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Abstract— A ubiquitous feature of all living cells is their
growth over time followed by division into two daughter
cells. How a population of genetically identical cells maintains
size homeostasis, i.e., a narrow distribution of cell size, is
an intriguing fundamental problem. We model size using a
stochastic hybrid system, where a cell grows exponentially over
time and probabilistic division events are triggered at discrete
time intervals. Moreover, whenever these events occur, size is
randomly partitioned among daughter cells. We first consider
a scenario, where a timer (i.e., cell-cycle clock) that measures
the time since the last division event regulates cellular growth
and the rate of cell division. Analysis reveals that such a timer-
driven system cannot achieve size homeostasis, in the sense
that, the cell-to-cell size variation grows unboundedly with time.
To explore biologically meaningful mechanisms for controlling
size we consider three different classes of models: i) a size-
dependent growth rate and timer-dependent division rate; ii) a
constant growth rate and size-dependent division rate and iii)
a constant growth rate and division rate that depends both on
the cell size and timer. We show that each of these strategies
can potentially achieve bounded intercellular size variation, and
derive closed-form expressions for this variation in terms of
underlying model parameters. Finally, we discuss how different
organisms have adopted the above strategies for maintaining
cell size homeostasis.

I. INTRODUCTION

Stochastic hybrid systems (SHS) constitute an important
mathematical modeling framework that combines continuous
dynamics with discrete stochastic events. SHS are increas-
ingly being used to study noise and uncertainty not only in
engineering systems [1]–[10], but also in life science appli-
cations [11]–[18]. Here we use SHS to model a universal
feature of all living cells: growth in cell size (volume) over
time and division into two viable progenies (daughters). A
key question is how cells regulate their growth and timing
of division to ensure that they do not get abnormally large
(or small). This problem has ben referred to literature as
size homeostasis [19]–[32], and is a vigorous area of current
experimental research in organisms ranging from bacteria
[28], [32], algae [33], [34], yeast [35] and mammalian cells
[36], [37]. We investigate if phenomenological models of cell
size dynamics based on SHS can provide insights into the
control mechanisms needed for size homeostasis.

The proposed model consists of two state variables: V (t),
the size of an individual cell at time t, and a timer τ that
measures the time elapsed from when the cell was born
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(i.e., last cell division event). This timer can be biologically
interpreted as an internal clock that regulates cell-cycle
processes. Time evolution of these variables is governed by
the ordinary differential equations

V̇ = α(V, τ)V, τ̇ = 1, (1)

where α(V, τ) denotes the growth rate that can potentially
depend on both the cell size and timer. A constant α implies
exponential growth over time. Cell division events occur
at discrete time intervals with division rate f(V, τ). In the
stochastic formulation, the probability that the cell will divide
in the next infinitesimal time interval (t, t+ dt) is given by
f(V, τ)dt. Moreover, whenever a division event is triggered,
the timer is reset to zero and the size is reduced to βV ,
where β ∈ (0, 1) is a random variable following a beta
distribution. Assuming symmetric division, β is on average
half, and its variance quantifies the error in partitioning
of volume between daughters. The overall SHS model is
illustrate in Fig. 1 and incorporates two important noise
sources: randomness in timing of division and partitioning.

Fig. 1. SHS model for capturing time evolution of cell size. The size of
single cell V (t) grows exponentially with growth rate α(V, τ), where τ
represents a cell-cycle clock that measures the time since the last division
event. Cell division occurs at rate f(V, τ), which resets τ to zero, and
divides the size into half. Partitioning errors in size are quantified using the
random variable β. A sample trajectory of V (t) is shown with cycles of
growth and division.
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Depending on the functional forms of f and α, we
consider four different strategies to control size:

1) Timer controlled system: Both the growth and division
rates are functions of τ only.

2) Size dependent growth: Growth rate α(V ) is a function
of size and the division rate f(τ) is timer controlled.

3) Size dependent division: Constant growth rate and
division rate f(V ) is a function of size.

4) Size and timer dependent division: Constant growth
rate and division rate f(V, τ) that depends on both
variables.

Our key contribution is to show that the first strategy of a
timer controlled growth and division is not physiologically
meaningful, in the sense that, the variance in cell size
becomes arbitrarily large for a given mean cell size. Hence,
size-controlled growth and/or division is a key requirement of
size homeostasis. Analysis reveals that remaining strategies
(i.e., 2 − 4 above) can result in bounded cell size variance,
and we study how this variance is impacted by different noise
sources. In some cases, exact analytical formulas for the first
and second order moments of the cell size are derived in
terms of model parameters. When exact solutions are not
available, approximation moment closure methods are used
to investigate cell size statistics. Finally, we discuss how
diverse organisms have adopted these different strategies (or
a combination of them) to achieve size homeostasis.

II. TIMER DEPENDENT GROWTH AND DIVISION

We begin by considering a scenario, where both the growth
and division rates are arbitrary functions of τ , but do not
depend on V . Note that a constant growth/division rate would
be a special case of this class of system. The SHS can be
compactly written as

V̇ = α(τ)V, τ̇ = 1, (2)

with reset maps

V 7→ βV, τ 7→ 0 (3)

that are activated at the time of division. The probability
that a cell division event will occur in the next infinitesimal
time interval (t, t + dt) is given by f(τ)dt, where f can
be interpreted as a “hazard function” [38]. Let T1, T2,
. . . denote independent and identically distributed (i.i.d.)
random variables that represent the time interval between
two successive division events. Then, based on the above
formulation, the probability density function for Ti is given
by

Ti ∼ f(Ti)e
−

∫ Ti
y=0 f(y)dy, ∀x ≥ 0 (4)

with mean duration 〈Ti〉, where the symbol 〈 〉 is used
to denote the expected value of a random variable. Note
that a constant division rate in (4) would lead to an
exponentially distributed Ti. For this class of models, the
steady-state statistics of V is given by the following theorem.

Theorem 1: Consider a newborn cell with size V0 born at
time t = 0, and goes through cycles of growth and division
as per the SHS (2)-(3). Then

lim
t→∞
〈V (t)〉 =


0

〈
e
∫ Ti
y=0 α(y)dy

〉
< 2

∞
〈
e
∫ Ti
y=0 α(y)dy

〉
> 2

V0

〈
e
∫ Ti
y=0 α(y)dy

〉
= 2.

(5)

Moreover,

lim
t→∞
〈V 2(t)〉 =∞ (6)

when
〈
e
∫ Ti
y=0 α(y)dy

〉
= 2. �

Proof of Theorem 1: Let Vi−1 denote the cell size
just at the start of the ith cell cycle. Using (2), the size at
the time of division in the ith cell cycle is given by

Vi−1e
∫ Ti
y=0 α(y)dy. (7)

Thus, the size of the newborn cell in the next cycle is

Vi = Vi−1Xi, Xi := βie
∫ Ti
y=0 α(y)dy, (8)

where βi ∈ (0, 1) are i.i.d random variables following a
beta distribution and Xi are i.i.d. random variables that are
a function of βi and Ti. From (8), the mean cell size at the
start of ith cell cycle is given by

〈Vi〉 = V0〈Xi〉i (9)

and will grow unboundedly over time if 〈Xi〉 > 1, or go to
zero if 〈Xi〉 < 1. Using the fact that 〈βi〉 = 0.5 (symmetric
division of a mother cell into daughter cells), βi and Ti are
independent, (5) is a straightforward consequence of (9). It
also follows from (8) that

〈V 2
i 〉 = V 2

0 〈X2
i 〉i = V 2

0 〈Xi〉2i(1 + CV 2
Xi

)i (10)

where CV 2
Xi

represents the coefficient of variation squared of

Xi. When 〈Xi〉 = 1, i.e.,
〈
e
∫ Ti
y=0 α(y)dy

〉
= 2, then 〈Vi〉 = V0

and

〈V 2
i 〉 = V 2

0 (1 + CV 2
Xi

)i, (11)

which results in (6). �

In summary, above results show the unless functions α(τ)
and f(τ) are chosen such that〈
e
∫ Ti
y=0 α(y)dy

〉
=

∫ ∞
x=0

f(x)e
∫ x
y=0

(α(y)−f(y))dydx = 2 (12)

cell size would either grow unboundedly or go extinct.
Moreover, in the case of a stable mean cell size, the statistical
fluctuations in size would grow unboundedly. Hence, any
regulation of growth and division rates using an internal
cell-cycle clock will not lead to size homeostasis.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044131doi: bioRxiv preprint 

https://doi.org/10.1101/044131
http://creativecommons.org/licenses/by-nc-nd/4.0/


III. SIZE-DEPENDENT GROWTH AND TIMER-DEPENDENT
DIVISION

Recent work measuring sizes of single mammalian cells
from their birth to division have found lowering of growth
rates as cells become bigger [36], [37], [39]. These experi-
mental studies suggest that size homeostasis in mammalian
system relies on size-dependent regulation of growth rate. We
explore what forms of such regulation will lead to bounded
moments of V . Consider the following model

V̇ = α(V )V, τ̇ = 1, (13)

where growth rate is now size dependent and is a monoton-
ically decreasing function with

lim
V→∞

α(V ) = 0. (14)

We assume that V̇ in (13) is bounded, i.e.

α(V )V ≤ kmax, ∀V ≥ 0 (15)

As before, division events occur with rate f(τ) and
inter-division times are given by Ti in (4). We further
consider biologically meaningful functions f(τ) that are
monotonically increasing, i.e., probability of division
increases as more time elapses since cell birth. The result
below shows that if the growth rate for small cell size is
large enough, then all moments of V remain bounded and
converge to non-zero values.

Theorem 2: Let growth rate α(V ) satisfy (14)-(15) and
α0 := limV→0 α(V ) be chosen such that〈

eα0Ti
〉
> 2, (16)

then
0 < lim

t→∞
〈V (t)〉 < 2kmax〈Ti〉 (17)

lim
t→∞
〈V l(t)〉 < l〈Ti〉kmax

〈1− βl〉
lim
t→∞
〈V l−1(t)〉 (18)

where l ∈ {2, 3, . . . }, 〈Ti〉 is the mean cell-cycle duration,
and β ∈ (0, 1) is a random variable quantifying the error
in partitioning of volume between daughters. �

Proof of Theorem 2: Consider a newborn cell with
sufficiently small size born at time t = 0. Then, the mean
cell size will grow in successive generation iff the second
inequality in (5) is true for α0, which results in (16). In
essence, (16) ensures that cell size will not go extinct. Next
we show that the mean cell size is bounded from above.

Based on Dynkin’s formula, the time evolution of statis-
tical moments for the SHS (13) and (3) is given by

d〈V lτn〉
dt

=
〈
f(τ)V lτn

〉 (
〈βl〉 − 1

)
+

〈
∂V lτn

∂V
α(V )V

〉
+

〈
∂V lτn

∂τ

〉
,

(19)

for non-negative integers l and n [40]. The dynamics of the
mean cell size is obtained by setting l = 1 and n = 0

d〈V 〉
dt

= 〈α(V )V 〉 − 〈f(τ)V 〉
2

. (20)

Using (15), the fact that τ and V are positively correlated
and f is a increasing function, the above equation reduces
to the following inequality

d〈V 〉
dt

<kmax −
〈f(τ)〉 〈V 〉

2
. (21)

Since at steady state

〈f(τ)〉 =
1

Ti
, (22)

[41], (21) implies (17). From (19), the time evolution of the
lth order moment is obtained as

d〈V l〉
dt

=
〈
lα(V )V l

〉
−
〈
f(τ)V l

〉 〈
1− βl

〉
, (23)

which as before, using (15) can be reduced to the inequality

d〈V l〉
dt

<lkmax
〈
V l−1

〉
− 〈f(τ)〉

〈
V l
〉 〈

1− βl
〉
. (24)

Using (22), the above inequality implies (34). �

An extreme example of size-dependent growth is when
α becomes inversely proportional to size. In this case V̇ in
(13) is constant, and corresponds to cells growing linearly
in size as, as experimentally reported for some organisms
[37], [42]. For this case, the result below provides exact
closed-form expressions for the first and second-order
statistical moments of V .

Theorem 3: Let the growth rate be given as

α(V ) =
kmax
V

, (25)

and corresponds to the following SHS continuous dynamics

V̇ = kmax, τ̇ = 1. (26)

Then, the steady-state mean and coefficient of variation
squared of V (t) is given by

lim
t→∞
〈V (t)〉 =

kmax〈Ti〉
(
3 + CV 2

Ti

)
2

(27)

CV 2
V =

1

27
+

4
(

9
〈T 3

i 〉
〈Ti〉3 − 9− 6CV 2

Ti
− 7CV 4

Ti

)
27
(
3 + CV 2

Ti

)2
+

16CV 2
β

3(3− CV 2
β )(3 + CV 2

Ti
)
, (28)

where CV 2
Ti

and CV 2
β denote randomness in the inter-

division times (Ti) and partitioning errors (β), respectively,
as quantified by their coefficient of variation squared. �

Proof of Theorem 3: Due to space limitations we
omit the proof of this Theorem. We refer interested readers
to [43], [44] where we analyzed a similar systems. More
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specifically, in [43] we considered linear accumulation
of protein molecules inside a cell, and cell division
events occurs at times Ti that follow a general class of
distributions. Moreover, whenever the event occurs, proteins
are partitioned among daughter cells based on a binomial
distribution. The key difference between this theorem and
[43] lies in the stochastic reset that is activated at the time
of division: here, volume is reset via (3), while in [43] the
state variable (protein copy number) is reset based on a
binomial distribution. �

Interestingly, that the mean cell size in (27) not only
depends on the mean inter-division times 〈Ti〉, but also
on its second-order moment CV 2

Ti
. Thus, making the cell

division times more random (i.e., increasing CV 2
Ti

) will also
lead to larger cells on average. Moreover, (28) shows that
the magnitude of fluctuations in cell size (CV 2

V ) depend
on Ti through its moments up to order three. Note that if
CV 2

β = 0 (no partitioning errors) and inter-division times
approach their deterministic limit (i.e., Ti approaches a delta
distribution Ti = 〈Ti〉 with probability one), then

CV 2
V →

1

27
. (29)

This non-zero value for CV 2
V in the limit of vanishing

noise sources represent variability in size from cells being in
different stages of the deterministic cell cycle (i.e., some cells
have just been born while others are close to division). Our
result also allows for decomposing CV 2

V into biologically
meaningful terms representing contributions from different
noise sources. The terms from left to right in the right-
hand side of , terms from left to right in (28) represent
contributions to CV 2

V from i) Deterministic cell-cycle and
ii) Random timing of division events and iii) Partitioning
errors at the time of division. If fluctuations in Ti around
〈Ti〉 are small, then using Taylor series

〈T 3
i 〉/〈Ti〉3 ≈ 1 + 3CV 2

Ti
. (30)

Substituting (30) in (28) and ignoring CV 4
Ti

and higher order
terms yields

CV 2
V ≈

1

27
+

28CV 2
Ti

81
+

16CV 2
β

3(3− CV 2
β )(3 + CV 2

Ti
)
. (31)

It is important to point out that since β follows a beta
distribution with mean 〈β〉 = 1/2, CV 2

β < 1 in (28) and
(31). This constraint implies that CV 2

V always decreases
with increasing CV 2

Ti
, even though the last term in (31) is

inversely related to CV 2
Ti

.
In summary, our result show that appropriate regulation

of growth rate by size (as seen in mammalian cells) can be
an effective mechanism for achieving size homeostasis. We
next consider a different class of models where size-based
regulation is at the level division rather than growth.

IV. CONSTANT GROWTH RATE AND SIZE-DEPENDENT
DIVISION

Single cell observations in many different bacterial species
indicate exponential growth (i.e., constant α) in between divi-

sion events [45]–[47]. For such organisms, a size-dependent
division rate is essential for maintaining size homeostasis.
Towards that end, consider the following SHS continuous
dynamics with constant growth rate

V̇ = αV, τ̇ = 1, (32)

with the probability that a cell division event will occur
in the next infinitesimal time interval (t, t + dt) given
by f(V )dt, where f is now a monotonically increasing
function of V . The theorem below give sufficient conditions
on f for size homeostasis.

Theorem 4: Let there exist constants k > 0 and p > 0 such
that

f(V ) ≥ kV p, ∀V ≥ 0 (33)

and f0 := limV→0 f(V ) < 2α, then for the SHS given by
(32) and (3)

0 < lim
t→∞
〈V l(t)〉 <

(
lα

k(1− 〈βl〉)

) l
p

(34)

where l ∈ {1, 2, . . . }. �

Proof of Theorem 4: Consider a newborn cell with
sufficiently small size at time t = 0. Then, its division rate
is a constant f0 and the time to division is exponentially
distributed with mean 1/f0. Based on Theorem 1, the mean
size will grow over successive generations (and not go
extinct) for a constant growth rate iff〈

e
∫ Ti
y=0 α(y)dy

〉
=
〈
eαTi

〉
> 2. (35)

Using an exponentially distributed Ti with mean 1/f0 in the
above inequality yields f0 < 2α, which is the necessary and
sufficient condition for preventing cell size to go extinct. The
time evolution of moments is given by

d〈V l〉
dt

=
〈
lαV l

〉
−
〈
f(V )V l

〉 〈
1− βl

〉
≤lα

〈
V l
〉
− k

〈
V l+p

〉 〈
1− βl

〉
≤lα

〈
V l
〉
− k

〈
V l
〉1+ p

l
〈
1− βl

〉
,

(36)

which implies (34) and ensures boundedness of all moments.
�

A. The Sizer strategy

Next we analyze in detail a common example of size-
dependent division, that has been referred to in the literature
as the “sizer strategy” [48]–[50]. In this case, cells sense
how big they are and divide when they reach a critical size
threshold. Such as strategy can be implemented by choosing

f(V ) =

(
V

V̄

)p
(37)

where V̄ is a positive constant and p is a positive integer.
A large enough p corresponds to division events occurring
when cell size reaches a critical threshold V̄ . Below, we show

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044131doi: bioRxiv preprint 

https://doi.org/10.1101/044131
http://creativecommons.org/licenses/by-nc-nd/4.0/


how closure schemes can be used to get approximate formals
for the moments.

Using Dynkin’s formula for the SHS defined by (32) and
(37) results in the following moment dynamics

d
〈
V l
〉

dt
= lα

〈
V l
〉

+ V̄ −p
〈

(β − 1)
l
〉 〈
V l+p

〉
. (38)

Let
µ =

[
〈V 〉 ,

〈
V 2
〉
· · ·
〈
V L
〉]T

(39)

be a vector of moments up to order L. We refer to L as the
order of truncation for the moment dynamics. Using (38),
the time evolution of µ can be compactly written as

dµ

dt
= a+Aµ+ Cµ̄ (40)

for some vector a, matrices A and C that are dependent on
model parameters, and

µ̄ =
[〈
V L+1

〉
· · ·
〈
V L+p

〉]T
(41)

is the vector of higher order moments. Note that nonlineari-
ties in the stochastic systems lead to the well known problem
of closure, where time evolution of lower order moments µ
depends on higher-order moments µ̄. To solve (40), we use
moment closure techniques that express

µ̄ ≈ θ (µ) . (42)

B. Moment closure approximation

Using the closure (42), yields the following approximate
moment dynamics

dµ

dt
≈ a+Aµ+ Cθ (µ) . (43)

While various techniques are available to construct functions
θ [51]–[54], we use recently proposed derivative-matching
methods to close moment equations [17], [55]. For example,
consider L = 2 in (39) (second order of truncation) and
p = 2, then the higher-order moments are given by

µ̄ =
[〈
V 3
〉
,
〈
V 4
〉]T

. (44)

Based on derivative-matching, these higher-order moments
can be approximated in terms of lower-order moments as

µ̄ ≈

[〈
V 2
〉3

〈V 〉3
,

〈
V 2
〉6

〈V 〉8

]T
(45)

[17], [55]. It turns out that the closed moment equations
(43) corresponding to L = 2 and derivative-matching closure
yield analytical expressions for the steady-state moments for
any integer p in (37). In particular, the steady-state mean and
coefficient of variation squared of cell size is given by

〈V 〉 ≈ α
1
p V̄ 〈β〉−

3+p
2p

(
〈β〉 − 1/2 〈β〉2 CV 2

β − 1/2 〈β〉2
) 1+p

2p

(46)

CV 2
V ≈

(
2

2− 〈β〉CV 2
β − 〈β〉

) 1
p

− 1, (47)

respectively. For symmetric division (〈β〉 = 1/2), above
equations reduce to

〈V 〉 ≈ 2
1
pα

1
p V̄

(
3− CV 2

β

4

) p+1
2p

(48)

CV 2
V ≈

(
4

3− CV 2
β

) 1
p

− 1. (49)

These results qualitatively reproduce the behavior (as p in-
crease, noise in volume decrease) seen from computationally
expensive Monte Carlo simulations of the SHS (Fig. 2).

Fig. 2. Noise in the cell size (measured by the coefficient of variation
squared) as a function of the parameter p for division rate given by (37).
Comparisons are shown between results obtained via Monte Carlo simu-
lations and using closed moment equation (43) corresponding to 2nd and
3rd order truncation. While the qualitative behavior is similar, increasing the
order of truncation leads to a better quantitative match to results obtained
from Monte Carlo simulations. Partitioning noise is assumed to be zero.

Intriguingly, (48)-(49) show that the mean cell size is
affected by CV 2

β (magnitude of error in partitioning of
volume between daughter cells): larger partitioning errors
decrease the average cell size, but increase CV 2

V (see Fig. 3).
Another novel insight from (49) is that CV 2

V is independent
of cell growth rate (α) and cell size threshold V̄ . Indeed,
computing CV 2

V from Monte Carlo simulation results in the
exact same noise curve as in Fig. 2 for different values of α
and V̄ .

V. CONSTANT GROWTH RATE, SIZE AND TIMER
DEPENDENT DIVISION

In this section, we consider a constant growth rate (as
in the previous section) but with division rates f(V, τ) that
take information from both size and cell-cycle clock. Before
providing an examples of this form of regulation, we briefly
discuss sufficient condition on f(V, τ) for size homeostasis.

For a sufficient small cell size, division rate is given
by f0(τ) := limV→0 f(τ, V ). Then from Theorem 1, a
necessary and sufficient condition for cell size to not go
extinct is 〈

eαTi
〉
> 2 (50)
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Fig. 3. Mean cell size decreases with increasing noise in partitioning
(CV 2

β ). Average size obtained by running a large number of Monte Carlo
simulations is shown together with corresponding solutions obtained from
closed moment equations for 2nd and 3rd order truncation. Mean cell size
was normalized by the average size in the case of zero noise in partitioning
(CV 2

β = 0). Parameters used were α = 0.05 min−1, V̄ = 2.5 µm, and
p = 2.

where the distribution of Ti is given by (4) with f replaced
by f0. Moreover, a sufficient condition that ensures moments
of V remain bounded is

f(τ, V ) ≥ kτp1V p2 , ∀V ≥ 0, ∀τ ≥ 0 (51)

for some positive constants k, p1 and p2. Given the space
constraints we omit the proof of this result. Next, we analyze
in detail a recently uncovered size homeostasis strategy,
where the division rate is a function of both size and cell-
cycle clock.

A. The Adder strategy

Recent observations is many bacterial species have found
that timing of cell divisions are regulated so as to add a fixed
size from cell birth to division [21], [25], [27], [28], [56]–
[59]. Since cell size grows exponentially (i.e., constant α),
at any given time t the size added since birth would be given
by

∆V = V (t) (1− exp{−ατ}) (52)

which is determined by both V and τ . As per this “adder
strategy”, division is triggered when ∆V reaches a threshold.
Below, we discuss how this “adder strategy” is implemented
and perform a stochastic analysis of the model using closure
techniques.

A molecular implementation of the adder model was
proposed by [26], [57], [60] and shown in Fig. 4. It consists
of a time-keeper protein with level M that is produced at a
rate proportional to size. The continuous dynamics is now
given by

V̇ = αV, Ṁ = kV, (53)

where k is a positive proportionality constant. Cell division
event occurs when M(t) reaches a threshold M̄ , and when-
ever the even occurs state variables are reset as

V 7→ βV, M 7→ 0. (54)

Based on this formulation the volume added between two
division events will be fixed and given by

∆V =
αM̄

k
(55)

[26]. To practically implement the “adder strategy” we
consider the SHS (53)-(54) with a division rate

f (M) =

(
M

M̄

)p
(56)

for a positive integer p, where large enough p would cor-
respond to division occurring when M(t) = M̄ . We next
explore the moment dynamics of this systems using closure
schemes.

Fig. 4. SHS representation of a molecular implementation of the adder
strategy. A time-keeper protein (M ) is produced at a rate proportion to size,
an division is triggered when M reached a threshold M̄ . Just after division,
the protein is fully degraded. Based on the implementation, the size added
between two successive events is constant and given by (52).

B. Moment closure approximation

For the SHS (53)-(54), the time evolution of the statistical
moments is obtained as

d
〈
V lMn

〉
dt

=αl
〈
V lMn

〉
+ nk

〈
V l+1Mn−1〉− M̄−p 〈V lMn+p

〉
d
〈
V l
〉

dt
=αl

〈
V l
〉
− M̄−p

〈
(β − 1)

l
〉 〈
V lMp

〉
(57)

for l, n ∈ {0, 1, 2, . . . , }. The moment equations can be
closed using derivative-matching technique, which expresses
any higher-order moment as〈

V lMn+p
〉
≈
〈
V 2
〉 1

2 (l−1)l 〈M2
〉 1

2 (n+p−1)(n+p)

〈M〉−(n+p)(l+n+p−2) 〈V 〉−l(l+n+p−2)

〈VM〉l(n+p) (58)

in terms of moments of order up to two [55]. Closing the
moment dynamics of first and second order moments (i.e.,
second order truncations) yields the following steady-state
mean and noise levels for cell size

〈V 〉 ≈
α

p+1
p M̄

(
2k 〈β〉 − k 〈β〉2 CV 2

β − k 〈β〉
2
)

2p+1
2p

2
p+1
2p k

2p+3
2p 〈β〉

4p+3
2p

(59)
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CV 2
V ≈2

1
p 〈β〉

p+1
p(

2 〈β〉 − 〈β〉2 CV 2
β − 〈β〉

2
)
− p+1

p(
2− 〈β〉

p
p+1

(
2 〈β〉 − 〈β〉2 CV 2

β − 〈β〉
2
)

1
p+1

)
− 1. (60)

In the case of symmetric division (〈β〉 = 1/2), these
equations reduces to

〈V 〉 ≈
α

1
p+1M̄(3− CV 2

β )
1
2p+1

√
2k

(61)

CV 2
V ≈

1− 1

4

(
3− CV 2

β

2

) 1
p+1

(3− CV 2
β

4

)− p+1
p

−1.

(62)
Above results show that as observed earlier, increasing
partitioning errors will lead to smaller mean cell size but
larger noise. Moreover, CV 2

V monotonically decreasing with
increasing p consistent with results from Monte Carlo sim-
ulation (Fig. 5). A comparison of Fig. 3 and 5 also reveal
that for a given value of p, the adder provides lesser noise in
size compared to the sizer. Finally, equation (60) shows that
CV 2

V is independent of cell growth rate (α), and parameters
k and M̄ .

Fig. 5. Noise in the cell size (measured by the coefficient of variation
squared) as a function of the parameter p in Fig. 3. CV 2

V decreases
with increasing p as illustrated by Monte Carlo simulations and solutions
of closed moment equations based on a 2nd and 3rd order truncation.
Increasing the order of truncation results in a better match with Monte
Carlo simulations.

VI. CONCLUSION

Here we have used a SHS framework to model time evolu-
tion of size of a single cell undergoing cycles of growth and
division. Our goal was to uncover mechanisms responsible
for size homeostasis, i.e., ensuring a tight distribution of
cell size. The model is defined by three features: a growth
rate α(V, τ), a division rate f(V, τ), and a random variable
β ∈ (0, 1) that determines the reduction in size when division
occurs. Results show that growth/division rates that only
depend on the cell-cycle clock τ are not physiologically,
since they lead to unboundedly increasing cell size variance

(Theorem 1). The key contribution of this work is to identify
sufficient conditions on growth/division rates that prevent
extinction of cell size (i.e., 〈V 〉 → 0 as t → 0) and also
lead to bounded cell size variance (Theorems 2-4).

We also analyzed two commonly used models for size
homeostasis: the sizer (cell division occurs at a critical size)
and the adder (cell division occurs after adding a critical
size from cell birth). Interestingly, closure techniques were
shown to yield approximate analytical formulas for the first
and second order moments of cell size. There formulas reveal
a novel result that increasing degree of partitioning errors
CV 2

β in these models leads to smaller cells on average and
higher noise in cell size CV 2

V . Moreover, for many parameter
regimes the adder strategy was found to result in a lower
CV 2

V than the sizer.
In summary, theoretical tools for SHS can provide funda-

mental understandings of regulatory mechanisms maintain-
ing size homeostasis. Future work will focus on developing
computational tools for inferring the growth and division rate
functions from single-cell measurements of cell size over
many generations. It will be interesting to apply these tools
to data, and infer these functions in the context of different
biological organisms.
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