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Abstract 1	  

 2	  

Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-3	  

level category despite their high variability in visual appearance. How does the human brain arrive at the 4	  

invariant neural representations underlying categorization of real-world environments? We here show that 5	  

the neural representation of visual environments in scenes-selective human visual cortex relies on statistics 6	  

of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We 7	  

manipulated line drawings of real-world environments such that statistics of contour orientations or 8	  

junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI 9	  

experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place 10	  

area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not 11	  

orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of 12	  

these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, 13	  

was unaffected by either image manipulation. We further show that the correlation of error patterns 14	  

between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact 15	  

contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on 16	  

different sets of contour properties. Statistics of contour length and curvature dominate neural 17	  

representations of scene categories in early visual areas and contour junctions in high-level scene-selective 18	  

brain regions.   19	  

 20	  

Keywords: Neural representations of scenes; encoding of scene structure; contour junctions; scene 21	  

categorization; parahippocampal place area; occipital place area; visual cortex; fMRI; multi-voxel pattern 22	  

analysis  23	  
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1. Introduction 24	  

When humans view their complex natural environment, they have rapid access to several aspects of its 25	  

content, such as identity and category of the scene, presence of particular object categories, or global 26	  

layout (Potter & Levy, 1969; Thorpe, Fize, & Marlot, 1996; Fei-Fei, Iyer, Koch, & Perona, 2007; Greene 27	  

& Oliva, 2009a, 2009b, 2010).  We here investigate the neural mechanisms for the detection of cues to the 28	  

three-dimensional structure of complex real-world scenes in human visual cortex: We show that the neural 29	  

representation of scene categories in several high-level visual brain regions, but not in early visual cortex, 30	  

critically depends on contour junctions. 31	  

Entry-level category of a scene is a central aspect of the human visual perception of real-world 32	  

environment (Tversky & Hemenway 1983). Recent evidence suggests that humans compulsively 33	  

categorize scenes even if it is detrimental to their task (Greene & Fei-Fei, 2014). Scene categories can be 34	  

decoded from the parahippocampal place area (PPA) of humans passively viewing scene images (Walther, 35	  

Caddigan, Fei-Fei, & Beck, 2009; Park, Bradly, Greene, & Oliva, 2011; Walther, Chai, Caddigan, Fei-Fei, 36	  

& Beck, 2011). Moreover, error patterns for category decoding from the PPA match the pattern of human 37	  

errors during a rapid scene categorization task (Walther et al., 2009).  38	  

There has been considerable debate over the visual properties that underlie the neural 39	  

representation of scene categories. According to one popular hypothesis, statistics of orientations at 40	  

different scales as captured by the Fourier amplitude spectrum make accurate computational predictions 41	  

about entry-level categories of real-world scene images. Subsequent principal component analysis 42	  

revealed that several diagnostic structures in the Fourier amplitude spectrum are directly related to global 43	  

scene properties, such as openness, naturalness, or mean distance (Oliva & Torralba, 2001; Torralba & 44	  

Oliva, 2003). These global properties, in turn, are thought to give rise to a representation of scene 45	  

categories (Greene & Oliva, 2009a, 2009b, 2010). For instance, the “beach” category is represented as an 46	  

open natural environment whereas the highway category is represented as an open and man-made 47	  

environment. In support of this hypothesis, several global scene properties have been found to be 48	  

represented in activity patterns in the PPA (Harel, Kravitz, & Baker, 2013; Kravitz, Peng, & Baker, 2011; 49	  

Park et al., 2011, Park, Konkle, & Oliva, 2015). 50	  
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Here, we posit that real-world scene categories are built by recovering the three-dimensional 51	  

shape of the visual world rather than relying on orientation statistics.  The visual world can be described 52	  

by the relations of surfaces and shapes in space (e.g., by the 2½-dimensional sketch of a scene; Marr, 53	  

1982). Contour junctions available in the two-dimensional scene images diagnostically describe these 54	  

spatial relations. For instance, L-junctions indicates points of termination of surfaces, T-junctions signify 55	  

occlusion in depth, and Y- and arrow-junctions indicate corners facing toward or away from the viewer. 56	  

Angles of contour junctions indicate the extent to which depth changes over surfaces (Biederman, 1987). 57	  

The diagnostic value of contour junction properties holds for simple artificial scenes consisting of 58	  

geometric objects (Guzman, 1968) as well as for real-world object recognition (Biederman, 1987).  59	  

Furthermore, a computational model based on category-specific statistics of contour junction properties 60	  

explained human errors in rapid categorization of real-world scene images (Walther & Shen, 2014). 61	  

According to this structural representation hypothesis, contour junctions should be tied to the neural 62	  

representation of complex real-world scenes.  63	  

Line drawings are a powerful tool to investigate scene recognition, even though they are 64	  

impoverished depictions of scenes, compared to full-textured color photographs. In fact, line drawings can 65	  

be categorized or recognized as quickly and accurately as full-textured color photographs (Biederman & 66	  

Ju, 1988). Line drawings contain sufficient visual information to allow humans to rapidly judge perceptual 67	  

and semantic aspects of scenes (Biederman, Mezzanotte, & Rabinowitz, 1982; Biederman, Teitelbaum, & 68	  

Mezzanotte, 1983; Kim & Biederman, 2010; 2011). In addition to resulting in similar behavioral error 69	  

patterns (Walther and Shen, 2014), color photographs and line drawings of natural scenes also elicit 70	  

similar neural representations of scene categories in the PPA (Walther et al., 2011).  More importantly, 71	  

line drawings provide explicit descriptions of several informative contour properties not readily accessible 72	  

in full-textured color photographs, such as contour orientation, length, curvature, and types and angles of 73	  

junctions created by multiple contours (Walther & Shen, 2014).  The current study benefits from this 74	  

direct access to important contour properties by manipulating predictability of either orientation or 75	  

junction statistics for scene categories. 76	  

We tested the causal role of these two sets of candidate features, orientation statistics and 77	  

junction properties, for the neural representation of scene categories in the human brain. Scene categories 78	  
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were decoded from the fMRI activity of participants, who passively viewed blocks of line drawings of six 79	  

scene categories: beaches, forests, mountains, city streets, highways, and offices. A block design was 80	  

employed for its robust signal and for its proven capability to detect category-specific signals in common 81	  

to multiple stimuli in a block (Cox & Savoy, 2003; Epstein & Kanwisher 1998; Haxby, Gobbini, Furey, 82	  

Ishai, Schouten, & Pietrini, 2001; Kim & Biederman, 2010; Park et al., 2011; Walther et al., 2009). We 83	  

devised two image manipulations that allowed for selective disruption of orientation or junction statistics: 84	  

One is to rotate line drawings by random angles, which selectively disrupts orientation statistics. The other 85	  

is to shift randomly contours of line drawings, which disrupts contour junctions. We then attempted to 86	  

decode scene categories from the brain activity of participants while they viewed these manipulated 87	  

images. Comparing the results to decoding scene categories from intact images allowed us to assess the 88	  

causal involvement of the respective scene properties in the representation of scene categories. Note that 89	  

these manipulations alter category-specific statistics of the targeted property to be spurious and 90	  

uninformative. Although deletion of junctions could be a direct manipulation, pixel removal around 91	  

junction locations inevitably affects non-targeted contour properties, such as statistics of orientation, 92	  

curvature and length of contours.  Our image manipulations, therefore, were to ensure that only one of the 93	  

two candidate properties was disrupted by each of the manipulations. 94	  

We found that the category representation in two high-level visual areas involved in scene 95	  

processing, the PPA, and to some extent, the occipital place area (OPA) and the lateral occipital complex 96	  

(LOC) relies heavily on junction properties. It was not possible to decode scene categories from these 97	  

areas when junctions were disrupted. Disrupting orientation statistics, on the other hand, did not affect the 98	  

representation of scene categories. By contrast, scene categories could be decoded from neural activity 99	  

patterns in early visual cortex well above chance for images with disrupted junction or orientation 100	  

statistics just as from intact images. We further found that correlation of decoding error patterns from the 101	  

PPA with behavioral error patterns was contingent on the preservation of junction properties, whereas 102	  

disrupting orientations had no effect on error correlations. Finally, we mapped the reliance of the neural 103	  

representations of scene categories on several visual properties throughout visual cortex by matching 104	  

patterns of neural decoding errors to error patterns from five computational models of scene categorization 105	  

from Walther and Shen (2014). 106	  
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 107	  

2. Materials and Methods 108	  

 109	  

2.1 Participants  Sixteen healthy participants (5 females; mean age = 21.6, Standard Deviation (SD) = 110	  

2.8; one left-handed) were recruited from The Ohio State University community for the functional 111	  

magnetic resonance imaging (fMRI) experiment, for which they received monetary compensation of $15 112	  

per hour. A separate group of 49 undergraduates at the Ohio State University participated in the behavioral 113	  

experiment for course credit. Participants gave written informed consent. Both experiments were approved 114	  

by the institutional review board of The Ohio State University. All participants had normal or corrected-115	  

to-normal vision and normal color vision and reported no history of neurological abnormalities.  One 116	  

participant (female, right-handed) was excluded from further analysis of the fMRI experiment due to 117	  

excessive head movement during scans. Three participants were excluded from the analysis of the 118	  

behavioral experiment because they did not complete the entire experiment or did not comply with the 119	  

instructions. 120	  

2.2 Stimuli & Apparatus Stimuli consisted of 475 vectorized line drawings of six categories of real-121	  

world scenes (beaches, forests, mountains, city streets, highways, and offices) from Walther et al. (2011). 122	  

We generated three versions of each line drawing. Intact line drawings were generated by applying a 123	  

curcular aperture (Figure 1A). Rotated line drawings were rotated the whole image by an angle randomly 124	  

selected from 10 – 340° with 30° increments (Figure 1B). Distributions of contour orientation peaked at 0° 125	  

and 90° in most of the six scene categories (Walther & Shen, 2014). Thus, rotation by 90°, 180° and 270° 126	  

were deliberately avoided. Contour-shifted line drawings were generated by randomly translating 127	  

individual contours within the circular aperture (Figure 1C). This manipulation ensured the disruption of 128	  

the relations between contours, represented by contour junctions, while keeping all other contour 129	  

properties constant. Note that both image rotation and random contour-shifting change local contour 130	  

property statistics. Random image rotation not only systematically alters the original orientation statistics 131	  

within a local image patch, but it also changes the contour junction statistics within that local patch (i.e., 132	  

the contour junction statistics of a different portion of the image will substitute the original local 133	  

statistics). Similarly, random contour-shifting alters orientation statistics within a local image patch, and 134	  
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also generates new spurious contour junctions in the patch. The difference between these manipulations is 135	  

their effect on global image statistics. Rotation preserves the 3D relationships between surfaces and 136	  

objects, and contour shifting does not.  137	  

As a result of these two manipulations, we obtained a total of 475 triplets, each of which 138	  

consisted of an intact, a rotated, and a contour-shifted line drawing derived from the same color 139	  

photograph of a real-world scene1. The same triplets were used for all participants in both fMRI and 140	  

behavioral experiment. 141	  

Both experiments were controlled using Python 2.5 with VisionEgg 1.2 on a PC with Microsoft 142	  

Windows XP. Stimuli for the fMRI experiment were back-projected onto a screen mounted in the back of 143	  

the scanner bore with a DLP projector (Christie DS+6K-M 3-chip SXGA+) at a resolution of 1280 x 1024 144	  

pixels.  Participants viewed stimuli through a mirror mounted on the head coil.  Line drawings were 145	  

rendered as black lines on a white background (2 pixels width) at a resolution of 1023 x 1023 pixels, 146	  

which subtended approximately 17º x 17º of visual angle. Line drawings were seen through a circular 147	  

aperture of 1023 pixels diameter. The part of the screen outside the circular aperture was 50% gray. A 148	  

white fixation cross with a black outline was drawn at the center of the screen and subtended 0.5º x 0.5º of 149	  

visual angle. Stimuli for the behavioral experiment were displayed on a CRT monitor with 1024 x 768 150	  

pixels resolution and 150 Hz refresh rate. Line drawings were rendered as black lines of 1-pixel width on a 151	  

white background at a resolution of 600 x 600 pixels (approximately 18º x 18º), and seen through a 152	  

circular aperture of 600 pixels diameter. The fixation cross had a size of 1º x 1º.  153	  

2.3. Experiment Design In the fMRI experiment, participants were asked to attentively view the line 154	  

drawings while fixating on the central cross. To ensure that participants followed the instruction, we 155	  

monitored participants’ eye-movements in real-time using an MR compatible Eyelink 1000 system, but 156	  

eye-movements were not recorded. Each participant viewed a total of 384 triplets (64 per scene category) 157	  

randomly chosen from the 475 triplets. All participants had eight runs, 6 min and 12 sec in length. Each 158	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 2D-fast Fourier transform analysis of the triplets confirmed that our manipulation targeting the orientation statistics 
held in the Fourier space as well. Random contour-shifting had little impact on the Fourier amplitude spectrum, and 
the correlation in the Fourier amplitude spectrum were high between intact and rotated line drawings, Fisher’s z = 
3.278 (r = .997). In contrast, the average correlation between the intact and rotated line drawings was relatively low, 
Fisher’s z = 1.475 (r = .901). The difference becomes even more pronounced when adjusting for the average 
correlation between images from different triplets; between intact and contour-shifted: zadj = 1.073 (radj= .791), 
between intact and rotated: zadj = .030 (radj = .030). 
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run included 18 blocks of all possible combinations of the three line drawing types (intact, rotated, and 159	  

contour-shifted), and the six basic scene categories (beaches, forests, mountains, city streets, highways, 160	  

and offices). During each block, eight line drawings from the same image type and scene category were 161	  

shown for 800 ms, followed by a 200 ms blank per scene image. 12 sec of a blank fixation periods were 162	  

inserted between blocks as well as at the beginning and the end of each run. The order of blocks within 163	  

runs was counterbalanced across runs and participants according to image type and scene category.  164	  

In the behavioral experiment images from all six scene categories were randomly interleaved. 165	  

Participants were asked to indicate the categories of scene images by pressing one of six keys (s, d, f, j, k, 166	  

and l) on a computer keyboard. The mapping between categories and keys was assigned randomly to each 167	  

participant. Each trial started with a fixation period of 500 ms, followed by a line drawing for a variable 168	  

amount of time (250 ms initially), which was followed by a texture mask for 500 ms and a blank period 169	  

for another 2000 ms. The texture mask was derived from a mixture of textures synthesized from all six 170	  

scene categories (Loschky, Hansen, Sethi, & Pydimarri, 2010; Portilla & Simoncelli, 2000). Participants’ 171	  

key responses were recorded from the onset of the image until the end of the blank period. If no response 172	  

was made by the end of the blank period, the trial was recorded as incorrect. In the first phase of the 173	  

experiment, participants practiced the response mapping until they achieved 90% accuracy. In the 174	  

following stair-casing phase the stimulus onset asynchrony (SOA) was adjusted to 65% accuracy using the 175	  

QUEST algorithm (Watson & Pelli, 1983) for each participant.  By using the stair-cased SOA and the 176	  

perceptual masking procedure, we aimed to provoke erroneous responses, so that we could compare the 177	  

error patterns between behavior and neural decoding reliably. A randomly selected subset of twelve 178	  

triplets of each category was shown for practice and stair-casing, leaving 60-68 triplets per category for 179	  

testing.  In practice and stair-casing, images were presented in their intact version, and participants were 180	  

alerted to their mistakes by a beep. 181	  

During the testing phase, 60 triplets per category were randomly selected from the unused sets. 182	  

Each image was shown only once during testing, either as an intact line drawing, a rotated line drawing, or 183	  

a line drawing with randomly contour-shifted contours. 360 trials were grouped into 18 blocks of 20 184	  

images. All three line drawing types and six scene categories were presented intermixed within a block. 185	  

Participants no longer received feedback during the testing phase of the experiment. The SOA was fixed 186	  
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to the final SOA of the stair-casing procedure. We excluded data from the seven participants with SOAs 187	  

exceeding 100 ms from further analysis2. As a result, the final SOAs of the remaining 39 participants 188	  

ranged from 17 – 87 ms (M = 34 ms, SD = 19 ms). The behavioral data were recorded in three confusion 189	  

matrices, one for each image type. The rows of a confusion matrix indicate the scene categories presented 190	  

to a participant, and the columns indicate the participant’s response. Cells contain the relative frequency of 191	  

participants responding with the category indicated by the column, given that the presented image was of 192	  

the category indicated by the row. Thus, diagonal entries contain correct responses of a scene 193	  

categorization task, and off-diagonal entries contain errors in scene categorization. 194	  

2.4. fMRI Data Acquisition and Preprocessing MRI images were recorded on a 3 Tesla Siemens 195	  

MAGNETOM Trio MRI scanner with a 12-channel head coil at the Center for Cognitive and Behavioral 196	  

Brain Imaging (CCBBI) at The Ohio State University. High-resolution anatomical images were obtained 197	  

with a 3D-MPRAGE (magnetization-prepared rapid acquisition with gradient echo) sequence with sagittal 198	  

slices covering the whole brain; inversion time = 930 ms, repetition time (TR) = 1900 ms, echo time (TE) 199	  

= 4.44 ms, flip angle = 9°, voxel size = 1 x 1 x 1 mm, matrix size = 224 x 256 x 160 mm.  Functional 200	  

images were recorded with T2*-weighted echo-planar sequences with coronal slices, covering 201	  

approximately the posterior 70% of the brain: for the main experiment, TR = 2000 ms, TE = 28 ms, flip 202	  

angle = 72°, voxel size = 2.5 x 2.5 x 2.5 mm, matrix size = 90 x 100 x 35 mm. fMRI data were registered 203	  

to a reference volume (the first volume of the fourth run) using AFNI to correct for head motion during 204	  

the experiment. Then, fMRI data were smoothed using a 2 mm full-width-at-half-maximum (FWHM) 205	  

Gaussian filter and converted to percentage signal change with respect to the mean of each run. 206	  

2.5. ROI-Based Neural Decoding  207	  

2.5.1. Decoding Accuracy  As a preprocessing step for neural decoding we regressed out nuisance 208	  

parameters using a general linear model (GLM) with regressors only for head motion and scanner drift. 209	  

The residuals of the GLM analysis were averaged over the durations of individual blocks, subject to a 210	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Including these participants to the analysis did not change the pattern of results. However, as they acquire experience 
on the task, their relatively long presentation time reduced erroneous observations.  Since our objective of having a 
brief presentation was to compare error patterns between neural decoding and behavior, we decided a priori not to 
include participants with SOAs < 100 ms to maximize the variance in error patterns. 
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hemodynamic delay of 4 sec. The resulting 144 brain volumes (one for each block) were used as input for 211	  

multi-voxel pattern analysis (MVPA).  212	  

MVPA was performed within pre-specified ROIs using a linear support vector machine (SVM) 213	  

classifier (linear kernel, using LIBSVM, Chang & Lin, 2001). The classifier was trained to associate the 214	  

correct category label to the blocks in seven of the eight runs, leaving out one run for testing. The 215	  

categories for the blocks in the left-out run were predicted by the trained classifier. This leave-one-run-out 216	  

(LORO) cross-validation was repeated until each of the eight runs was left out once. The fraction of 217	  

blocks with correct test predictions was recorded as accuracy, and misclassifications were recorded in a 218	  

confusion matrix (for example see Figure 2B). To investigate the effect of image rotation and contour-219	  

shifting on the representation of scene categories, LORO cross validation was performed both within 220	  

image type (using the same image type for training and testing) and across image types (training on one 221	  

and testing on another image type). In each case, accuracy was compared to chance (1/6) at the group 222	  

level using one-tailed one-sample t-tests.  223	  

2.5.2. Error Pattern Correlation between Brain and Behavior We measured the similarity of 224	  

underlying categorical representations by correlating decoding error patterns from each of the ROIs to 225	  

behavioral error patterns from the rapid scene categorization experiment (Walther, Beck, & Fei-Fei, 226	  

2012). The vector consisting of the 30 off-diagonal entries of the confusion matrix from an ROI was 227	  

correlated to the vector of 30 off-diagonal entries of the confusion matrix from behavioral scene 228	  

categorization. Statistical significance of the correlation was established non-parametrically against the 229	  

null distribution of all error correlations obtained from jointly permuting rows and columns of the 230	  

behavioral confusion matrix. 231	  

How does disruption of contour orientation or junction properties modulate error correlations 232	  

between neural decoding and behavior? Since we had the same three image types (i.e., intact, rotated, and 233	  

contour-shifted) for both neural decoding and behavioral rapid scene categorization, we could examine 234	  

effects of property disruption in a 3-by-3 pattern of correlations. We modeled these correlation patterns as 235	  

a linear combination of three models of the interaction between behavior and patterns of brain activity 236	  

(Figure 4C). The first model is straightforward in that error correlations between neural decoding and 237	  

behavior for the same image types are correlated (same type model). The second model states that error 238	  
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patterns from neural decoding for intact line drawings correlate to error patterns from the behavioral 239	  

categorization of rotated line drawings and vice versa. This intact‒rotated model prediction is based on 240	  

the idea that junction properties are necessary for maintaining the error pattern similarities between neural 241	  

decoding and behavior, which had been reported using intact line drawings (Walther et al. 2011). The last 242	  

model assumes that orientation statistics leads to similarities in error patterns between neural decoding and 243	  

behavior. This intact‒contour-shifted model predicts high error correlation between neural decoding and 244	  

behavior between intact and contour-shifted line drawings. The weights belonging to the three models 245	  

were obtained by linearly regressing the error correlation patterns for all MRI participants onto the model 246	  

regressors shown in Figure 2C. 247	  

We tested which of the three models explain the relationships in the 3-by-3 error correlation 248	  

patterns using a linear mixed-effects model  (lme4 package in R, Bates, Maechler, Bolker, & Walker, 249	  

2014), which included the three idealized models as fixed effects, and participants as random effects. Prior 250	  

to the regression analysis, error pattern correlation values were normalized using Fisher’s z 251	  

transformation. Thus, the coefficients of the predictors provided estimates of how well each of the three 252	  

models predicts the error correlations between neural decoding and behavior. 253	  

2.6. Searchlight Analysis  254	  

2.6.1. Decoding Accuracy  We explored how the human visual cortex outside of the pre-defined 255	  

ROIs represents categorical information about scenes using the Searchmight toolbox (Pereira & Botvinick, 256	  

2011). Searchlight analysis was performed with partial coverage in the coronal direction, which was 257	  

sufficient to encompass approximately the posterior 70% of the brain on average across the participants. 258	  

The same block-averaged data used in the previous ROI-based analysis entered the searchlight analysis.  259	  

We defined a cubic “searchlight” of 125 voxels, whose size was matched to the average size of unilateral 260	  

PPA across participants (142.9 voxels, SD = 66.8 voxels) as closely as possible. The searchlight was 261	  

centered on each voxel at a time (Kriegeskorte, Göbel, & Bandettini, 2006), and LORO cross-validation 262	  

analysis was performed within each searchlight location using a Gaussian Naïve Bayes classifier until all 263	  

voxels served as the center of the searchlight. Decoding accuracy, as well as the full confusion matrix at a 264	  

given searchlight location, were assigned to its central voxel. We performed the searchlight analysis 265	  
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separately for decoding of each of the three line drawing types, resulting in three individual accuracy maps 266	  

for each participant.  267	  

To examine the agreement between the searchlight and the ROI-based analysis, we counted 268	  

overlap between searchlight results and the areas V1-4, PPA, OPA, RSC, LOC, and FFA. Accuracy maps 269	  

were thresholded at p < .005 (one-tailed p-values were obtained by the analytic methods provided by the 270	  

Searchmight toolbox), and cluster-corrected using α probability simulation separately per each participant. 271	  

Overlap with ROIs was computed as a percentage of ROI voxels that were included in the thresholded 272	  

accuracy maps.  273	  

For group-analysis, we first co-registered each participant’s anatomical brain to the Montreal 274	  

Neurological Institute (MNI) 152 template (Fonov, Evans, McKinstry, Almli, & Collins, 2011) using a 275	  

diffeomorphic transformation as calculated by AFNI’s 3dQWarp. We then used the same transformation 276	  

parameters to register individual decoding accuracy maps to MNI space using 3dNWarpApply, followed 277	  

by spatial smoothing with a 2 mm FWHM Gaussian filter. To identify voxels with decodable categorical 278	  

information, we performed one-tailed t-tests to test whether decoding accuracy at each searchlight location 279	  

was above chance (1/6). After thresholding at p < .005 (one-tailed) we conducted a cluster-level correction 280	  

for multiple comparisons, applying a minimum cluster size of 12 voxels, the average cluster size obtained 281	  

from the α probability simulations conducted individually (SD = 0.7 voxels). After thresholding by 282	  

decoding accuracy, error pattern correlations were computed between decoding from a searchlight 283	  

location and each of the five computational models to determine max property of each searchlight 284	  

location.  285	  

The group-level ROIs were drawn by registering ROIs of individual participants to MNI space 286	  

using the same transformation parameters and overlaying them. Voxels counted in at least four 287	  

participants were defined as group-level ROIs. This decision was made to ensure reasonably sized group-288	  

level ROIs while minimizing overlap between them. Finally, we excluded any voxels counted in more 289	  

than a single group-level ROI. 290	  

2.6.2. Error Pattern Correlation to Computational Models  We asked which contour properties 291	  

contribute to the categorical representations contained in each searchlight location by comparing error 292	  

patterns (Walther, Beck, & Fei-Fei, 2012). Previously, we had developed computational descriptions of 293	  
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the same line drawings based on five contour properties – orientation, length, curvature, junction types, 294	  

and junction angles (Walther & Shen, 2014). These five image properties were computed directly from the 295	  

vectorized line drawings. Separate linear support vector machine classifiers were trained to predict 296	  

categories of line drawings of scenes using histograms of each of these five properties in turn. Test errors 297	  

from a ten-fold cross-validation analysis were recorded in separate confusion matrices, one for each image 298	  

property. Here, we correlated error patterns from decoding scene categories at each searchlight location 299	  

with those from the computational analysis based on each of the five properties. We call the property with 300	  

the highest correlation at a given searchlight location “max property”. This analysis was performed 301	  

separately for each type of line drawing and restricted to voxels with above-chance decoding accuracy. 302	  

 303	  

3. Results 304	  

3.1. ROI-Based Neural Decoding 305	  

3.1.1. Within-Type Decoding Separate classifiers were trained to discriminate scene categories 306	  

based on neural activity patterns recorded while participants viewed intact, rotated, or contour-shifted line 307	  

drawings. The classifiers were then tested on independent data in an LORO cross-validation procedure, 308	  

separately for V1-4, PPA, OPA, RSC, LOC, and FFA. Consistent with previous findings, one-tailed t-tests 309	  

showed that scene categories of intact line drawings were correctly decoded significantly above chance 310	  

(1/6) in most of the visually active ROIs: V1-4, PPA, OPA, and LOC.  Decoding accuracy for the RSC 311	  

was comparable to the previously reported accuracy from the same 6-way category decoding (Walther et 312	  

al., 2011), but failed to reach significance. As expected, decoding accuracy from the FFA was not 313	  

significantly above chance.  314	  

How does disruption of orientation or junction statistics affect the neural representation of scene 315	  

categories? In V1-4, scene categories could be decoded significantly above chance for both rotated and 316	  

contour-shifted just as for intact line drawings. In the PPA, OPA, and the LOC, however, scene categories 317	  

could only be decoded from rotated line drawings, but not from contour-shifted line drawings. The RSC 318	  

showed a similar pattern of results, but category decoding for rotated line drawings was only marginally 319	  

above chance (for average decoding accuracies and standard error of means see Figure 1B, for detailed 320	  

statistical results see Table 1). 321	  
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Table 1. Results of one-tailed t-tests for within-type decoding. Significance was adjusted using the false 
discovery rate for multiple comparisons correction. 
 

Within-Type Decoding 

ROI df 
Intact Rotated Contour-Shifted 

t q t q t q 

V1 14 5.047 2.67·10-4 4.551 3.40·10-4 4.044 6.04·10-4 

V2 14 3.041 5.37·10-3 2.941 5.37·10-3 3.900 2.40·10-3 

V3 14 3.453 1.94·10-3 4.491 3.81·10-3 4.544 3.81·10-3 

V4 12 3.892 1.07·10-3 5.825 1.22·10-4 4.324 7.42·10-4 

PPA 14 2.492 .0194 2.763 .0194 .871 .199 

OPA 11 3.276 5.54·10-3 3.325 5.54·10-3 .635 .269 

RSC 14 1.746 .0882 1.667 .0882 .698 .248 

LOC 14 2.037 .0458 2.944 .0160 -1.108 .857 

FFA 14 .575 .431 .000 .500 .636 .431 
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Figure 1. Example stimuli and neural decoding results. A) Examples of intact, rotated, and contour-shifted 
line drawings were derived from the same color photograph of a forest scene. The set of contours is 
identical across the three images within a triplet. The circular outline is shown here only for illustration 
and was absent in the stimuli seen by participants. B) Average accuracy rates of within-type category 
decoding from ROIs. C) Average accuracy rates of cross-type category decoding from the ROIs. The only 
significant difference in cross-type decoding accuracy between Intact-to-Rotated/Rotated-to-Intact and 
Intact-to-Contour-Shifted/Contour-Shifted-to-Intact was found in the PPA, as indicated above the bracket 
bridging the two bars. Error bars are standard errors of means. Dashed lines indicate chance performance 
(1/6). The significance of the one-sample t-test (one-tailed) was adjusted for multiple comparisons and 
marked above each bar, *q < .05, **q < .01, ***q < .001. 
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3.1.2. Cross-Type Decoding  If the neural representation of scene categories is indeed preserved 322	  

under random image rotation but destroyed by shifting contours, then we should expect that a decoder 323	  

trained on intact line drawings should be able to predict scene categories for rotated but not contour-324	  

shifted line drawings (and vice versa). We tested these predictions in several visual areas. Using the same 325	  

LORO cross-validation procedure, we compared decoding performance across four conditions: intact-to-326	  

rotated (IR), rotated-to-intact (RI), intact-to-contour-shifted (IS), and contour-shifted-to-intact (SI). 327	  

Figure 1C shows the group average accuracies of the four cross-type conditions. The one-tailed t-328	  

test comparing decoding accuracy to chance showed that cross-type decoding from the early visual areas 329	  

was successful for all four cross-type decoding conditions. By contrast, cross-type decoding from the PPA 330	  

was significantly more accurate than expected by chance only for IR and RI, but not for IS and SI. The 331	  

same pattern was also found in the RSC, although to a reduced extent. Interestingly, in the OPA, cross-332	  

type decoding was possible not only between intact and rotated line drawings but also between intact and 333	  

contour-shifted line drawings, although less accurately. Similarly, accuracy from the LOC was 334	  

significantly above chance for IR, RI, and IS, also marginally above chance for SI (for details on statistical 335	  

tests, see Table 2).  336	  

 To further examine the differences across the brain regions, we conducted a repeated measures 337	  

ANOVA by using two factors: (1) Which type of disruption was used for the cross-type decoding, rotated 338	  

(IR and RI) vs. contour-shifted (IS and SI), and (2) in which direction the decoding was conducted, 339	  

trained on intact line drawings and tested on disrupted line drawings (IR and IS) vs. trained on disrupted 340	  

line drawings and tested on intact line drawings (RI and SI). Consistent with the results from the one-341	  

sample t-tests, the main effect of type was significant in the PPA, F(1, 14) = 17.681, p = 8.82·10-4, η2 = 342	  

.558.  In other scene-sensitive areas, however, it failed to reach significance: in the OPA, F(1, 11) = 1.983, 343	  

p = .188, η2 = .152, in the RSC, F(1, 14) = 3.278, p = .0917, η2 = .190, and in the LOC, F < 1.  As 344	  

expected, in the early visual areas the main effect of type was not significant; Fs < 1 in V1-3, and F(1, 12) 345	  

= 1.370,  p =.265,  η2 = .102 in V4. Neither the main effect of direction nor the interaction between type 346	  

and direction was significant in any of the ROIs. 347	  

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044156doi: bioRxiv preprint 

https://doi.org/10.1101/044156
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   17 

Table 2. Results of one-tailed one-sample t-tests for cross-type decoding. Significance was adjusted using 
the false discovery rate for multiple comparisons correction. 
 

Cross-Type Decoding 

ROI df 
Intact to Rotated Rotated to Intact Intact to  

Contour-Shifted 
Contour-Shifted 

 to Intact 
t q t q t p t q 

V1 14 6.738 1.86·10-5 3.757 1.06·10-3 5.778 3.18·10-5 6.330 1.86·10-5 
V2 14 3.410 4.23·10-3 2.882 7.60·10-3 2.764 7.60·10-3 5.955 7.02·10-5 
V3 14 7.378 6.92·10-6 5.013 1.90·10-4 3.780 1.02·10-3 4.326 4.64·10-4 
V4 12 4.484 7.48·10-4 5.126 5.02·10-4 4.156 8.90·10-4 2.756 8.70·10-3 

PPA 14 3.572 3.89·10-3 3.452 3.89·10-3 -.642 .734 .564 .388 
OPA 11 4.231 2.82·10-3 2.469 .0312 2.031 .0336 2.093 .0336 
RSC 14 2.200 .0451 2.978 .0120 1.126 .139 1.261 .139 

LOC 14 2.099 .0363 3.246 .0112 2.193 .0363 1.512 .0752 

FFA 14 -.105 .631 -.341 .631 -.188 .631 1.183 .513 

 

3.1.3. Correlation between Neural and Behavioral Error Pattern To explore the similarity of the 348	  

underlying categorical representations between neural decoding and behavior, we performed a behavioral 349	  

categorization experiment with a separate group of 49 participants. Participants were shown a line drawing 350	  

of natural scenes, followed by the perceptual mask, and asked to indicate its scene category as either a 351	  

beach, a forest, a mountain, a city street, a highway, or an office. Following practice and stair-casing, 352	  

participants’ performance stabilized at stimulus-onset-asynchronies (SOA) of 13 – 87 ms (M = 34 ms, SD 353	  

= 19 ms). Average accuracy during the test phase pooled over all line drawing types was 45.5 % (Standard 354	  

Errors of Means (SEM) = 1.8%). A repeated-effects ANOVA of accuracy showed a significant effect for 355	  

type of line drawing, F(1.69, 64.06) = 148.476, p = 2.22·10-16, η2 = .796 (degrees of freedom were adjusted 356	  

due to a violation of sphericity). Accuracy was highest for intact line drawings (M = 62.3%, SEM = 2.9%), 357	  

followed by rotated line drawings (M = 44.1%, SEM = 2.2%), and lowest for contour-shifted line drawings 358	  

(M = 30.0%, SEM = 1.2%). The accuracy of contour-shifted line drawings was still significantly above 359	  

chance, t(38)=11.051, p = 9.88·10-14.  360	  

Responses from the behavioral experiments were recorded in confusion matrices, separately for 361	  

the three types of line drawings (see Figure 2A for intact; for behavioral confusion matrices of all three 362	  

image types, see Figure S1). Off-diagonal elements of the confusion matrices represent categorization 363	  

errors. Errors from the behavioral experiment were correlated with the errors made when decoding scene 364	  

categories from brain activity for each of the three types of line drawings, separately per ROI and 365	  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044156doi: bioRxiv preprint 

https://doi.org/10.1101/044156
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   18 

participant (see Figure 2B for the confusion matrix for decoding rotated line drawings from the PPA of 366	  

one participant; for exclusive confusion matrix for neural decoding see Figure S2-S3). As can be seen in 367	  

Figure 3A, error correlation was high when comparing the behavior and neural decoding for the same 368	  

types of images (the diagonal of the three-by-three correlation matrices). In the PPA and OPA, the 369	  

correlation was also high between intact and rotated, but not between intact and contour-shifted line 370	  

drawings. In V1, no particular pattern of error correlations is discernible. 371	  

We modeled the error correlation patterns as a linear combination of three idealized models. The 372	  

same-type model hypothesized that error patterns would match between behavior and decoding only for 373	  

the same types of line drawings. The intact‒rotated model predicts high brain-behavior error correlations 374	  

between intact and rotated line drawings, assuming that disruption of orientation leaves error correlations 375	  

largely unaffected. The intact‒contour-shifted model, by contrast, predicts high brain-behavior error 376	  

correlations between intact and contour-shifted line drawings, assuming that error correlations are 377	  

maintained when junctions are disrupted, (Figure 2C).  378	  
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 Figure 2. A schematic description correlation between brain and behavior error pattern. A) Group-average 
confusion matrix for behavioral scene categorization of rapidly presented intact line drawings. B) 
Confusion matrix obtained from decoding scene categories from rotated line drawings in the PPA for an 
individual participant. C) Off-diagonal entries of the confusion matrices were correlated for all three 
image types, resulting in a three-by-three error correlation matrix. The error correlations entered a linear 
regression analysis to measure how much each of the hypothesized models explains the observed patterns 
of error correlations.  
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The coefficients corresponding to each of the three idealized models were computed using a 379	  

mixed-effects linear regression model with prediction models as fixed effects and participants as random 380	  

effects. Figure 3B shows the estimated coefficients of the fixed effects for the prediction models for all 381	  

ROIs. In V1-3, none of the three models significantly explained the error correlation patterns between 382	  

neural decoding and behavior.  However, further along in the visual processing stream, both the same type 383	  

and the intact‒rotated model significantly explained error correlation in V4, PPA, OPA, RSC, and LOC. 384	  

The intact‒contour-shifted model, on the other hand, did not contribute to the patterns in any of the ROIs 385	  

(for details on statistical tests see Table 3).  386	  

 
Table 3. Results of two-tailed t-tests for coefficients of the three idealized models for explaining patterns 
of error correlation between neural decoding and behavior. Significance was adjusted using false 
discovery rate for multiple comparisons correction. 
 

ROI df 
Same Type Intact-Rotated Intact-Contour-Shifted 

t q t q t q 

V1 14 1.166 .732 .391 .999 -1.646·10-5 .999 

V2 14 1.878 .0718 2.229 .0718 -.103 .918 

V3 14 1.786 .111 2.289 .0663 -.912 .362 

V4 12 3.376 1.10·10-3 3.267 3.27·10-3 -.103 .918 

PPA 14 3.035 3.62·10-3 4.440 2.69·10-5 -.912 .362 

OPA 11 3.056 5.61·10-3 2.899 5.61·10-3 -.107 .915 

RSC 14 2.439 .0312 2.311 .0312 .238 .812 

LOC 14 2.831 8.31·10-3 2.774 8.31·10-3 .795 .427 

FFA 14 .568 .570 1.315 .189 -.0324 .974 
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Figure 3. Results of error pattern correlations between neural decoding and behavior. A) Error correlations 
between neural decoding and behavior in V1-4, PPA, OPA, RSC, and LOC. Three-by-three correlation 
matrices were created by correlating group average confusion matrices obtained from fMRI and group 
average confusion matrices from the behavioral experiment. I stands for intact, R for rotated, and S for 
contour-shifted line drawing conditions for both neural decoding and behavior. The rows represent 
behavioral conditions, and the columns represent neural decoding conditions. Thus, each entry of a 
correlation matrix indicates an error pattern correlation value, r, between neural decoding and behavior. 
The significance of the correlation was determined non-parametrically using a permutation test, in which 
we computed correlations for all 720 permutations of the six category labels. B) Estimated coefficients of 
the three idealized models obtained from the ROIs. Error bars are estimated standard errors of means. The 
significance of the one-sample t-test (two-tailed) was corrected for multiple comparisons using false 
discovery rate and marked above each bar, *q < .05, **q < .01, ***q < .001. 
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3.2. Searchlight Analysis  387	  

3.2.1 Decoding Accuracy To further characterize the representation of scene categories throughout visual 388	  

cortex, we performed a searchlight analysis of the posterior 70% of the brain that was included in the 389	  

partial acquisition scans.  At each searchlight location, we attempted to decode scene categories using 390	  

LORO cross-validation, separately for intact, rotated and contour-shifted line drawings. This analysis 391	  

resulted in spatial maps of decoding accuracy and confusion matrices for each location.  To assess the 392	  

agreement between the searchlight analysis and the ROI-based analysis we computed the percentage of 393	  

voxels in each of the ROIs that overlapped with the searchlight accuracy maps separately for each 394	  

participant. The average of the amount of overlap is shown in Table 4. The searchlight maps for decoding 395	  

intact line drawings showed the largest amount of overlap with all ROIs. More importantly, the overlap of 396	  

searchlight maps with the PPA and the OPA was larger for rotated than for contour-shifted line drawings. 397	  

By contrast, a similar amount of overlap was found for V1-4. In fact, the accuracy map of contour-shifted 398	  

line drawings overlapped with slightly more V1 and V2 voxels than the accuracy map of rotated line 399	  

drawings.  400	  

 401	  

Table 4. Average percentages (%) of overlap of each ROI with searchlight maps computed for the three 
image types. Standard errors of means are shown in parentheses.  
 

ROI Intact Rotated Contour-Shifted 

V1 19.3 (4.1) 13.2 (2,9) 18.8 (3.3) 

V2 11.4 (2.7) 9.3 (2.1) 11.4 (1.9) 

V3 9.8 (2.0) 8.6 (2.5) 7.8 (2.3) 

V4 10.5 (2.5) 11.6 (4.2) 6.8 (2.1) 

PPA 29.3 (6.0) 19.3 (5.4) 4.8 (1.6) 

OPA 28.8 (6.5) 16.8 (6.8) 10.2 (3.9) 

RSC 17.5 (4.9) 8.7 (3.1) 2.8 (1.5) 

LOC 8.1 (2.2) 4.5 (1.9) 3.0 (1.1) 

FFA 4.3 (1.5) 3.3 (1.5) 2.3 (1,1) 
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The group-mean accuracy map of decoding intact line drawings (Figure 4A) showed a large 402	  

cluster of voxels in the posterior visual cortex, including the bilateral parahippocampi, left precuneus, and 403	  

the lateral end of the left transverse occipital sulcus, as well as the bilateral fusiform and calcarine gyri. 404	  

This large cluster extended to the cerebellum bilaterally, but more to the left than the right cerebellum.  405	  

The second large cluster encompassed the right middle occipital gyrus extending to the right transverse 406	  

occipital sulcus. Another cluster included the right precuneus and the right posterior cingulate gyrus, 407	  

which partially overlapped with the right retrosplenial cortex. The group-mean accuracy map of decoding 408	  

rotated line drawings (Figure 4C) showed two clusters that largely overlapped with the accuracy map of 409	  

decoding intact line drawings.  One large cluster encompassed the left parahippocampal gyrus, the 410	  

bilateral fusiform gyri, and bilateral calcarine gyri and extended to the bilateral cerebellum.  The other 411	  

cluster included the right parahippocampal gyrus. By contrast, the group-mean accuracy map of decoding 412	  

contour-shifted line drawings (Figure 4E) revealed only one large cluster, which included bilateral 413	  

calcarine gyri, fusiform gyri, lingual gyri, and the cuneus, and extended bilaterally to the cerebellum (for 414	  

an exhaustive list of peak coordinates, see Table 5).  415	  
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Table 5.  Clusters identified in the searchlight analysis for within-type decoding of intact, rotated, and 
contour-shifted line drawings.  
 

Decoding 
Condition 

Peak (MNI coordinates) Volume 
(µl) Description x y z Accuracy (%) 

Intact 

2.5 90.5 -4.2 30.4 63234 

Occipital pole, calcarine gyri, fusiform 
gyri, parahippocampal gyri,  
left precuneus, left transvers occipital 
sulcus, bilateral cerebellum 

 
-35.0 85.5 25.8 25.4 5219 Right middle occipital gyrus,  

right transvers occipital sulcus 
 

-25.0 63.0 18.2 25.6 1922 Right parieto-occipital sulcus,  
right retrosplenial cortex 

 
30.0 45.5 68.2 22.0 391 Left superior parietal gyrus 

 
-32.5 30.5 -26.8 19.6 188 Right lateral occipito-temporal gyrus 

(fusiform gyrus) 
Rotated 

10.0 98.0 -14.2 28.0 50938 
Occipital pole, calcarine gyri, fusiform 
gyri, left parahippocampal gyrus, 
bilateral cerebellum 

 -22.5 50.5 -9.2 26.9 4531 Right parahippocampal gyrus 
 

27.5 85.5 33.2 22.7 375 Left inferior parietal angular gyrus, left 
middle occipital gyrus 

 
-47.5 80.5 -1.8 21.8 188 Right middle occipital gyrus 

Contour-
shifted -15.0 90.5 -6.8 29.3 54938 

Occipital pole, calcarine gyri, 
precuneuses, fusiform gyri, lingual 
gyri, bilateral cerebellum 

 -30.0 30.5 56.2 22.5 703 Right precentral gyrus 
 

42.5 33.0 28.2 23.7 563 Left posterior lateral fissure, left 
inferior parieto-supramarginal gyrus. 

 
-27.5 53.0 -9.2 21.9 484 Right medial occipito-temporal sulcus, 

right lingual gyrus  
 

50.0 25.5 48.2 22.6 453 Left inferior parieto-supramarginal 
gyrus 

 -2.5 20.5 76.2 21.7 422 Right paracentral gyrus, right 
paracentral sulcus 

 
-57.5 20.5 78.2 17.8 344 Right inferior parieto-supramarginal 

gyrus 
 

10.0 38.0 55.8 21.7 250 Left paracentral gyrus, left paracentral 
sulcus 

 
-10.0 43.0 78.2 21.4 234 Right paracentral gyrus, right 

paracentral sulcus 
 35.0 93.0 0.8 21.9 219 Left middle occipital gyrus 
 -25.0 88.0 25.8 21.0 203 Right superior occipital gyrus.  
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Figure 4. Neural decoding accuracy and max property maps. A) Searchlight locations with above-chance 
decoding of intact line drawings are highlighted in red.  B) Property with the highest error correlation 
between searchlight decoding and computational feature model (max property) at the searchlight locations 
with above-chance decoding of intact line drawings. C) Searchlight locations with above-chance decoding 
of rotated line drawings are highlighted in green.  D) Max property at the searchlight locations with 
above-chance decoding of rotated line drawings. E) Searchlight locations with above-chance decoding of 
contour-shifted line drawings are highlighted in blue. F) Max property at the searchlight locations with 
above-chance decoding of contour-shifted line drawings. 
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3.2.2. Important Image Property for Neural Decoding To determine the influence of several kinds 416	  

of structural properties of line drawings on the neural representation of scene categories, we correlated 417	  

error patterns from each searchlight location (that is, the off-diagonal elements of the confusion matrices) 418	  

to those from five computational models of scene categorization. Each of these computational models 419	  

relies exclusively on one of five structural properties:  contour orientation, length, curvature, and types 420	  

and angles of contour junctions (Walther & Shen, 2014). Each searchlight location was labeled according 421	  

to the contour property with the highest error correlation, the max property. Figure 4B, D, and F show 422	  

max property maps for the three image types, restricted to the locations that allowed for decoding of scene 423	  

categories significantly above chance (see Figures S4-S6 for unrestricted maps of error correlations and of 424	  

max property).  425	  

Representation of scene categories in early visual areas relies most heavily on contour length and 426	  

curvature for intact line drawings. Junction types are particularly important in foveal regions of early 427	  

visual cortex, and also the PPA, the OPA, and the RSC. For rotated line drawings, curvature dominates 428	  

early visual areas, while high-level visual areas continue to rely on junction properties. For contour-shifted 429	  

line drawings, early visual areas rely most on contour length and curvature. Only a few searchlight 430	  

locations in high-level visual areas allow for decoding of scene categories from contour-shifted line 431	  

drawings. These effects are quantified more precisely by assessing overlap of these maps with ROIs 432	  

(Figure 5). 433	  

Voxel statistics for the pre-defined ROIs show several interesting effects. First, representation of 434	  

natural scene categories in V1 and V2 relies most heavily on contour length and curvature for intact line 435	  

drawings. The importance of junctions increases steadily through V3 and V4, until junctions dominate the 436	  

representation of scene categories in the PPA (81.6% of PPA voxels have junction angle or type as max 437	  

property), the OPA (66.7%), and the LOC (97.9%). The high reliance on junction properties strongly 438	  

manifested even though L-junctions, critical to surface analysis (Biederman, 1987; Guzman, 1968), were 439	  

not considered in the computational category prediction (Walther & Shen, 2014).  Orientation statistics, by 440	  

comparison, play a minor role in the high-level visual areas, except for the RSC (51.8%). 441	  

Second, the involvement of orientation statistics in the representation of scene categories is 442	  

absent for randomly rotated line drawings as expected. Whereas contour orientation was the max property 443	  
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for 291 out of 2575 (11.3%) searchlight locations with significant decoding for intact line drawings, this 444	  

number fell to 22 out of 2402 (0.9%) searchlight locations with significant decoding for rotated line 445	  

drawings. Similarly, junction properties ceased to be the max property almost everywhere for contour-446	  

shifted line drawings. Junction types and angles were the max property for 1469 out of 2575 (57.0%) 447	  

searchlight locations for intact but only 38 out of 2021 (1.9%) searchlight locations for contour-shifted 448	  

line drawings. These findings confirm the effectiveness of our image manipulations as a tool for probing 449	  

the role of structural scene properties in the neural representation of scene categories.  450	  

Moreover, this shift in the reliance to other structural properties when deprived of contour 451	  

orientation or junctions demonstrates the flexibility of early visual areas to make use of any visual 452	  

regularities present in the images. However, junction properties appear to be critical for the neural 453	  

representation of scene categories in high-level visual areas. Rather than shifting to other structural 454	  

properties, these areas show a dramatic decrease in the number of searchlight locations that allowed for 455	  

the decoding of scene categories when junctions were disrupted.  456	  

 457	  

 
Figure 5.  Distribution of max properties within group-level ROIs for decoding of intact (I), rotated (R), 
and contour-shifted (S) line drawings. Only searchlight locations with above-chance decoding accuracy 
were counted. Coloring follows the same convention as Figure 4. 
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4. Discussion 458	  

In this study, we used multi-voxel pattern analysis (MVPA) to identify visual properties critical 459	  

to the categorical representation of real-world environments in the brain. Consistent with our previous 460	  

findings (Walther et al., 2009; 2011), we showed that categorical representations of scenes are distributed 461	  

across the human visual cortex. Importantly, they rely on different sets of contour properties along the 462	  

course of visual processing. In the PPA, OPA, and LOC, structural relations between contours as 463	  

embodied by the distribution of junctions need to be preserved to maintain category-specific brain activity 464	  

patterns. Whereas random shifting of contours led to chance-level decoding accuracy, random image 465	  

rotation did not undermine decoding accuracy in the PPA, OPA, and LOC.  466	  

Cross-type decoding was successful between intact and rotated, but not between intact and 467	  

contour-shifted line drawings in the PPA. Note that contour-shifted line drawings still preserved the 468	  

statistics of contour orientation, length, and curvature. Yet, this information was not sufficient to give rise 469	  

to a decodable neural representation of scene categories in the PPA, underscoring the necessity of junction 470	  

properties and, thereby, structural relations between contours for the PPA to encode scene categories.  471	  

In contrast, category decoding was successful with contour-shifted line drawings as well as 472	  

rotated line drawings from V1 to V4, suggesting that none of the image manipulations was detrimental to 473	  

the category-specificity of neural activity patterns for line drawings in early visual areas. Furthermore, 474	  

cross-type decoding was successful not only between intact and rotated but also between intact and 475	  

contour-shifted line drawings, indicating that the neural representations of scene categories were 476	  

compatible across the three line drawing types. In the early visual areas, category-specific neural activity 477	  

patterns are not undermined by disrupting a single type of visual statistics, suggesting that the early visual 478	  

areas represent scene categories only implicitly by relying on any available statistics indicative of scene 479	  

categories in a parsimonious manner. 480	  

Analysis of decoding errors confirmed previous findings that error patterns of decoding from the 481	  

neural activity in the PPA significantly correlate with those of human scene categorization of intact line 482	  

drawings (Walther et al. 2011). Critically, we here show that junction properties but not orientation 483	  

statistics of line drawings have to be preserved to maintain such brain-behavior correlation (for searchlight 484	  

analysis of error pattern correlation to behavior and its results, see supplementary material; Figure S7). 485	  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044156doi: bioRxiv preprint 

https://doi.org/10.1101/044156
http://creativecommons.org/licenses/by-nc-nd/4.0/


29	  
	  

Preservation of junctions starts to be important for brain-behavior error correlation as early as in V2. This 486	  

finding agrees well with neurophysiological studies in non-human primates showing that area V2 is 487	  

sensitive to changes in types or angles of contour junctions (Pasupathy & Connor, 2002; Peterhans & von 488	  

der Heydt, 1989).  489	  

In a searchlight analysis, we found early visual areas to rely on the distributions of orientation, 490	  

length and curvature of contours for the neural representation of scene categories. Junction properties, on 491	  

the other hand, became increasingly important in near-foveal regions of V1-4 and peaked in the PPA and 492	  

OPA. The importance of junctions for the neural representation of scene categories in the PPA persisted 493	  

when scene images were rotated by a random angle but disappeared when junctions were disrupted by 494	  

randomly shifting contours.  495	  

As should be expected, the importance of orientation statistics for the representation of intact line 496	  

drawings throughout visual cortex disappeared for rotated images and was supplanted by an increased 497	  

reliance on contour length and curvature. Searchlight analysis confirms the hierarchical aspect of neural 498	  

representations of scene categories. Once an image of real-world environments proceeds through the 499	  

cortical hierarchy, its neural representation relies progressively more on complex visual properties, from 500	  

orientation and length extracted in V1 (Hubel & Wiesel, 1962) to curvature and junction properties 501	  

extracted in V2 and V4 (Pasupathy & Connor, 2002; Peterhans & von der Heydt, 1989).  Recent 502	  

computational work showed that junction-like feature representations arise naturally when representations 503	  

of complex scenes are learned in simulated multi-layer neural networks (Zeiler & Fergus, 2014). 504	  

What would be the mechanisms for contour junctions affecting a neural representation of scene 505	  

categories in the PPA? While surface features such as color and orientation gradient may initiate contour 506	  

detection and surface delineation (by the primal sketch; Marr, 1982), they do not directly give a rise to the 507	  

high-level representation for visual recognition. In fact, visual recognition and categorization hardly 508	  

benefit from surface features once important contours are analyzed and their relations are determined 509	  

(Biederman & Ju, 1988). Instead, junctions present in two-dimensional (2D) images are informative of 510	  

three-dimensional (3D) structural information, because their types and angles are indicative of 511	  

arrangements and relations of surfaces in 3D space (Biederman, 1987; Guzman, 1968). The 3D structure 512	  

of natural environments can be inferred from the distribution of these viewpoint-invariant properties, 513	  
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namely junction types and angles. Furthermore, their invariance to changes in viewpoint makes these 514	  

properties particularly useful for visual recognition and categorization 515	  

In fact, 3D structure of scenes is likely to be related to some global scene properties, such as 516	  

whether a scene has an open or closed layout (Harel et al., 2013; Park et al., 2011).  For example, scenes 517	  

with an open layout are usually clutter-free and contain surfaces not obstructing one another, resulting in a 518	  

relatively small number of junctions.  In contrast, a closed layout is likely to contain more objects and 519	  

multiple surfaces overlaying one another, thus creating proportionally more junctions. Consistent with this 520	  

idea, recent neuroimaging evidence showed that the PPA is not only sensitive to changes in the statistics 521	  

of simple shapes (Cant & Xu, 2012), but also to junction angles (Nasr, Echavarria, & Tootell, 2014). 522	  

When combining these results with the sensitivity of the PPA to global scene properties (Kravitz et al. 523	  

2011; Park et al. 2011; Harel et al. 2013), a picture of the PPA arises as a visual area sensitive to several 524	  

high-level aspects of scenes, such as semantic category, global layout, or relation of the scene to real-525	  

world locations (Marchette, Vass, Ryan, & Epstein, 2014). A recent study clearly shows that the PPA 526	  

indeed can encode several aspects of a scene image such as its entry-level category, spatial layout (open 527	  

vs. closed), surface texture property, and content (man-made vs. natural) (Lowe, Gallivan, Ferber, & Cant, 528	  

in press). With scenes being spatial arrangements of surfaces and objects, the image properties driving 529	  

these diverse visual aspects of scenes are those encoding the relationship between surfaces in 3D space, 530	  

namely junction types and their angles. 531	  

Similar to the PPA, the OPA also relies more heavily on junction properties than contour 532	  

orientation. Considering its anatomical proximity to the early visual cortex, the OPA is likely to subserve 533	  

relatively primitive scene analysis. In fact, receptive fields in the OPA were reported to be smaller than 534	  

those in the PPA (MacEvoy & Epstein, 2007). Furthermore, the OPA preferentially activates to spatial 535	  

layouts over collections of multiple objects (Bettencourt & Xu, 2013; MacEvoy & Epstein, 2007). The 536	  

OPA has been suggested to contain precursory representations of spatial layout of scenes based on 537	  

relatively simple features (Baldassano et al., 2013; Dilks, Julian, Paunov, & Kanwisher, 2013; MacEvoy 538	  

& Epstein, 2007). We here propose that contour junctions are critical for these representations.   539	  

Objects are often diagnostic for scene category (Bar & Aminoff, 2003; Greene, 2013). For 540	  

instance, a beach scene is more likely to contain palm trees, beach balls, and umbrellas than desks, swivel 541	  
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chairs, and computer monitors, and vice versa in the case of an office scene. It is, therefore, natural that 542	  

the object-sensitive LOC contains information about objects, which can be exploited for decoding scene 543	  

category or identity (Harel et al., 2013; MacEvoy & Epstein, 2011). The LOC not only activates linearly 544	  

to the number of displayed objects (MacEvoy & Epsten, 2011), but it also encodes inter-object 545	  

relationships (Kim & Biederman, 2010; 2011). Given recent evidence for a strong functional relationship 546	  

between the LOC and PPA, it is highly likely that information about object relations in the LOC is 547	  

projected to the PPA (Baldassano et al., 2013), thus contributing the category-specific activity in the PPA. 548	  

Our finding that the neural representation of scene categories in the LOC relies almost exclusively on 549	  

junction properties is consistent with the reliance of invariant object recognition on non-accidental 550	  

properties, most specifically contour junctions (Biederman 1987), which provide cues to the three-551	  

dimensional structure of objects. In addition to their role in defining objects, contour junctions are crucial 552	  

to reconstruct spatial arrangements between large-scale surfaces that define the terrain and layout of a 553	  

scene, thereby contributing to the neural representations of real-world scene categories.  554	  

Random contour shifting also affected grouping properties that were not modeled explicitly in 555	  

our computation analysis (Walther & Shen, 2014): proximity between parallel contours, colinearity and 556	  

curvilinearity of contours indicating parallel surfaces in depth, and to some extent symmetry involving 557	  

multiple contours (Biederman, 1987). These non-accidental properties have in common that they are 558	  

defined by spatial relations between contours rather than by properties of individual contours. Junction 559	  

statistics capture these spatial relations to only a limited extent. It is therefore remarkable that decoding 560	  

error patterns in the PPA, OPA and LOC are predicted so well by junction statistics.  561	  

Unlike the other scene-selective visual regions, the RSC has been found to be critical for 562	  

embedding scenes in their real-world context or memory representations rather than for perceptual 563	  

analysis of scenes. For instance, the RSC plays a critical role in navigation and route learning (Aguirre & 564	  

D'Esposito, 1999; Maguire, 2001), and shows preferential neural activity for landmark buildings 565	  

compared to non-landmark buildings (Schinazi & Epstein, 2010). The RSC also mediates between 566	  

individual scenes in a broad view rather than representing exact perceptual instances of scenes (Epstein, 567	  

Parker, & Feiler, 2007; Epstein, Higgins, Jablonksi, & Feiler, 2007; Park & Chun, 2009). We found 568	  

neither significant decoding accuracy nor even significant activation in the RSC for line drawings of 569	  
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scenes (Table S1; for detailed analysis and results see Supplementary materials). We surmise that this may 570	  

be because line drawings too dissimilar from actual real-world settings that afford navigation or context-571	  

based memory retrieval.   572	  

 573	  

5. Conclusion 574	  

We have shown that the neural representations of scene categories rely on different image 575	  

properties throughout the processing hierarchy in the human visual cortex. In early visual areas, any 576	  

statistical regularities available in an image had the potential to elicit category-specific patterns of neural 577	  

activity. In the scene-selective high-level visual regions, especially in the PPA, accurate statistics of 578	  

junction properties was necessary to generate category-specific activity patterns and, importantly, to 579	  

establish high correlation of decoding error patterns with patterns of errors observed in human scene 580	  

categorization behavior. We conclude that non-accidental 2D cues to 3D structure, in particular contour 581	  

junctions, are causally involved in eliciting a neural representation of scene categories in the PPA and the 582	  

OPA by providing a reliable description of the 3D structure of real-world environments. Summary 583	  

statistics of orientations, on the other hand, are insufficient to elicit a decodable representation of scene 584	  

categories in these brain regions.585	  
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Supplementary Materials 710	  

 711	  

Localizing regions of interest  712	  

Following the main experiment scans, participants viewed blocks of color photographs of faces, scenes, 713	  

objects, and grid-scrambled objects as part of a standard face-place-object localizer scan (Epstein & Kanwisher, 714	  

1998).  Participants were asked to indicate immediate repetitions of images to maintain their attention to images. 715	  

Images subtended 640 x 640 pixels (approximately 11 º of visual angle) and were presented for 500 ms, followed by 716	  

a blank screen for 500 ms. Participants saw five blocks of 72 images, sub-divided into four mini-blocks of 18 717	  

randomly drawn images for each of the four categories. Including 12 second fixation periods before, between, and 718	  

after the blocks, the entire scan lasted for 7 minutes and 12 seconds. Scanning parameters for the face-place-object 719	  

localizer differed from those of the main experiment: TR = 3000 ms, TE = 28ms, flip angle = 80°, voxel size = 2.5 720	  

x.2.5 x 2.5 mm, matrix size = 90 x 100 x 40 voxels, 40 coronal slices.  721	  

The fMRI data were motion corrected, registered to the anatomical scans that had been aligned to the 722	  

functional volumes of the main experiment, spatially smoothed using a 4 mm FWHM Gaussian filter and converted 723	  

to percent signal change with respect to the mean of each run.  The pre-processed data entered a GLM analysis with 724	  

regressors for all four image types. ROIs were defined as contiguous clusters of voxels with significant contrasts (q 725	  

< 0.05; corrected using false discovery rate) of scenes > (faces and objects) for PPA, RSC (Epstein & Kanwisher, 726	  

1998) and OPA (Dilks et al., 2013); faces > (scenes and objects) for FFA (Kanwisher et al. 1997); and objects > 727	  

(scrambled objects) for LOC (Grill-Spector, Knouf, & Kanwisher, 2004; Grill-Spector, Kourtzi, & Kanwisher 728	  

2001). To obtain robust clusters for the RSC, the threshold had to be relaxed to p < 0.01 (uncorrected). We could not 729	  

find significant clusters corresponding to the OPA in three participants and used data of the remaining twelve 730	  

participants to perform decoding from the OPA.  731	  

Boundaries of early visual areas were established by stimulating the horizontal and vertical meridians of the 732	  

visual field (HV) in alternation (Kastner, Weerd, Desimone, & Ungerleider, 1998). During two HV scans (only one 733	  

HV scan for four participants, because we ran out of time), participants viewed flickering checkerboard patterns (2 734	  

Hz, a mix of white, red, green, blue, and yellow checkerboards), filling pairs of wedges (width: 10°) aligned with the 735	  

horizontal or vertical meridians, respectively. Fixation periods of 20 seconds were included between each alternation 736	  
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as well as at the beginning and the end of the scan (total scan duration: 3 min 20 sec). In order to establish the 737	  

anterior boundary of V4, a scan with alternating stimulation of the upper and lower visual field (UL) with similar 738	  

flickering checkerboard patterns along the diagonals was included as well, which lasted approximately 3 min. Scan 739	  

parameters for the HV and UL scans were as follows; TR = 2000 ms, TE = 28 ms, flip angle = 72°, voxel size = 740	  

1.953 x 1.953 x 2 mm, matrix size = 114 x 128 x 30 voxels, 30 coronal slices.   741	  

Data from the HV and UL scans were motion-corrected,  registered to the anatomical scan that had been 742	  

aligned to the functional volume of the main experiment, spatially smoothed (4 mm FWHM) and converted to 743	  

percent signal change. In separate GLM analyses, data from the HV scans were analyzed for a horizontal-versus-744	  

vertical meridian contrast and data from the UL scans for an upper-versus-lower visual field contrast.  745	  

Cortical surfaces for each participant’s brain were reconstructed from their anatomical scans (MPRAGE) 746	  

using Freesurfer.  To flatten the cortical surface, each hemisphere was virtually cut along the calcarine fissure and 747	  

four additional relaxation cuts. The corpus callosum and mid-brain structures on the medial surface were removed. 748	  

Boundaries between early visual areas were identified by projecting the beta-weight maps of the HV and UL 749	  

contrasts onto the flattened cortical surfaces using AFNI and SUMA. Following Hansen, Kay, and Gallant (2007) 750	  

we identified the V1/V2 border as the first vertical meridian, the V2/V3 border as the second horizontal meridian, 751	  

and V3/V4 border as the second vertical meridian. Since V4 represents the entire contralateral hemifield on the 752	  

lower bank of the calcarine fissure, we identified the anterior border of V4 as the closest boundary that encompassed 753	  

both upper and lower visual field. For two participants, the anterior V4 border could not be clearly delineated. Thus, 754	  

we only used data from the remaining thirteen participants to perform decoding from V4.  ROIs were drawn 755	  

conservatively to minimize the amount of overlap between neighboring areas. Following projection of surface-based 756	  

ROIs back into the brain volume of each participant, we excluded voxels that were assigned to more than one ROI. 757	  

 758	  

Univariate analysis  759	  

To explore the effect of the disruption of contour properties on the magnitude of the average neural activity 760	  

we conducted a standard general linear model (GLM) analysis using the AFNI software package, and deconvolved 761	  

block responses to the three image conditions for each voxel within the ROIs. Nuisance variables were included to 762	  

capture variance due to head motion (six affine transform parameters) and scanner drift (4th-degree polynomial). 763	  

Beta parameters were extracted for the three contrasts: Intact > Fixation, Rotated > Fixation, and Contour-shifted > 764	  
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Fixation. The beta parameters were averaged over voxels within each ROI.  The GLM analysis showed that the line 765	  

drawing images significantly activated all of the ROIs except for the RSC (Table S1). A one-way ANOVA showed 766	  

no significant difference in neural activity between intact, rotated, and contour-shifted line drawings in any of the 767	  

ROIs; Fs < 1 in V1, V2, PPA, RSC, and OPA; F(2, 28) = 1.327, p = .281, η2 = .087 in the V3; F(2, 24) = 1.785, p 768	  

= .189, η2 = .110 in V4; F(2, 28) = 1.923, p = .165, η2 = .121 in the LOC; and F(2, 28) = 1.727, p = .196, η 2= .110 in 769	  

the FFA. The mean activity might not be sensitive enough to differentiate between the three types of line drawings 770	  

despite some variety in neural tuning properties in the visual cortex. The line drawing scenes had naturalistic visual 771	  

statistics that often contain various visual features and objects, thus equating the mean activity to an image. 772	  

Moreover, the overall neural activity for any specific line drawings were likely to be smoothed out over the course 773	  

of a block.  These findings are consistent to the previous report that the multivariate approach can often recover the 774	  

visual content despite the equivalent univariate results (e.g., Kamitami & Tong, 2005).   775	  

 
Table S1. Results of univariate analysis. One-sample t-tests were conducted to compare average neural activity 
during presentation of the intact, rotated, and contour-shifted line drawings to average neural activity during fixation 
presentation. The mean (M) and standard errors of means (SEM), t-statistics, and the adjusted significance q are 
shown separately for each of the three contrasts: Intact > Fixation, Rotated > Fixation, and Contour-Shifted > 
Fixation.  

ROI df 
Intact > Fixation Rotated > Fixation Contour-Shifted > Fixation 

M SEM t q M SEM t q M SEM t q 

V1 14 .901 .152 5.923 5.51·10-5 .872 .146 5.972 5.51·10-5 .858 .158 5.442 8.67·10-5 

V2 14 .855 .140 6.108 5.66·10-5 .828 .146 5.683 5.66·10-5 .847 .148 5.725 5.66·10-5 

V3 14 .823 .104 7.918 1.85·10-6 .782 .100 7.793 1.85·10-6 .814 .102 8.019  1.85·10-6 

V4 12 1.15 .127 8.391  6.90·10-6 1.07 .136 7.329 9.11·10-6 1.11 .133 7.770 7.59·10-6 

PPA 14 .234 .0629 3.723 5.18·10-3 .213 .0645 3.308 5.18·10-3 .228 .0654 3.486 5.18·10-3 

OPA 11 .577 .126 4.105 1.75·10-3 .554 .116 4.282 1.75·10-3 .572 .121 4.247 1.75·10-3 

RSC 14 .0225 .134 .427 .938 .0107 .135 .242 .938 .0718 .0966 .762 .938 

LOC 14 .572 .113 5.082 3.86·10-4 .496 .107 4.634  3.86·10-4 .543 .117 4.640 3.86·10-4 

FFA 14 .371 .0907 4.088 1.66·10-3 .308 .0747 4.127 1.66·10-3 .371 .0998 3.716 2.30·10-3 
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Group-averaged confusion matrices of behavioral categorization and neural decoding   776	  

 

Figure S1. Group average confusion matrices of intact, rotated and contour-shifted line drawings obtained from a 
separate behavioral scene categorization experiment. The rows indicate true category labels presented to the 
participants, and columns indicate perceived category labels.  In each entry, the probability of a perceived category 
given a presented category. The entries are also shaded according to the conditional probability: 0 as white, and 0.25 
and higher as black.  
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Figure S2. Group average confusion matrices of neural decoding from V1-4.  
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Figure S3. Group average confusion matrices of neural decoding from the PPA, OPA, RSC, and LOC.  
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Un-thresholded error correlation and max property maps 777	  

  
Figure S4. Un-thresholded error correlation maps between searchlight analysis of intact line drawings and 
computational scene categorization of the same intact line drawings. All searchlight locations were included 
regardless of their decoding accuracy.  A-E) Searchlight locations are colored according to the strength of 
correlation between their neural decoding error patterns and computational error patterns (warm colors for positive 
and cold colors for negative correlation). F) Each searchlight location is colored according to the type of contour 
properties showing the maximum error correlation: orientation in dark blue, length in sky blue, curvature in green, 
junction types in red, and junction angles in orange. 
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Figure S5. Un-thresholded error correlation and max property maps for rotated line drawings. Coloring follows the 
same conventions as Figure S4.  
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Figure S6. Un-thresholded error correlation and max property maps for contour-shifted line drawings. Coloring 
follows the same conventions as Figure S4.   
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Error pattern correlation between brain and behavior: Searchlight analysis  778	  

We explored how disruption in contour orientation or junction properties affected the strength of error 779	  

pattern correlation between neural decoding and behavior in a voxel-wise manner, using the same linear regression 780	  

analysis as used for ROI-based analysis (see Methods in the main text). The linear mixed-effects modeling was 781	  

performed with the fitlme function in MATLAB R2014b for faster computation speed compared to R. For each 782	  

participant, the pattern of errors from the neural decoding analysis, i.e., the off-diagonal elements of the confusion 783	  

matrix, was stored at each voxel location and registered to MNI space. Separately for each of the three line drawing 784	  

types, neural decoding error patterns were Pearson-correlated to the group-averaged error patterns obtained from the 785	  

separate behavioral experiment, resulting in 3-by-3 error correlation values for each voxel. Error correlations were 786	  

transformed using Fisher’s z-transform. Using the same linear mixed-effects modeling shown in Figure 4C, we 787	  

tested the extent to which the three idealized models can predict the three-by-three error correlation patterns between 788	  

neural decoding and behavior. The coefficients were thresholded at p < .01 (two-tailed) with cluster correction of a 789	  

minimum cluster size of 12 voxels. The three coefficient maps and their overlap are shown in Figure S7. Significant 790	  

contributions from all three models (positive from same-type and intact-rotated, negative from intact-contour-791	  

shifted) are clearly discernible in both PPAs and the right RSC (red in Figure S7B). The overlap between the same-792	  

type and intact-rotated models is wide-spread throughout visual cortex (orange in Figure S7B).  Significant 793	  

contributions from all three models (positive from same-type and intact-rotated, negative from intact-contour-794	  

shifted) are clearly discernible in both PPAs and the right RSC (red in Figure S7B). 795	  
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Figure S7. Searchlight analysis of patterns of error correlation between brain and behavior. At each searchlight 
locations the error correlation analysis were performed using the same three models used in the ROI analysis. A) 
The coefficient maps of the same type, intact‒rotated, and intact‒contour-shifted model. Each searchlight location is 
colored according to the coefficients, warm colors for positive and cold colors for negative. B) Each searchlight 
location is colored according to the set of models explaining patterns of error correlations at that location: only one 
model (yellow, green and blue), two of the models (orange, violet, and pink), or all three models (red).  Consistent to 
the ROI results, the three idealized models significantly predicted  
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Neural decoding using the equal number of participants across all ROIs  796	  

 

Figure S8. Neural decoding results from 11 participants in which we can delineate all nine ROIs (V1-4, PPA, OPA, 
RSC, LOC, and FFA). The patterns of results were identical to those from all 15 participants. A) Average accuracy 
rates of within-type category decoding from ROIs. C) Average accuracy rates of cross-type category decoding from 
the ROIs. The only significant difference in cross-type decoding accuracy between Intact-to-Rotated/Rotated-to-
Intact and Intact-to-Contour-Shifted/Contour-Shifted-to-Intact was found in the PPA, F(1,10) = 12.154, p = .006, η2 

= .549  as indicated above the bracket bridging the two bars. Error bars are standard errors of means. Dashed lines 
indicate chance performance (1/6). The significance of the one-sample t-test (one-tailed) was adjusted for multiple 
comparisons (FDR) and marked above each bar, *q < .05, **q < .01, ***q < .001.  
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Figure S9. Average accuracy rates of cross-type category decoding between rotated and contour-shifted line 
drawings from the ROIs. Across the two types of line drawings, statistics of contour length and curvature are 
preserved, which is likely to underlie the robust cross-decoding accuracy in the early visual areas as well as in 
the OPA. By comparison, cross-decoding in the PPA is relatively weak. Error bars are standard errors of 
means. Dashed lines indicate chance performance (1/6). False discovery rate correction was employed to 
adjust significance for multiple comparisons. The significance of the one-sample t-test (one-tailed) is marked 
above each bar, *q < .05, **q < .01, ***q < .001. 
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