performance consistency in 

different laboratories and different cells/tissues and demonstrated state-of-the-art 

performance relative to five existing methods.  

 

Next, we assessed the prediction performance using new “gold-standard” data of other 

109 TF ChIP-seq data produced in ENCODE project (Table S3). iFORM illustrates 

significant higher AUC than those of the five classical methods (Fig. 2D, p-value < 

10-6). Taken together, these results indicate that our novel method iFORM achieve 

higher accuracy and sensitivity comparing with the five classical methods. 

 

Identification of TFBSs with iFORM 

We produced high-quality genome-wide maps of the TFBSs for 542 TFs within DHSs 

of 133 human cell and tissue types that were generated in the ENCODE Project 

(Consortium, 2012) and the NIH Roadmap Epigenomics Mapping Consortium 

(Bernstein, et al., 2010) using iFORM (p-value < 10-18). On average, we obtained 
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approximately 4,470 TFBSs for each TF and for each cell/tissue.  

 

Based on these data, we found that TFBSs were clustered together in the human 

genome, and report the first comprehensive map of TFBS-clustered regions across 

human cell and tissue types. An integrative analysis of these regions revealed a novel 

transcriptional regulation model on the accessible chromatin landscape (Chen, et al., 

2015). Additionally, we investigated the HOT (high-occupancy target) regions, which 

were defined as TFBS-clustered regions with extremely high TFBS complexity. We 

found that HOT regions play key roles in human cell development and differentiation 

(Li, et al., 2016). Furthermore, we explored the association of GWAS SNPs and HOT 

regions, and demonstrate the key roles of HOT regions in human disease and cancer 

(Li, et al., 2015). These findings represent a critical step toward further understanding 

disease biology, diagnosis, and therapy.  

 

Conclusions 

The iFORM presented in this study was designed to incorporate five classical 

regulatory motif discovery methods using Fisher’s method. iFORM is an easy-to-use 

motif discovery tool that achieve higher accuracy and sensitivity by integrating the 

results from multiple motif discovery programs. The iFORM has provided accurate 

results on a variety of data in the ENCODE Project and the NIH Roadmap 

Epigenomics Project in our recent studies, and has been demonstrated its utility to 
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further understand individual roles of functional elements in the mechanisms of 

transcriptional regulation and human disease. 

 

Materials and Methods 

Data sets 

DNaseI Hypersensitivity by Digital DNaseI data were obtained from both the 

ENCODE Project (Consortium, 2012) and the NIH Roadmap Epigenomics Mapping 

Consortium (Bernstein, et al., 2010). Transcription factors by ChIP-seq data were 

obtained from the ENCODE Project (Consortium, 2012). The uniform processing 

pipeline of ENCODE Integrative Analysis Consortium was used to generate the 

uniform peaks of both DNase-seq and ChIP-seq data. The use of these data strictly 

adheres to the ENCODE and Roadmap Epigenomics Consortium Data Release Policy. 

PhastCons were extracted from the hg19 conservation track of the UCSC Genome 

Browser (Speir, et al., 2016). 

 

The position weight matrices (PWMs) of the 542 TFs, corresponding to 796 motif 

models, were collected from the TRANSFAC (Matys, et al., 2006), JASPAR 

(Portales-Casamar, et al., 2010), and UniPROBE (Robasky and Bulyk, 2011) 

databases as described in our previous study. 
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Incorporating find occurrence of regulatory motifs 

iFORM integrates the TF binding sites identified by five classical method including 

FIMO (Grant, et al., 2011), Consensus(Hertz and Stormo, 1999; Stormo and Hartzell, 

1989), STORM (Schones, et al., 2007), RSAT (Thomas-Chollier, et al., 2011) and 

HOMER (Heinz, et al., 2010). For each discovered TFBS, the combined p-values 

obtained from these five methods was calculated using Fisher's combined probability 

test. First, a test statistic is calculated using the formula: 

χ2 � �2�����	
��
�

���

 

where pi are the p-values calculated from the five methods for each TFBS. χ2 follows 

a chi-squared distribution χ2(2*5), thus a combined p-value can be assigned to this test 

statistic. A p-value threshold of enrichment of 10-9 was used for all data sets.  

 

Generation of the “gold-standard” data 

To validate the predicted TFBSs using ROC approach, we applied a similar method 

presented in a previous study (Pique-Regi, et al., 2011) to generate “gold standard” 

data for a few TFs. Briefly, we scanned the genomic sequences under the uniform 

DHSs in the hg19 genome using the five methods incorporated by iFORM with 

default parameters for each TF motif in the set of “gold standard”, separately. Then, 

for each TF, all motif instance (p-value < 10-5) that located within the corresponding 

TF ChIP-seq peaks were considered as the set of TFBS positives. The set of TFBS 

negatives were defined as all motif instance (p-value < 10-5) that did not overlap a 
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ChIP-seq peaks and had a greater fraction of total mapped reads from the “Control” as 

compared to the ChIP-seq treatment. Totally, 109 sets of “gold standard” for 12 TFs 

from 51 cell/tissues (Table S2). 

 

Assessing the performance of iFORM 

The prediction performance of iFORM was assessed using three methods, including a 

correlation based approach, Receiver Operation Curves (ROCs), and conservation. 

First, we used Receiver operation curves (ROCs) and the area under the curve (AUC) 

to assess the accuracy of prediction performance of iFORM.  

 

In contrast to ROC analysis that examined the motif instances that are either TFBS 

positives or TFBS negatives, we additionally adopted a correlation approach that 

takes into account almost all locations, except those in or near repetitive regions. The 

correlation approach assumes that the larger the correlation between the predicted 

values and the ChIP-seq signal and the smaller the correlation with the background 

noise “Control”, the better is the prediction accuracy. We extracted the ChIP-seq reads 

and the “Control” reads around each motif site, and used the Pearson correlation to 

measure the trend between the square root of the total number of reads and the 

posterior log-odds reported by iFORM and the five classical methods. 

 

For motifs where ChIP-seq data were not available, we used sequence conservation to 

assess whether iFORM was correctly detecting TF binding. For this, we withheld the 
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phastCons score when fitting our model and defined a test statistic (conservation 

Z-score) that measured the significance of the logistic regression of the phastCons 

score of the motif on the posterior probability of binding (for full details, see 

Supplemental material). 
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Figure legend 

Figure 1. Performance assessment of iFORM 

(A) ROC curves of multiple algorithms using the “gold-standard” data of CTCF in 

GM12878 cells provided in a previous study.  

(B) ROC curves of multiple algorithms using the “gold-standard” data of CTCF in 

GM12878 cells that was generated in our study.  

(C) ROC curves of multiple algorithms using the “gold-standard” data of CTCF from 

H1 cells.  

(D) Boxplot distribution of AUC for diverse TFs in multiple cells/tissues. 
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Additional files 

Figure S1. The workflow of iFORM 

The overview of iFORM workflow. (1) Assemble input data. Results may be 

improved by restricting the input to high-confidence sequences. Some programs 

achieve improved performance by using phylogenetic conservation information from 

orthologous sequences or information about protein DNA-binding domains. (2) 

Choose several motif discovery programs for the analysis. For recommended 

programs see Figure 3. (3) Test the statistical significance of the resulting motifs. Use 

control calculations to estimate the empirical distribution of scores produced by each 

program on random data. (4) Clustering and post-processing the motifs. Motif 

discovery analyses often produce many similar motifs, which may be combined using 

clustering. Phylogenetic conservation information may be used to filter out 

statistically significant, but non-conserved motifs that are more likely to correspond to 

spurious sequence patterns. (5) Interpretation of motifs. Algorithms exist for linking 

motifs to transcript factors and for combining motif discovery with expression data. 

 

Figure S2. Performance comparisons between iFORM and existing methods 

An example of CTCF motif binding site, which are well annotated by DNase-seq, 

DGF, and corresponding TF ChIP-Seq data in H1 cells, can only be discovered by 

iFORM, but not by other five classical methods.  
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Figure S3. ROC curves of CTCF in GM12878 cells from multiple labs  

ROC curves of multiple algorithms using the “gold-standard” data of CTCF in 

GM12878 cell that was generated from different labs. 

 

Figure S4. ROC curves of CTCF in diverse cells 

ROC curves of multiple algorithms using the “gold-standard” data of CTCF from 

diverse human cells/tissues.  

 

Figure S5. ROC curves of many TFs across diverse cells/tissues 

 

Table legend 

Table S1. Summaries of five motif scanners.  

 

Table S2. Summary of “gold-standard” data. 

 

Table S3. AUC of different TFs, related to Figure 1D. 
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