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ABSTRACT 

Differential elongation rates of RNA polymerase II (RNAP) have been posited to be a 

critical determinant for pre-mRNA splicing. Molecular dissection of mechanisms coupling 

transcription elongation rate with splicing requires knowledge of instantaneous RNAP elongation 

velocity at exon and introns. However, only average RNAP elongation rates over large genomic 

distances can be inferred with current approaches, and local instantaneous velocities of the 

elongating RNA polymerase across endogenous genomic regions remain difficult to determine at 

sufficient resolution to enable detailed kinetic analysis of RNAP at exons. In order to overcome 

these challenges and to investigate kinetic features of RNAP elongation at genomic scale, we 

have employed global nuclear run-on sequencing (GRO-seq) method to infer changes in local 

RNAP elongation rates across the human genome, as changes in the residence time of RNAP. 

Using this approach, we have investigated functional coupling between the changes in local 

pattern of RNAP elongation rate at the exons and their general expression level, as inferred by 

sequencing of mRNAs (mRNA-seq). Our genomic level analyses reveal acceleration of RNAP at 

lowly expressed exons and confirm the previously reported deceleration of RNAP at highly 

expressed exons, suggesting variable local velocities of elongating RNAP that are potentially 

associated with different inclusion or exclusion rates of exons across the human genome.  
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AUTHOR SUMMARY 

 Understanding the mechanisms that enable high precision recognition and splicing of 

exons is fundamental to many aspects of human development and disease. Emerging data 

suggest that the speed of the elongating RNA polymerase affects pre-mRNA splicing; however, 

systematic genomic investigation of RNAP elongation speed and pre-mRNA have been lacking. 

Using a recently developed method for detecting synthesized nascent RNAs, we have inferred 

variable elongation rates of RNA polymerase II (RNAP) that are associated with included exons, 

introns and excluded exons, across the human genome. From this analysis, we have identified 

acceleration of RNAP at exons as a major determinant of exon exclusion across the genome, 

while confirming previous studies showing deceleration of RNAP at included exons.  
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INTRODUCTION 

The amazing diversity of the proteome of a human cell is governed by expression of a 

large number of transcript variants from a surprisingly small number of genes [1]. Annotation of 

functional units in the genome, exons and introns, would be an impossible task without the 

knowledge of cDNA sequences. Excluding the first and last exons, which exhibit additional 

sequence and biochemical features, short internal exons are largely indistinguishable amidst long 

introns whose average size that can easily exceed 100,000 nucleotides. Thus, how the 

spliceosome precisely and accurately finds the exons to splice is a great mystery. Understanding 

the molecular mechanisms that enable high precision recognition and splicing of exons is 

fundamental to many aspects of normal development, as well as pathologic perturbations that 

result in disease [2,3].  

Multiple steps in pre-mRNA processing are coupled to transcription [4,5]. Alberto 

Kornblihtt and colleagues pioneered many of the earlier studies using minigene reporters have 

implicated kinetic coupling of transcription and splicing, in which slower transcription 

elongation rates modulate exon inclusion [6-9]. By swapping and testing different promoters 

driving a human fibronectin (FN) minigene reporter, the nature of the promoter, but not the 

strength of the promoter, was found to affect exon inclusion and exclusion, either by differential 

recruitment of splicing factors or by differential elongation rate of RNAP [6,7]. Analysis of the 

FN minigene model was further extended by use of a slow mutant of RNAP, which resulted in 

increased inclusion of the alternative exon. Most recently, the FN minigene reporter system was 

used to show exon inclusion can be modulated by RNAP C-terminal domain (CTD) 

phosphorylation upon UV irradiation and CTD phosphorylation can be tentatively associated 

with changes in RNAP elongation rate [8]. Although these studies using the artificial FN 
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minigene system have implicated kinetic coupling of transcription and splicing in which variable 

elongation rate modulate exon inclusion, it remains unclear whether such mechanism plays a 

critical role in expression of endogenous genes within their proper chromatin environment, and if 

so, how widespread this kinetic coupling mechanism is across the human genome. 

Recent advances in functional genomics and bioinformatics approaches have enabled 

molecular insights that are sometimes unattainable from analysis of individual genes and loci by 

aggregate analyses of many similar regions across the genome to reveal global patterns and 

trends. An average internal exon, excluding the first and last exons, is 147 nucleotides long, an 

exact length of DNA found around a nucleosome. The length of an exon being the exact length 

of a nucleosomal DNA [10] does not seem coincidental. Recent genome-wide studies 

demonstrate nucleosomes as a fundamental organizing unit and substrate of genetic processes. 

Exons may have evolved to just one nucleosome’s length to facilitate their identification and 

splicing [11]. Chromatin immunoprecipitation (ChIP) coupled to high throughput sequencing 

(ChIP-seq) analyses of histones have revealed increased nucleosomal density at exons, compared 

to surrounding intronic sequences [12-14], suggesting epigenetic coding of exons by differential 

positioning of nucleosomes. In an earlier chromatin immunoprecipitation coupled to DNA 

microarray (ChIP-chip) analysis of RNAP, Pam Silver and colleagues described an increase in 

RNAP density at exons genome-wide [15]. This increased occupancy of RNAP at exons has 

been interpreted as decreased rate of RNAP elongation at the exons. Potentially, this local 

pausing of RNAP at exons is due to the positioned nucleosomes at the exons that serve as “speed 

bumps” [16]. Consistent with this observation, nucleosomes have been shown to act as physical 

barriers to RNAP elongation in single molecule studies in vitro [17].  
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After normalizing for the observed increased nucleosomal density, significantly elevated 

levels of several histone modifications are still detected at exons across the genome, suggesting 

that positioned nucleosomes at exons are preferred substrates for histone modifying enzymes. 

DNA methylation is also selectively enriched at the exons [18], suggesting that nucleosomes are 

the relevant in vivo substrates for the DNA methyltransferases [19]. Among the histone 

modifications analyzed thus far, trimethylation of lysine residue 36 of histone H3 (H3K36me3) 

exhibits the strongest correlation with the internal exons [12,13,20], suggesting that epigenetic 

modifications of histones and DNA may facilitate recognition of exons by slowing down the 

elongating RNAP. However, a systematic investigation of RNAP elongation rate at exons and 

introns across the human genome has been limited.  

To investigate elongation velocity of RNAP across the human genome at a resolution that 

enables systematic analysis at exons, introns and other features, we have used global nuclear run-

on sequencing (GRO-seq) method to infer “residence time” of RNAP across the genome and 

local changes in RNAP elongation rate. Combining this approach and deep sequencing of 

mRNAs, we report that variable RNAP elongation rates are associated with excluded exons, 

introns and included exons. We further investigate this global pattern of RNAP elongation rate 

with pre-mRNA splicing to implicate splicing and transcription factors in modulating the 

elongation velocity of RNAP. 

 

RESULTS 

To infer RNAP elongation rates across the genome, we have performed GRO-seq [21], in 

a trio of normal diploid human cell lines (H1 embryonic stem cells, IMR90 fibroblasts and 
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MCF10A breast epithelial cells). This method allows the detection of nascent transcripts from 

the engaged RNAP, and thus can be used as a measure of elongating RNAP density across the 

genome, averaged over millions of nuclei. In general, GRO-seq tag density is inversely 

correlated with the RNAP elongation rate [21] and is reflective of the “residence time” of RNAP 

at a particular genomic region. We aligned the resulting GRO-seq reads, as well as publically 

available H3K36me3 ChIP-seq reads relative to Ensembl annotation and averaged the mapped 

tag density of all internal exons and flanking sequences. GRO-seq tag density was enriched at 

exons and centered around the exon midpoint (Figure 1A-C). H3K36me3 tag density was also 

enriched in exons and peaked slightly downstream of the exon midpoint in all three cell lines 

(Figure 1A-C). These results are consistent with the previous studies [12,15,22,23] that show 

exonic pausing of RNAP [24] and epigenetic definition of exons [20]. The slight spatial 

difference between GRO-seq peak and H3K36me3 peak positions relative to the exon midpoint 

is consistent with the notion that nucleosome limits RNAP elongation [17]. 

 

Computational modeling of nascent RNA mapping 

To interpret the spatial difference in GRO-seq data in greater detail and to investigate if 

GRO-seq data can infer local kinetic properties of the elongating RNAP, we have developed an 

in silico model to predict GRO-seq tag density along an artificial segment of DNA. We 

incorporated the experimentally determined parameters of the GRO-seq protocol [21] and 

defined arbitrary changes in the RNAP elongation rate along a transcribed segment to model 

GRO-seq tag densities that would result from variable RNAP elongation rates. Our model DNA 

contained three large 1,000 bp segments separated by two small internal 150 bp segments. We 
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have defined relative RNAP elongation rates on the three 1000 bp segments as “1”, and on the 

two 150 bp segments as “0.5” and “2”, respectively (Figure 1D). We also assumed constant 

RNAP loading and promoter escape rates at the 5’ end. 10,000 entities were simultaneously 

simulated and the relative GRO-seq tag density was calculated at single nucleotide resolution 

(see Methods for details). An approximate two-fold enrichment of GRO-seq tags was obtained at 

the region with two-fold decrease of RNAP elongation rate (Figure 1E), reflecting the increased 

RNAP residence time. An opposite pattern of GRO-seq tag density at the region where RNAP 

moves twice as fast was determined from our simulation (Figure 1E), reflecting the decreased 

RNAP residence time. These simulation results indicate that GRO-seq tag density is inversely 

correlated with RNAP elongation rate, reflecting residence time of RNAP at the region, and can 

potentially be used to infer relative changes in local RNAP elongation rate. The shift of the 

simulated GRO-seq tag density peak from the peak of underlying RNAP elongation rate agrees 

well with our experimental results (Figure 1A-C) and points to functional association between 

H3K36me3 and RNAP transcription elongation. 

  

Identification of distinct patterns of RNAP elongation velocity using GRO-seq data 

In order to analyze the fine-scale patterns within our GRO-seq density data at exons of 

transcribed genes, we divided the pool of internal exons into ten groups by exonic GRO-seq tag 

density mapped on either Watson or Crick strands of the genome (blue or red lines, respectively, 

in Figure 2). Group 1 contains exons with exonic GRO-seq tag density equal 0, and the rest of 

the exons were equally divided into 9 groups by exonic GRO-seq tag density. Averaged GRO-

seq tag densities at single nucleotide resolution of each group show modest difference in intronic 
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GRO-seq tag density level among the groups, which range from 1 to 13 (Figure 2). However, 

this stratification of our GRO-seq data revealed much more dynamic changes in GRO-seq tag 

density at the exons relative to introns. Three obvious patterns of exonic GRO-seq tag density 

relative to the intronic GRO-seq tag density can be classified that match our in silico model. First 

pattern (dip) is marked by a decrease in GRO-seq tag density at the exon from the flanking 

introns (Figure 2, group 1 to 5, upper panel), suggesting that RNAP is accelerating through these 

exons. Second pattern (flat) shows the same tag density as the bordering intronic level (Figure 2, 

groups 6 and 7, upper panel). Third pattern (peak) is characterized by an increase in GRO-seq tag 

density from the intronic level (Fig 2, group 8 to 10, upper panel), suggesting that RNAP is 

decelerating at these exons. Similar GRO-seq pattern was observed in all the three cell lines we 

have examined (Figures S1, S2 and S3). In addition, we confirmed that the difference in GRO-

seq pattern was independent of GC content (Figure S4), Br-UTP labeling efficiency in GRO-seq 

experiments (Figure S5) and mappability of the 35-nucleotide sequence tags (Figure S6). 

 

Development of GRO-seq pattern score to quantify spatial differences in RNAP elongation 

velocity 

To capture and analyze the spatial information of our GRO-seq data, we have developed 

a simple calculation which we defined as GRO-seq “pattern score” for each exon as a ratio of 

exonic tag density to tag density of flanking introns (Figure 3A). The GRO-seq pattern score also 

serves to normalize GRO-seq tag density at the exons to the densities found that flanking introns. 

Distributions of GRO-seq pattern scores were consistent with averaged GRO-seq tag density 

patterns (Figure S7A). In groups with lower exonic GRO-seq tag densities, more exons have 
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GRO-seq pattern scores lower than 1 (Figure S7A, group 1 to 5), corresponding to decreased 

GRO-seq level in exonic regions compared with the flanking introns; and in groups with higher 

exonic GRO-seq tag densities, more exons have GRO-seq patterns scores higher than 1 (Figure 

S7, group 8 to 10), corresponding to enriched GRO-seq tags in exonic regions. This observation 

is also consistent among all three cell lines examined (Figure S7B and S7C). Although we define 

three major categories using GRO-seq pattern score normalized to the flanking intronic GRO-seq 

tag densities, GRO-seq pattern scores show a continuous distribution (Figure S8)  

 

mRNA-seq analysis to determine the fate of exons with different GRO-seq pattern scores 

In order to characterize the exonic RNAP elongation rates inferred from GRO-seq pattern 

score and exon expression level, we performed mRNA sequencing (mRNA-seq) analysis to 

measure relative representation exons in polyadenylated RNAs [25,26]. We determined the 

relative expression level for each exon, defined as exonic mRNA-seq tag density that perfectly 

correlated with the standard metric of RNA abundance, RPKM (RNA sequence tags per 

kilobase) [26]. GRO-seq pattern score correlated with exon expression level and mRNA level in 

all three cell lines (Figure 3B and Figures S9 and S10). Specifically, in MCF10A, about 70% of 

exons with zero mRNA-seq tags recovered have dips of GRO-seq pattern in the exonic regions 

(Figure 3B, left most bar). This percentage drops gradually as the observed mRNA level 

increases (Figure 3B, right most bar). The correlation between GRO-seq tag density pattern and 

mRNA level (Figure S11) suggests that exon inclusion may be regulated by elongation rate, i.e. 

slower elongation rate in exons than in flanking introns correlates with exon inclusion, while 

faster exonic elongation rate correlates with exon exclusion [6,7,22]. In addition, we did not 
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observe similar mRNA level-related shift in RNAP ChIP-seq pattern score (Figures S12, S13), 

suggesting that GRO-seq may be more sensitive for characterizing engaged RNAP position 

compared with conventional ChIP-seq [27,28].  

Based on this observation of distinct GRO-seq pattern at exons relative to introns 

reflecting changes in RNAP elongation rate, we examined GRO-seq tag densities of two sets of 

exons arising from the same gene: one set with zero mapped mRNA-seq tags from the same 

annotated genes (excluded exons), and the other set with more than zero mapped mRNA-seq tags 

(included exons). We found that difference between the GRO-seq at individual exons from the 

same gene showed that included exons tend to have higher GRO-seq tag densities than the 

excluded exons of the same annotated gene (Figure S14A). When we plot distribution of 

difference in GRO-seq tags between included and excluded exons, we also observed that the 

included exons exhibit higher GRO-seq tag densities than the excluded exons from the same 

gene (Figure S14B). We have investigated whether we have enough resolution to determine if 

individual exons can be confidently assigned its mRNA inclusion rates as well as reliable GRO-

seq pattern score. At the current sequencing depth and read length, determination of relative 

exclusion rate of individual exons in the expressed mRNA remains difficult, as well as 

ascertainment of GRO-seq patterns at individual exons. This limited resolution at individual 

exons arises from the nature of short read length of mRNA-seq precluding meaningful and 

accurate measures of exon inclusion/exclusion rate for most of the exons and relatively low-

depth coverage of GRO-seq at current throughput used in our analysis. With increases in 

sequencing depth and length, it may be possible to make direct comparison of exon 

inclusion/exclusion rates with the GRO-seq pattern score. Thus, our observation at the genomic, 
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aggregate level should be taken with some caveats concerning exon inclusion and exclusion 

rates. 

 

Comparison of GRO-seq with ChIP-seq data 

One of the key histone modifications associated with transcription elongation and with 

exons is H3K36me3 [13,29]. We investigated how patterns of GRO-seq tag density is correlated 

with the patterns of H3K36me3 at exons. In all three cell lines, H3K36me3 levels corresponded 

to the larger GRO-seq pattern scores for exons within the Group 9 and 10 (Figure S2). In other 

groups of exons, however, we did not detect correspondence between GRO-seq and H3K36m3 

patterns (Figure 2 and Figure S14). This result was further confirmed by analyzing H3K36me3 

pattern score distributions over the 10 groups with different exonic GRO-seq tag density ranges, 

which correspond to different GRO-seq patterns as we have already described in Figure 2. 

Unlike the GRO-seq data, distribution of H3K36me3 pattern score did not show a similar shift as 

the one of GRO-seq pattern score (Figures S8A and S15). In addition, we did not observe a 

similar correlation between mRNA level and H3K36me3 pattern (Figure 4 and Figure S16). 

Lastly, we did not observe strong association between GRO-seq pattern and H3K36me3 pattern 

or other epigenetic patterns (H4K20me3, H3K9me3 and DNA methylation) (data not shown). 

Combined, these results suggest that nucleosome and its modifications at exons are not be 

sufficient to determine GRO-seq patterns and transcription elongation rate at exons. 

 

Statistical modeling of RNAP elongation velocity and gene expression 
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Based on the patterns of GRO-seq and ChIP-seq data, we explored importance of RNAP 

elongation rate as inferred by GRO-seq and histone and DNA methylation in determining exon 

inclusion inferred from mRNA-seq data. We used variable selection of a random forest model to 

explore relative contribution of GRO-seq and epigenetic marks to exon inlcusion, which was 

estimated based on the exon abundance from mRNA-seq data (Table 1). A random forest model 

was built to predict exon inclusion and contained exonic intensity and pattern score of six 

epigenetic features that correlate with exon definition, and they are GRO-seq, H3K36me3 [12-

14], H4K20me3 [12-14], H3K9me3 [30], DNA methylation [18,19], RNAP positioning 

[12,15,22,23] and exon length as a negative control. Backward variable selection was applied to 

remove variables with lower importance than exon length in predicting exon inclusion, resulting 

in 6 variables remained within the reduced model (Table 1). Compared with the prediction 

accuracy of the full model, which was 0.8199±0.0035 (Cohen's kappa coefficient: 

0.4205±0.0096), the reduced model reached prediction accuracy 0.8138±0.0033 (Cohen's kappa 

coefficient: 0.4073±0.0092), showing only minor loss of prediction power. Among the remaining 

six variables, GRO-seq exonic tag density showed the highest importance, followed by GRO-seq 

pattern score, while H3K36me3, DNA methylation and H4K20me1 were less important for the 

model. These results show some consistency with recent study showing relationship between 

mRNA splicing and H3K36me3 levels [31]. Furthermore, our results suggest that RNAP 

elongation rate (as determined by GRO-seq tag density and pattern score) has a more direct 

effect on exon inclusion and may incorporate histone and DNA methylation information at the 

exons to refine mRNA splicing.  

 

Accelerators and decelerators of RNAP elongation 
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Sequence features may also contribute to changes in RNAP elongation velocity at the 

exons. We asked whether there are differences in splicing factor binding motifs at or near exons 

with distinct GRO-seq pattern scores within each cell line. We analyzed the densities of putative 

known splicing factors binding sites annotated in the SFmap [32,33] for the exons of expressed 

transcripts in each of the three cell lines. Putative motifs of 17 known splicing factors [33] were 

analyzed. One-sided Wilcoxon rank sum tests were performed to test for difference in the 

mapped motifs at exons that exhibit distinct GRO-seq pattern scores corresponding to 

acceleration (pattern score ≤ 0.5) or deceleration (pattern score >2) of RNAP elongation rate in 

each of the three cell lines. Results from both exonic regions (Figure 5A) and flanking intronic 

regions (Figure 5B) revealed several splicing factors that exhibit differences in motif density in 

three cell lines. We found that splicing factor binding site motifs are more abundant at or near 

exons with faster RNAP elongation rate, suggesting that these splicing factor binding site motifs 

may refine the epigenetic definition of exons to facilitate exclusion of nucleosomally marked 

exons. In addition, H1 ESC displayed more contrasting densities of splicing factor binding site 

motifs than IMR90 and MCF10A cells, suggesting that embryonic stem cells might have a 

distinct splicing regulatory network from the two somatic cells as previously suggested [34].  

We extended this splicing motif enrichment analysis to exons that display different 

RNAP velocities between cell lines, to identify potential cell type specific regulators that may 

contribute to different RNAP velocities at given exons. We analyzed exons that show distinct 

GRO-seq pattern scores in pairwise comparisons of H1 ESC, IMR90 and MCF10A (Figure S17). 

Results from both exonic regions and flanking intronic regions revealed a number of splicing 

factor binding sites that exhibit differences in density among the cell types (Figure S18). In 

particular, difference of expression level (as determined by mRNA-seq) of Tra2beta gene among 
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the three cell lines was consistent with the difference in their exonic motif density among the cell 

lines examined (Figure S18 and Table S2). Similarly, hnRNPA1 showed consistent expression 

patterns and intronic motif density (Figure S18 and Table S2) across the three cell lines. Again, 

differences in splicing factor motif density between ESC H1 and the either of the two cell lines 

were more pronounced than between the two differentiated somatic cell lines, IMR90 and 

MCF10A. 

We performed a more systematic analysis of sequence motif densities by exhaustive 

enumeration of 6, 7 and 8-mers at exons with different RNAP elongation rates among the three 

cell types. We identified additional sequence elements that associate with different RNAP 

elongation rate at exons. The resulting significant n-mers of potential RNAP 

accelerators/decelerators from the search were compared against databases of known cis-

regulatory motifs (TRANSFAC [35] and JASPAR [36]) using STAMP [37] (Tables S3, S4, S5 

and S6). In light of recent work implicating transcription factor binding sites in pausing of RNAP 

and induction of exon inclusion [38], our results suggests a number of diverse transcription 

factor binding sites may play a role in regulating RNAP elongation rate at exons. Thus, these 

enriched sequence features at distinct GRO-seq patterns suggest that splicing and transcription 

factors contribute to the regulation of transcription elongation rate and to the coupling of 

transcription elongation with mRNA splicing [31,39].  

 

DISCUSSION 

Previous efforts in measuring the elongation rate of RNAP across endogenous genes 

employed a range of methods including reverse transcription PCR, nuclear run-on assays and 
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fluorescence in situ hybridization. The most recent method developed by Singh and Padgett [40] 

uses DRB to transiently stall the RNAP at the promoter, then release the stalled RNAP by 

washing away the drug and collecting the RNA at various time points and performing real-time 

RT-PCR quantification of the nascent RNA. Using this method, RNAP elongation rate was 

estimated at about 3.8 Kb per minute. However, this is an average speed of RNAP across a large 

genomic region and several domains. Based on this average rate, RNAP will transit through an 

exon in about 2.3 seconds, suggesting that this standard approach for investigating RNAP transit 

times would require high temporal and spatial resolution to detect potential acceleration or 

deceleration that may occur at exons. Due to these challenges in measuring variations of local 

RNAP elongation rate, our understanding of genome-wide relationship between variable RNAP 

elongation rates and pre-mRNA splicing has remained obscure. 

Here, we described an approach using global run-on sequencing (GRO-seq) methods for 

analyzing changes in local rates of RNAP elongation across the human genome. We have 

applied this method to human embryonic stem cells, differentiated lung fibroblasts and breast 

epithelial cells. By combining GRO-seq with mRNA-seq experiments, we have begun to 

investigate pre-mRNA splicing and RNAP elongation velocity. Our results suggest highly 

variable RNAP elongation rates that are associated with different expression levels of exons as 

inferred by mRNA-seq. We also find that transcription elongation associated modification, 

H3K36me3, is invariantly marked at exons regardless of the changes in RNAP elongation rate at 

exons, suggesting that modulation of RNAP elongation rate and splicing may function 

independently of epigenetic definition of exons at global level. Consistent with this view, our 

computational analyses identified distinct sequence features that are associated with acceleration 

and deceleration of RNAP. Known splicing factor motifs as well as transcription factor motifs 
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are differentially enriched at exons with distinct RNAP elongation rates inferred by GRO-seq 

patterns at exons. Functional studies are in progress to investigate and explore sequence features 

associated with acceleration and deceleration of elongating RNAP.  

Our study provides a potentially simple analytic framework for a systematic and genome-

wide analysis of RNAP elongation rate as it relates to pre-mRNA splicing. By leveraging this 

analytical framework, we hope to extend the current work to analyze mechanisms that couple 

pre-mRNA splicing to transcription elongation. A major limitation of our current approach is the 

lack of accurate genome-wide measurements of exon inclusion/exclusion rates, which precludes 

our analysis from exploring various mechanisms that can modulate coupling of RNAP 

elongation rate to pre-mRNA splicing at individual exons, but emerging new sequencing 

technologies may help us to overcome this problem [41]. Nonetheless, at a broad genomic level, 

our study suggests that kinetic control of RNAP elongation [42] may be a general mechanism for 

regulating pre-mRNA splicing across the human genome and provides a new analytic framework 

for deciphering the mechanisms of kinetic coupling of transcription and pre-mRNA splicing.  

 

 
METHODS 

Cell culture 

MCF10A cells were cultured with DMEM/F12 media supplemented with 2.5% Horse 

serum, 0.5ug/mL hydrocortisone, 10ug/mL Insulin, 20ng/mL EGF and 100ng/mL cholera toxin. 

IMR90 cells were cultured in MEM with Earles salts with 10% FBS. H1 embryonic stem cells 

(WiCell) were cultured on feeder-free matrigel coated plates in Dulbecco's modified Eagle 
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medium (DMEM)/F12, supplemented with 1% MEM-nonessential amino acids (Invitrogen), 1 

mM L-glutamine, 1% penicillin-streptomycin, 50 ng/mL basic fibroblast growth factor 

(Millipore), N2 supplements (1X), and B27 supplements (1X) (Invitrogen).   

Sequencing Libraries 

Global run-on and library preparation for sequencing was performed based on the 

previously published method [21]. Briefly, intact nuclei were isolated and incubated for 5 

minutes at room temperature with nucleosides and bromo-UTP analog to allow RNA polymerase 

to incorporate and nucleosides in a nuclear run-on reaction. The nascent RNA from the run-on 

reaction was isolated and subjected to immunoaffinity purification using the Br-dUTP antibody 

(Santa Cruz Biotech). After first round of purification of nascent RNA, the resulting RNA was 

ligated with 5' small RNA adaptor RNA (Illumina) and subjected to second Br-UTP purification. 

The resulting RNA is further ligated using 3' adaptor RNA and subjected to third round of 

purification.  The final purified RNA was reverse transcribed and PCR amplified and size 

selected (150-250bp) using polyacrylamide gel electrophoresis to generate the final sequencing 

libraries. We performed the short RNA sequencing protocol of the GRO-seq libraries per 

instructions from the manufacturer (Illumina).  

For ChIP-seq assays, we have followed the ChIP protocol previously published [43]. The 

ChIP DNA was further processed by the Yale Center for Genomic Analysis following the 

instructions from Illumina. For mRNA-seq, total RNA was processed by the Yale Center for 

Genomic Analysis for Whole Transcriptome Analysis (mRNA-seq) following the instructions 

from the manufacturer (Illumina). 

Simulation of GRO-seq 
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Because we were interested in internal exons, architecture of the gene segment used for 

simulation contains three 1 kb segments separated by two 150 bp regions, named region I and 

region II in the 5’-to-3’ direction. The base positions were named from 1 to 3,300 in the 5’-to-3’ 

direction. We assumed that starting from the 5’ end, transcription elongation rate ν0 is a constant 

before it hits region I. In region I, the rate decreases with constant deceleration -αI until it equals 

½ν0. From the 3’ end of region I, the rate starts to increase with constant acceleration αI back to 

ν0. The constant was derived by satisfying the symmetry of GRO-seq tag density pattern around 

midpoint of region I. The elongation rate around region II was derived similarly, with the highest 

rate in region II being 2ν0. By assuming constant RNAP loading rate at 5’ end, i.e. constant 

temporal distance (T) between each two adjacent RNAP molecules, RNAP positions along the 

gene segment is derived from transcription elongation rate and the position of the RNAP 

molecule most close to 5’ end of the gene segment (P5’). 10,000 identical gene segment entities 

were simulated. RNAP positions of each entity were calculated with the assumption of uniform 

distribution of P5’ in [1, Tν0]. GRO-seq tags were then generated as 100 nucleotide segments 

upstream of RNAP positions, which is the length of run-on extension in GRO-seq [44]. GRO-seq 

tag density of each position was determined by counting the number of GRO-seq tags covering 

the position. 

Alignment of sequencing reads and calculation of tag density 

The libraries were submitted for sequencing on the Illumina platform on one or more 

lanes and data has been submitted to Array Express with the following accession numbers: E-

MTAB-742 for GRO-seq data, E-MTAB-743 for mRNA-seq data and E-MTAB-744 for ChIP-

seq data.  
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All alignments were performed using the Bowtie algorithm version 0.12.5 [45] against 

hg18 assembly of human genome with a maximum of 2 mismatches per sequence allowed and 

only uniquely mapped reads retained. Read length and numbers and fraction of uniquely aligned 

reads of each channel were summarized in Table S1. Specifically for mRNA-seq, reads that 

failed to align to hg18 were then aligned to splice junction libraries built using Ensembl gene 

annotation by ERANGE version 3.2 [26]. Reads that uniquely aligned to hg18 (and splice 

junction libraries) in different lanes of each library were pooled to generate tag density data. To 

calculate tag density, aligned reads, except the ones from mRNA-seq, were extended to a 

fragment length of 200 nucleotides in the 5'-to-3' direction. The tag density of a genomic position 

was calculated as the number of tags that cover the position. For GRO-seq and mRNA-seq, tag 

densities of the positive strand and negative strand were calculated separately, which only 

counted tags aligned to the corresponding strand. In contrast, tags aligned to the two strands were 

pooled to calculate tag density for ChIP-seq. 

Sample Selection for Data Analysis 

Total number of internal exons in Ensembl annotation was 524,514, where identical 

exons presenting in different isoforms were counted multiple times. Because GRO-seq tags were 

strongly enriched within about 1,000 bp downstream regions of 5’ ends and 10,000 bp 

downstream regions of 3’ ends of genes [44], we removed exons overlapping with these regions 

on the same strand from the Ensembl data set of internal exons. To avoid the effect of GRO-seq 

tag enrichment in antisense direction relative to the direction of gene transcription [44], we also 

excluded exons overlapping with 2,000 bp-upstream regions of 5’ ends of genes on the opposite 

strand. The number of unique exons that met these two criteria was 146,343. 
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For each cell line analyzed, we further selected exons by the following two criteria. 

Firstly, exonic mRNA-seq tag density should be greater than 1 or equal 0. We define exons with 

mRNA-seq tag density greater than 1 as included exons, and equal to 0 as excluded exons. Exons 

with mRNA-seq tag density within (0,1] were eliminated. Secondly, for each exon, mRNA-seq 

tag density of at least one exon in the corresponding transcript isoforms should be greater than 1, 

i.e. at least one exon was included. This criterion was to ensure that the exon was in at least one 

expressed transcript isoform. Number of exons meeting these two additional criteria was 86,091 

in IMR90, 94,638 in MCF10A, and 103,600 in ESC H1. The resulting samples of exons were 

used in the analysis of patterns of sequencing tag densities and de novo motif searching. In 

pattern score calculation, if not both exonic or intronic tag density equal 0, 0 was replaced by 

0.0001, while if exonic and intronic tag density both equal 0, the exon was eliminated from 

relative analysis -- relationship between GRO-seq pattern score, H3K36me3 pattern score, 

RNAP pattern score and RNA level, and comparison of number of known splicing factor motifs 

among cell lines 

In the random forest models (described in detail below), we used sample of IMR90 exons 

further selected by the criterion of exon length being greater than 200 bp. The reason for the 

200bp cutoff in this analysis was that we observed strong linear correlation between exon length 

and H3K36me3 and weak linear correlation between exon length and H4K20me1, H3K9me3, 

RNAP density when exon length is smaller than about 200 bp. This correlation seems to be a 

result of the low resolution of ChIP-seq and the length of nucleosome footprint being the 

resolution limit in these experiments. In addition, DNA methylation level exhibited similarly 

strong correlation with exon length, as nucleosomes may be in vivo substrate for the DNA 

methyltransferases [19]. In order to limit these artificial associations due to limited resolution 
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and to nucleosomes being the smallest organizing unit and substrate for biomolecular processes 

in the genome, exons with length smaller than 200 bp were removed from the sample for random 

forest models, resulting in a sample size of 10,779 exons in IMR90. 

Random Forest Model of Exon Inclusion 

Random forest is a widely used regression and classification method [46]. In our analysis, 

random forest classification models were built using ‘randomForest’ package version 4.6-2 [47] 

with R version 2.12.1. We have defined the response binary variable, ‘exon inclusion’, as 1 if 

exonic mRNA-seq tag density is greater than 1, and as 0 if exonic mRNA-seq tag density is 0. 

The full model contains 13 continuous predictor variables shown in Table 1. Variables with ‘tag 

density’ in their names are exonic density of corresponding sequencing tags, ‘DNA methylation 

level’ is exonic density of methylcytosines reported by Lister et al. [18], variables with ‘pattern 

score’ in their names are pattern scores of corresponding sequencing tag density or 

methylcytosines density, and ‘exon length’ is the length of the corresponding exon. Because 

alternative splicing of internal exons is not known to be regulated by exon length, we included 

‘exon length’ in the full model as a negative control to select variables with high predictive 

power, i.e. importance. The data set was randomly divided into 50% training and 50% test. 

Model was built on training set, and its performance was assessed by prediction accuracy on test 

set. Variable importance of the model was measured in “mean decrease in accuracy over all 

classes” [47]. Mean and variance of prediction accuracy and variable importance were measured 

by randomly resampling training and test sets 10 times. In backward variable selection starting 

from the full model, variable with the lowest importance (mean of 10 repeated sampling) was 

removed in each iteration. Backward variable selection was performed until ‘exon length’ was 

removed. Re-fitting the model with the remaining variables resulted in the reduced model. 
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Searching for Known Splicing Factor Motifs 

Putative motifs of know splicing factors were identified using the SFmap [32,33] with 

scoring function WR, window size 50 and high stringency. Sequence conservation was not 

considered. For both exonic and intronic motifs, only those within 100 bp upstream or 

downstream of splice sites were considered. Length-normalized exonic frequency, i.e. density, of 

each motif was calculated by dividing the number of the putative motifs in exonic region by the 

exonic length (≤ 200 bp). Similarly, intronic density of each motif was calculated by dividing the 

number of the putative motifs in intronic region by intronic length (200 bp).  

De Novo Motif Identification 

Frequencies of nucleotide 6-, 7- and 8-mers generated by exhaustive enumeration of 

conformations were tested by Wilcoxon rank sum test to identify overrepresented ones within the 

splice site-adjacent regions of exons with cell type-specific GRO-seq peaks. Samples of exons 

with exonic GRO-seq tag enrichment in cell line a compared to cell line b was selected by the 

following criteria: the exon is in group 1 or 2 of cell line a, and in group 8, 9 or 10 of cell line b. 

Significance of p values was estimated by Benjamini and Hochberg false discovery rate (FDR) 

procedure [48]. Motif trees of significant n-mers (motifs) with FDR < 0.05 in each comparison 

were generated by STAMP [37], and motifs with distance values less than 0.05 were grouped 

into one cluster. Significant matches to known cis-regulatory motifs of individual motif clusters 

were identified by TOMTOM (version 4.6.1, default settings) [49] using TRANSFAC database 

(version 10.2) [35] containing 811 motifs and JASPAR Core database (2009 release) [36] 

containing 476 motifs. We report the results for IMR90 vs ESC H1 and MCF10A vs ESC H1; 
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comparisons between IMR90 vs MCF10A did not reveal any significant difference in motif 

occurrence within either adjacent exonic regions or intronic regions of splice sites. 

 

 
ACKNOWLEDGMENTS 

We would like to thank Joan Steitz and the members of our laboratories for critical comments on 

the manuscript and helpful discussions.  

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

25 

REFERENCES  

1.	 Graveley	 BR	 (2001)	 Alternative	 splicing:	 increasing	 diversity	 in	 the	 proteomic	 world.	

Trends	in	genetics	:	TIG	17:	100-107.	

2.	 David	 CJ,	 Manley	 JL	 (2010)	 Alternative	 pre-mRNA	 splicing	 regulation	 in	 cancer:	

pathways	and	programs	unhinged.	Genes	&	development	24:	2343-2364.	

3.	Poulos	MG,	Batra	R,	Charizanis	K,	Swanson	MS	(2011)	Developments	in	RNA	splicing	and	

disease.	Cold	Spring	Harbor	perspectives	in	biology	3:	a000778.	

4.	 Maniatis	 T,	 Reed	 R	 (2002)	 An	 extensive	 network	 of	 coupling	 among	 gene	 expression	

machines.	Nature	416:	499-506.	

5.	Moore	MJ,	Proudfoot	NJ	(2009)	Pre-mRNA	processing	reaches	back	to	transcription	and	

ahead	to	translation.	Cell	136:	688-700.	

6.	 Cramer	 P,	 Pesce	 CG,	 Baralle	 FE,	 Kornblihtt	 AR	 (1997)	 Functional	 association	 between	

promoter	structure	and	transcript	alternative	splicing.	Proceedings	of	the	National	

Academy	of	Sciences	of	the	United	States	of	America	94:	11456-11460.	

7.	 Cramer	 P,	 Caceres	 JF,	 Cazalla	 D,	 Kadener	 S,	 Muro	 AF,	 et	 al.	 (1999)	 Coupling	 of	

transcription	with	alternative	splicing:	RNA	pol	II	promoters	modulate	SF2/ASF	and	

9G8	effects	on	an	exonic	splicing	enhancer.	Molecular	cell	4:	251-258.	

8.	Muñoz	MJ,	Pérez	Santangelo	MS,	Paronetto	MP,	de	La	Mata	M,	Pelisch	F,	et	al.	(2009)	DNA	

damage	 regulates	 alternative	 splicing	 through	 inhibition	 of	 RNA	 polymerase	 II	

elongation.	Cell	137:	708-720.	

9.	Luco	RF,	Pan	Q,	Tominaga	K,	Blencowe	BJ,	Pereira-Smith	OM,	et	al.	(2010)	Regulation	of	

alternative	splicing	by	histone	modifications.	Science	327:	996-1000.	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

26 

10.	Luger	K,	Mader	AW,	Richmond	RK,	Sargent	DF,	Richmond	TJ	(1997)	Crystal	structure	of	

the	nucleosome	core	particle	at	2.8	A	resolution.	Nature	389:	251-260.	

11.	 Tilgner	H,	Nikolaou	C,	 Althammer	 S,	 Sammeth	M,	Beato	M,	 et	 al.	 (2009)	Nucleosome	

positioning	 as	 a	 determinant	 of	 exon	 recognition.	 Nature	 structural	 &	 molecular	

biology	16:	996-1001.	

12.	Dhami	P,	Saffrey	P,	Bruce	AW,	Dillon	SC,	Chiang	K,	et	al.	 (2010)	Complex	exon-intron	

marking	 by	 histone	 modifications	 is	 not	 determined	 solely	 by	 nucleosome	

distribution.	PloS	one	5:	e12339.	

13.	 Schwartz	 S,	 Meshorer	 E,	 Ast	 G	 (2009)	 Chromatin	 organization	 marks	 exon-intron	

structure.	Nature	structural	&	molecular	biology	16:	990-995.	

14.	 Ernst	 J,	 Kellis	 M	 (2010)	 Discovery	 and	 characterization	 of	 chromatin	 states	 for	

systematic	annotation	of	the	human	genome.	Nature	biotechnology	28:	817-825.	

15.	Brodsky	AS,	Meyer	CA,	Swinburne	IA,	Hall	G,	Keenan	BJ,	et	al.	(2005)	Genomic	mapping	

of	RNA	polymerase	 II	 reveals	 sites	of	 co-transcriptional	 regulation	 in	human	cells.	

Genome	biology	6:	R64.	

16.	 Oesterreich	 FC,	 Bieberstein	 N,	 Neugebauer	 KM	 (2011)	 Pause	 locally,	 splice	 globally.	

Trends	in	cell	biology	21:	328-335.	

17.	 Hodges	 C,	 Bintu	 L,	 Lubkowska	 L,	 Kashlev	 M,	 Bustamante	 C	 (2009)	 Nucleosomal	

fluctuations	govern	the	transcription	dynamics	of	RNA	polymerase	II.	Science	325:	

626-628.	

18.	 Lister	 R,	 Pelizzola	 M,	 Dowen	 RH,	 Hawkins	 RD,	 Hon	 G,	 et	 al.	 (2009)	 Human	 DNA	

methylomes	 at	 base	 resolution	 show	 widespread	 epigenomic	 differences.	 Nature	

462:	315-322.	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

27 

19.	 Chodavarapu	 RK,	 Feng	 S,	 Bernatavichute	 YV,	 Chen	 P-Y,	 Stroud	 H,	 et	 al.	 (2010)	

Relationship	 between	 nucleosome	 positioning	 and	 DNA	methylation.	 Nature	 466:	

388-392.	

20.	Luco	RF,	Allo	M,	Schor	IE,	Kornblihtt	AR,	Misteli	T	(2011)	Epigenetics	in	alternative	pre-

mRNA	splicing.	Cell	144:	16-26.	

21.	Core	L,	Waterfall	 J,	Lis	 J	 (2008)	Nascent	RNA	sequencing	reveals	widespread	pausing	

and	 divergent	 initiation	 at	 human	promoters.	 Science	 (New	York,	NY)	 322:	 1845-

1848.	

22.	 Nogues	 G,	 Kadener	 S,	 Cramer	 P,	 de	 la	 Mata	 M,	 Fededa	 JP,	 et	 al.	 (2003)	 Control	 of	

alternative	pre-mRNA	splicing	by	RNA	Pol	II	elongation:	faster	is	not	always	better.	

IUBMB	life	55:	235-241.	

23.	 Fox-Walsh	 K,	 Fu	 X-D	 (2010)	 Chromatin:	 The	 Final	 Frontier	 in	 Splicing	 Regulation?	

Developmental	cell	18:	336-338.	

24.	Carrillo	Oesterreich	F,	Preibisch	S,	Neugebauer	KM	 (2010)	Global	 analysis	of	nascent	

RNA	reveals	transcriptional	pausing	in	terminal	exons.	Mol	Cell	40:	571-581.	

25.	 Wang	 Z,	 Gerstein	 M,	 Snyder	 M	 (2009)	 RNA-Seq:	 a	 revolutionary	 tool	 for	

transcriptomics.	Nature	reviews	Genetics	10:	57-63.	

26.	 Mortazavi	 A,	 Williams	 BA,	 McCue	 K,	 Schaeffer	 L,	 Wold	 B	 (2008)	 Mapping	 and	

quantifying	mammalian	transcriptomes	by	RNA-Seq.	Nature	methods	5:	621-628.	

27.	 Kharchenko	 PV,	 Alekseyenko	 AA,	 Schwartz	 YB,	 Minoda	 A,	 Riddle	 NC,	 et	 al.	 (2010)	

Comprehensive	 analysis	 of	 the	 chromatin	 landscape	 in	 Drosophila	 melanogaster.	

Nature.	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

28 

28.	 Larschan	 E,	 Bishop	 EP,	 Kharchenko	 PV,	 Core	 LJ,	 Lis	 JT,	 et	 al.	 (2011)	 X	 chromosome	

dosage	compensation	via	enhanced	transcriptional	elongation	in	Drosophila.	Nature	

471:	115-118.	

29.	Li	B,	Carey	M,	Workman	J	(2007)	The	role	of	chromatin	during	transcription.	Cell	128:	

707-719.	

30.	 Saint-André	 V,	 Batsché	 E,	 Rachez	 C,	 Muchardt	 C	 (2011)	 Histone	 H3	 lysine	 9	

trimethylation	 and	 HP1γ	 favor	 inclusion	 of	 alternative	 exons.	 Nature	 structural	

&amp;	molecular	biology	18:	337-344.	

31.	 Kim	 S,	 Kim	 H,	 Fong	 N,	 Erickson	 B,	 Bentley	 DL	 (2011)	 Pre-mRNA	 splicing	 is	 a	

determinant	of	histone	H3K36	methylation.	Proceedings	of	the	National	Academy	of	

Sciences	of	the	United	States	of	America	108:	13564-13569.	

32.	 Akerman	 M,	 David-Eden	 H,	 Pinter	 RY,	 Mandel-Gutfreund	 Y	 (2009)	 A	 computational	

approach	for	genome-wide	mapping	of	splicing	factor	binding	sites.	Genome	biology	

10:	R30.	

33.	Paz	I,	Akerman	M,	Dror	I,	Kosti	I,	Mandel-Gutfreund	Y	(2010)	SFmap:	a	web	server	for	

motif	analysis	and	prediction	of	splicing	factor	binding	sites.	Nucleic	acids	research	

38:	W281-285.	

34.	Wu	 JQ,	 Habegger	 L,	 Noisa	 P,	 Szekely	 A,	 Qiu	 C,	 et	 al.	 (2010)	 Dynamic	 transcriptomes	

during	neural	differentiation	of	human	embryonic	stem	cells	revealed	by	short,	long,	

and	paired-end	sequencing.	Proceedings	of	the	National	Academy	of	Sciences	of	the	

United	States	of	America	107:	5254-5259.	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

29 

35.	 Wingender	 E,	 Dietze	 P,	 Karas	 H,	 Knuppel	 R	 (1996)	 TRANSFAC:	 a	 database	 on	

transcription	 factors	 and	 their	DNA	binding	 sites.	Nucleic	 acids	 research	 24:	 238-

241.	

36.	Vlieghe	D,	Sandelin	A,	De	Bleser	PJ,	Vleminckx	K,	Wasserman	WW,	et	al.	(2006)	A	new	

generation	 of	 JASPAR,	 the	 open-access	 repository	 for	 transcription	 factor	 binding	

site	profiles.	Nucleic	acids	research	34:	D95-97.	

37.	 Mahony	 S,	 Benos	 PV	 (2007)	 STAMP:	 a	 web	 tool	 for	 exploring	 DNA-binding	 motif	

similarities.	Nucleic	acids	research	35:	W253-258.	

38.	Shukla	S,	Kavak	E,	Gregory	M,	Imashimizu	M,	Shutinoski	B,	et	al.	(2011)	CTCF-promoted	

RNA	polymerase	II	pausing	links	DNA	methylation	to	splicing.	Nature	479:	74-79.	

39.	de	Almeida	SF,	Grosso	AR,	Koch	F,	Fenouil	R,	Carvalho	S,	et	al.	(2011)	Splicing	enhances	

recruitment	of	methyltransferase	HYPB/Setd2	and	methylation	of	histone	H3	Lys36.	

Nature	structural	&	molecular	biology	18:	977-983.	

40.	 Singh	 J,	 Padgett	RA	 (2009)	Rates	of	 in	 situ	 transcription	and	 splicing	 in	 large	human	

genes.	Nature	structural	&	molecular	biology	16:	1128-1133.	

41.	Eid	J,	Fehr	A,	Gray	J,	Luong	K,	Lyle	J,	et	al.	(2009)	Real-time	DNA	sequencing	from	single	

polymerase	molecules.	Science	(New	York,	NY)	323:	133-138.	

42.	 Kornblihtt	 AR,	 de	 la	 Mata	 M,	 Fededa	 JP,	 Munoz	 MJ,	 Nogues	 G	 (2004)	 Multiple	 links	

between	transcription	and	splicing.	RNA	10:	1489-1498.	

43.	Kim	TH,	Abdullaev	ZK,	Smith	AD,	Ching	KA,	Loukinov	DI,	et	al.	 (2007)	Analysis	of	 the	

vertebrate	 insulator	 protein	 CTCF-binding	 sites	 in	 the	 human	 genome.	 Cell	 128:	

1231-1245.	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

30 

44.	Core	LJ,	Waterfall	JJ,	Lis	JT	(2008)	Nascent	RNA	sequencing	reveals	widespread	pausing	

and	divergent	initiation	at	human	promoters.	Science	322:	1845-1848.	

45.	 Langmead	 B,	 Trapnell	 C,	 Pop	 M,	 Salzberg	 SL	 (2009)	 Ultrafast	 and	 memory-efficient	

alignment	of	short	DNA	sequences	to	the	human	genome.	Genome	biology	10:	R25.	

46.	 Svetnik	V,	 Liaw	A,	Tong	C,	 Culberson	 JC,	 Sheridan	RP,	 et	 al.	 (2003)	Random	 forest:	 a	

classification	and	 regression	 tool	 for	 compound	classification	and	QSAR	modeling.	

Journal	of	chemical	information	and	computer	sciences	43:	1947-1958.	

47.	Liaw	A,	Wiener	M	(2002)	Classification	and	Regression	by	randomForest.	R	News	2.	

48.	Benjamini	Y,	Hochberg	Y	(1995)	Controlling	the	False	Discovery	Rate	-	a	Practical	and	

Powerful	Approach	to	Multiple	Testing.	Journal	of	the	Royal	Statistical	Society	Series	

B-Methodological	57:	289-300.	

49.	Gupta	GP,	Nguyen	DX,	Chiang	AC,	Bos	PD,	Kim	 JY,	 et	al.	 (2007)	Mediators	of	vascular	

remodelling	co-opted	for	sequential	steps	in	lung	metastasis.	Nature	446:	765-770.	

	

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

31 

FIGURE LEGENDS 

Figure 1. Patterns of GRO-seq tag density are related with changes of RNAP elongation rate. 

(A-C) Average mapped sequence tag densitites in MCF10A (A), IMR90 (B) and H1ESC (C) are 

shown. GRO-seq tag density and H3K36me3 ChIP-seq tag density of internal exons were 

averaged around exon midpoints (vertical dashed line) in the three cell lines, respectively. The 

red curves represent exons on the positive strand, and the blue curves represent exons on the 

negative strand. Average internal exon lengths are 146.7 bp in MCF10A, 146.7 bp in IMR90, 

and 146.2 bp in H1ESC. (D) Profile of RNAP elongation rate as the model assumption. Three 1 

kb DNA segments are separated by two 150 bp regions, I and II, with vertical dashed lines 

showing their start sites, midpoints and end sites from left to right. RNAP elongation rate 

changes in region I and region II to achieve two-fold deceleration and acceleration, respectively, 

and changes back graduately at the downstream of the two regions. (E) Simulated GRO-seq tag 

density level based on the profile of RNAP elongation rate showing a peak in region I where 

elongation rate is doubled and a dip in region II where it is halved. The peak and the dip are 

symmetric with respect to the midpoint of I and II, respectively. 

 

Figure 2. GRO-seq tag density reveals three distinct patterns at exons in MCF10A. 

GRO-seq reads aligned around midpoints of exons indicated by black vertical dashed lines 

(upper panel of each group) and averaged H3K36me3 ChIP-seq tag density in the same group of 

exons (lower panel of each group). Exonic GRO-seq tag density range of each group is indicated 

below the group names. Red curves and blue curves correspond to exons on positive strand and 

negative strand, respectively. Patterns of GRO-seq tag density changes continuously and 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/044123doi: bioRxiv preprint 

https://doi.org/10.1101/044123
http://creativecommons.org/licenses/by-nc/4.0/


 

32 

gradually from one group to another. Three distinct patterns (dip, flat behavior and peak) of 

GRO-seq tag density are observed within exons in groups with low (group 1 to 5), medium 

(group 6 and 7) and high (group 8 to 10) exonic GRO-seq tag densities, while intronic GRO-seq 

tag densities are about the same (except group 1 and 10). The patterns are symmetric to the 

midpoints. On the other hand, H3K36me3 peaks locating in exons are observed in all 10 groups, 

with difference in relative peak height, but not in general pattern. In comparison with the 

symmetry of GRO-seq peaks, the H3K36me3 peaks shift slightly towards to 3’ direction of exon 

midpoints. Also see Figure S2 for averaged tag densities around 3’ end and 5’ end of exons. 

 

Figure 3. GRO-seq tag density pattern correlates with mRNA level in MCF10A. 

(A) Two examples of calculating pattern score of GRO-seq in MCF10A. GRO-seq pattern score 

of the exon in left panel is 25.75*2/(6.011+5.177)=4.603, and the one in right panel is 

0.1677*2/(10.47+9.748)=0.01659. (B) Bar plot shows distributions of GRO-seq pattern scores in 

10 groups divided by exonic mRNA-seq tag density. Each group of mRNA-seq tag density is 

represented by one bar. Exons were also classified into 10 groups of continuous value ranges of 

GRO-seq pattern score as mentioned in the main text, indicated by the legend on the right of the 

plot. The proportions of exons within different GRO-seq pattern score value ranges show a shift 

among 10 groups of mRNA-seq tag density. 

 

Figure 4. H3K36me3 pattern scores are not related with mRNA level in MCF10A.  

Bar plot shows distributions of H3K36me3 ChIP-seq pattern scores in 10 groups divided by 

exonic mRNA-seq tag density. Each group of mRNA-seq tag density is represented by one bar. 
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Exons were also classified into 10 equal-sized groups of continuous value ranges of H3K36me3 

ChIP-seq pattern score, as indicated by the legend on the right of the plot. The proportions of 

exons within different H3K36me3 ChIP-seq pattern score value ranges show a shift among 10 

groups of mRNA-seq tag density. 

 
 
Figure 5. Differential enrichments of putative known splicing factor motifs in exons with cell-

type-specific GRO-seq patterns. 

P values of one-sided Wilcoxon rank sum tests for length-normalized frequencies, i.e. densities, 

of exonic (A) or intronic (B) splicing factor motifs located no further than 100 bp from splicing 

sites. Wilcoxon rank sum tests were performed between exonic and intronic motif densities of 

exons with exonic GRO-seq pattern scores > 2 and those with exonic GRO-seq pattern scores ≤ 

0.5 in each cell line. The p value of each test is shown in the palette. Significant p values were 

further defined by Benjamini and Hochberg FDR procedure[48] at the 0.05 level and indicated 

by colored background: yellow indicates motifs are enriched at exons with GRO-seq pattern 

scores > 2 (decelerators), and blue indicates motifs are enriched exons with GRO-seq pattern 

scores ≤ 0.5 (accelerators). 
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Table 1. Variable importances measured in mean decrease of accuracy in the random forest 

model of exon inclusion in IMR90. The first column lists variables tested in the model. The 

second and third columns list the mean decrease in accuracy of the model upon removal of the 

variable, employing the entire set of variables (Full Model) or a reduced set (Reduced Model). 

 

 
 

 

 

 

 

 

 

 

 

 

  

Variable Importance (Mean Decrease of Accuracy) 

Full Model Reduced Model 

GRO-seq exonic tag density 0.0588 ± 0.0011 0.0750 ± 0.0014 

H3K36me3 exonic tag density 0.0276 ± 0.0006 0.0236 ± 0.0011 

GRO-seq pattern score 0.0204 ± 0.0006 0.0267 ± 0.0006 

DNA methylation level 0.0112 ± 0.0004 0.0166 ± 0.0008 

DNA methylation pattern score 0.0103 ± 0.0004 0.0156 ± 0.0008 

H4K20me1 exonic tag density 0.0101 ± 0.0006 0.0096 ± 0.0006 

H3K36me3 pattern score 0.0095 ± 0.0003  

exon length 0.0072 ± 0.0003  

H3K9me3 exonic tag density 0.0054 ± 0.0003  

RNAPII exonic tag density 0.0053 ± 0.0003  

RNAPII pattern score 0.0050 ± 0.0002  

H4K20me1 pattern score 0.0047 ± 0.0001  

H3K9me3 pattern score 0.0039 ± 0.0002  
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SUPPORTING FIGURE LEGENDS 

Figure S1. GRO-seq tag density patterns in MCF10A.  

GRO-seq reads aligned around exon start sites (upper panel), midpoints (middle panel) and end 

sites (lower panel) whose positions are shown by vertical dashed lines. Red curves and blue 

curves correspond to exons on positive strand and negative strand, respectively. Three distinct 

patterns (dip, flat behavior and peak) are observed within exons in groups with low (group 1 to 

5), medium (group 6) and high (group 7 to 10) exonic GRO-seq tag densities, while intronic 

GRO-seq tag densities are about the same (except group 1 and 10). 

 

Figure S2. GRO-seq tag density patterns in IMR90.  

GRO-seq reads aligned around exon start sites (upper panel), midpoints (middle panel) and end 

sites (lower panel) whose positions are shown by vertical dashed lines. Red curves and blue 

curves correspond to exons on positive strand and negative strand, respectively. Three distinct 

patterns (dip, flat behavior and peak) are observed within exons in groups with low (group 1 to 

5), medium (group 6) and high (group 7 to 10) exonic GRO-seq tag densities, while intronic 

GRO-seq tag densities are about the same (except group 1 and 10). 

 

Figure S3. GRO-seq tag density patterns in H1ESC.  

GRO-seq reads aligned around exon start sites (upper panel), midpoints (middle panel) and end 

sites (lower panel) whose positions are shown by vertical dashed lines. Red curves and blue 
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curves correspond to exons on positive strand and negative strand, respectively. Three distinct 

patterns (dip, flat behavior and peak) are observed within exons in groups with low (group 1 to 

5), medium (group 6) and high (group 7 to 10) exonic GRO-seq tag densities, while intronic 

GRO-seq tag densities are about the same (except group 1 and 10).  

 

Figure S4. Exons with different GRO-seq tag density patterns do not differ in GC content.  

GC content around exon start sites (upper panel), midpoints (middle panel) and end sites (lower 

panel), whose positions are indicated by dashed vertical lines, are shown for 10 groups of exons 

divided by exonic GRO-seq tag density of IMR90. Specifically, GC content and T content are 

percentages of nitrogenous bases (G and C) in every 5 base pairs. 

 

Figure S5. Exons with different GRO-seq tag density patterns do not differ T content.  

T content around exon start sites (upper panel), midpoints (middle panel) and end sites (lower 

panel), whose positions are indicated by dashed vertical lines, are shown for 10 groups of exons 

divided by exonic GRO-seq tag density of IMR90. Specifically, T content are percentages of 

thymine (T) in every 5 base pairs. 

 

Figure S6. Exons with different GRO-seq tag density patterns do not differ in mapability.  

Mapability around exon start sites (upper panel), midpoints (middle panel) and end sites (lower 

panel), whose positions are indicated by dashed vertical lines, are shown for 10 groups of exons 
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divided by exonic GRO-seq tag density of IMR90. Mapability is the value of Duke 35 bp 

Uniqueness in single base-pair resolution downloaded from UCSC Genome Browser (18), shown 

in the scale of 0 to 1. 

 

Figure S7. GRO-seq pattern score distributions.  

Pattern score distributions for each of the ten groups in (A) MCF10, (B) IMR90, and (C) H1ESC 

cell lines are shown. In each panel, a red dashed vertical line indicate where pattern score equals 

1. 

 

Figure S8. GRO-seq pattern score distributions.  

Histogram of all GRO-seq pattern scores for all examined exons in IMR90. Frequency is noted 

in the Y-xis and the GRO-seq pattern score is noted in the X-axis 

 

Figure S9. GRO-seq tag density pattern score correlates with mRNA level in IMR90.  

Bar plot shows distributions of GRO-seq pattern scores in 10 groups divided by exonic mRNA-

seq tag density. Each group of mRNA-seq tag density is represented by one bar. Exons were also 

classified into 10 equal-sized groups of continuous value ranges of GRO-seq pattern score, as 

indicated by the legend on the right of the plot. The proportions of exons within different GRO-

seq pattern score value ranges show a shift among 10 groups of mRNA-seq tag density. 
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Figure S10. GRO-seq tag density pattern score correlates with mRNA level in H1ESC.  

Bar plot shows distributions of GRO-seq pattern scores in 10 groups divided by exonic mRNA-

seq tag density. Each group of mRNA-seq tag density is represented by one bar. Exons were also 

classified into 10 equal-sized groups of continuous value ranges of GRO-seq pattern score, as 

indicated by the legend on the right of the plot. The proportions of exons within different GRO-

seq pattern score value ranges show a shift among 10 groups of mRNA-seq tag density. 

 

Figure S11. GRO-seq pattern scores distinguish excluded from included exons.  

Distribution of GRO-seq pattern score over excluded exons (left panel) is different from which 

of moderately expressed (middle panel) and highly expressed (right panel) exons in MCF10A 

with respect to slope of distribution function. In each panel, a red dashed vertical line indicate 

where pattern score equals 1. 

 

Figure S12. RNAP pattern scores are not related with mRNA level in MCF10A.  

(A) Bar plot shows distributions of RNAP-seq pattern scores in 10 groups divided by exonic 

mRNA-seq tag density. Each group of mRNA-seq tag density is represented by one bar. Exons 

were also classified into 10 equal-sized groups of continuous value ranges of RNAP-seq pattern 

score, as indicated by the legend on the right of the plot. The proportions of exons within 

different RNAP-seq pattern score value ranges show a shift among 10 groups of mRNA-seq tag 

density. 
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Figure S13. RNAP pattern scores do not distinguish excluded and included exons.  

Histograms of distributions of RNAP pattern score over excluded, moderately expressed and 

highly expressed exons. In each panel, a red dashed vertical line indicate where pattern score 

equals 1. 

 

 

Figure S14. Distribution of GRO-seq pattern scores at included and excluded exons of the same 

gene.  

(A) Binned density distribution of GRO-seq pattern scores at included exons (Y-axis) and 

excluded exons (X-axis) of the same genes. Each hexagon is shaded according to the gray scale 

count legend on the right. The included exons have higher GRO-seq pattern score than excluded 

exons. (B) Distributions of the difference of GRO-seq tag densities found at the included and 

excluded exons of the same gene. The rightward skew of the distribution indicates that included 

exons exhibit higher GRO-seq tag density than the excluded exons of the same gene. 

 

Figure S15. H3K36me3 tag density pattern does not explain GRO-seq tag density pattern.  

Distributions of H3K36me3 pattern score over 10 groups of exons divided by exonic GRO-seq 

tag density do not show strong difference between groups, in comparison with the shift of the 

GRO-seq pattern score (Figure S2B). 
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Figure S16. H3K36me3 pattern scores are not related with mRNA level in MCF10A.  

Bar plot shows distributions of H3K36me3 ChIP-seq pattern scores in 10 groups divided by 

exonic mRNA-seq tag density. Each group of mRNA-seq tag density is represented by one bar. 

Exons were also classified into 10 equal-sized groups of continuous value ranges of H3K36me3 

ChIP-seq pattern score, as indicated by the legend on the right of the plot. The proportions of 

exons within different H3K36me3 ChIP-seq pattern score value ranges show a shift among 10 

groups of mRNA-seq tag density. 

 

Figure S17. H3K36me3 pattern scores do not distinguish excluded from included exons.  

Histograms of distributions of H3K36me3 pattern score over excluded, medium expressed and 

highly expressed exons. In each panel, a red dashed vertical line indicate where pattern score 

equals 1. 

 

Figure S18. Sample selection for splicing factor motif analysis.  

In the comparison “a vs b” (Fig. 4), sample a contains exons with high exonic GRO-seq tag 

densities in cell type a and low exonic GRO-seq tag densities in cell type b, sample b contains 

exons with low exonic GRO-seq tag densities in cell type a and high exonic GRO-seq tag 

densities in cell type b, while other exons are eliminated (see Methods and Materials).  
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Figure S19: Differential enrichments of putative known splicing factor motifs in exons with cell-

type-specific GRO-seq patterns.  

P values of one-sided Wilcoxon rank sum tests for length-normalized frequencies, i.e. densities, 

of exonic (A) or intronic (B) splicing factor motifs located no further than 100 bp from splicing 

sites. Cell types being compared are IMR90, MCF10A and ESC H1. For each of the three panels, 

the two cell types being compared are indicated on the top in the form of “a vs b”, with sample 

sizes denoted by n. Wilcoxon rank sum tests are performed between exonic and intronic motif 

densities of exons with exonic GRO-seq pattern scores > 2 in cell type “a” but ≤ 0.5 in cell type 

“b” and those with exonic GRO-seq pattern scores ≤ 0.5 in cell type “a” but > 2 in cell type “b”. 

The p value of each test is shown in the palette. Significant p values were further defined by 

Benjamini and Hochberg FDR procedure(19) at the 0.05 level and indicated by colored 

background: yellow means motifs are enriched in cell type “a”, blue means motifs are enriched 

in cell type “b”, and grey means no significant enrichment. 
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