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Taxonomy of prokaryotes has remained a controversial discipline due to the extreme plas-

ticity of microorganisms, causing inconsistencies between phenotypic and genotypic classifi-

cations. The genomics era has enhanced taxonomy but also opened new debates about the

best practices for incorporating genomic data into polyphasic taxonomy protocols, which

are fairly biased towards the identification of bacterial species. Here we use an extensive

dataset of Archaea and Bacteria to prove that metabolic signatures coded in their genomes

are informative traits that allow to accurately classify organisms coherently to higher tax-

onomic ranks, and to associate functional features with the definition of taxa. Our results

support the ecological coherence of higher taxonomic ranks and reconciles taxonomy with

traditional chemotaxonomic traits inferred from genomes. KARL, a simple and free tool

useful for assisting polyphasic taxonomy or to perform functional prospections is also pre-

sented (https://github.com/giraola/KARL).
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In 1735, Carl von Linné released the Systema Naturae 1 setting a cornerstone in biology by

establishing a formal system for the unambiguous nomenclature of living things, underpinning the

sciences of taxonomy and systematics. However, these disciplines were originally conceived for

eukaryotic organisms where classification was mainly based on morphological macroscopic traits,

suffering from expectable inconsistencies when analogous principles were applied to prokaryotes.

This caused that the classification prokaryotes remained a controversial field restricted to a small

number of experts highly trained to develop and reproduce tuned-up chemotaxonomic and phe-

notypic tests. Afterwards, the pioneering work of Carl Woese in the mid-1980s caused a sudden

change which shed light onto the evolutionary history of prokaryotes by introducing the 16S gene

analysis 2. Since then, many molecular characterization tools have been developed but the state-

of-the-art strategy for assigning prokaryotes into novel or already described taxonomic units relies

on polyphasic taxonomy, an approach which tries to integrate all available chemotaxonomic and

genotypic information to build a classification consensus 3.

The advent of high-throughput sequencing (HTS) has allowed the incorporation of genomic

information into polyphasic taxonomy 4, but much effort has been invested to define classification

rules for species in detriment of higher taxonomic ranks. Recently, two approaches that overcome

this problem have been published: i) PhyloPhlAn constructs a high-resolution phylogenetic tree

using a previously optimized set of 400 marker genes that accurately defines most taxa 5 and, ii)

Microtaxi identifies taxon-specific genes and relies on a simple counting scheme to assign genomes
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to each taxon 6. Both approaches were optimized with a subset of the available genomic diversity

(around 2, 000), do not provide automatic updating alternatives as new genomes become available

and, fundamentally, do not allow to associate the taxonomic position with distinctive functional

features of organisms.

In the present work we submit the hypothesis that higher taxonomic ranks (domain to genus)

can be inferred from analyzing metabolic signatures of genomes. In turn, this hypothesis arises

from the notion that higher ranks are ecologically coherent, meaning that most organisms within

the same hierarchical level should display certain rationality in their lifestyles and ecological traits

7. This is supported by the underlying signal of vertical evolution found in genes coding basal

functions used as taxonomic markers 5, 8. Indeed, signature metabolic genes that define taxon-

specific ecological traits should be recognizable and used to define taxonomic ranks, similar to

the approach implemented in Microtaxi 6, but also considering that the ecological coherence of

high taxa could result from unique gene combinations, without any of them being taxon specific

7. This requires the implementation of more powerful methods to capture informative patterns in

highly-dimentional spaces.

To prove this ecological coherence of taxa at higher ranks and the usefulness of metabolic

features as taxonomic markers, we used an extensive dataset of 33, 236 archaeal and bacterial

genomes representing 2 domains, 55 phyla, 67 classes, 163 orders, 328 families and 1, 480 genera.

For each genome the presence or absence of 1, 328 different enzymes was assessed by parsing their

annotations. Fig. 1a exemplifies how principal components analysis (PCA) resulting from enzyme
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patterns spatially discriminate taxa at different ranks. This separation is coherent with highly fre-

quent or infrequent enzymes (Fig. 1b) and with Jaccard distance-based clustering (Fig. 1c). Then,

we take the families Helicobacteraceae (intestinal gram-negatives associated with Crohn’s disease

9) and Enterococcaceae (intestinal gram-positives associated to probiotic effects10) to illustrate

that enzyme patterns can cluster genomes according to their taxonomic position (Fig. 2a) based

on the presence of distinctive combinations and subsets of marker enzymes (Fig. 2b). Beyond that

identifying these single markers can provide useful information about taxon-specific molecular

functions, we show that this information is also scalable to metabolic pathways allowing the iso-

lation of those that significantly distinguish them (Fig. 2c). In Fig. 2d we show the full reference

metabolism for starch and sucrose, which is one out of eight pathways that significantly distinguish

both families each other (Fig. 2c), evidencing that the members of Enterococcaceae family present

a vast distribution of enzymes while it is much more limited for the Helicobacteraceae genomes.

This kind of functional prospection uncovers a strong link between metabolic potential and tax-

onomy, which indeed has been evidenced recently by modeling the variation of metabolomic data

and community composition using metagenomic data 11.

As we showed that enzyme patterns are enough informative to discriminate taxa at different

ranks and given the binary nature of this data, we built support vector machine (SVM) classifica-

tion models using linear kernels by splitting the data in subsets corresponding to each taxa against

the rest. All models were 10-fold corss-validated and performed very well independently of the

taxonomic rank, reaching median precisions above 90%, false positive rates below 2% and false

negative rates below 5% (Supplementary Fig. 1). The very low rate of false positives is important
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since the practical cost of assigning a strain into a certain taxon is higher than keeping it as un-

known. The explanation for non-optimal performance is the biased number of available genomes

per taxa, since strong correlations (R2 = 0.76, p-value = 2× 10−16) were found between the number

of genomes (at every rank) and classification performance measured as previously (Supplementary

Fig. 2). Additionally, when considering taxa with increasing minimal number of genomes all per-

formance parameters rapidly scale to optimal values. For example, when all taxa at family rank

are included, the models showed a median precision of 94% and the interquartile range (IQR) be-

tween 72% and 100%, however when looking at models with at least 10 genomes the first quartile

increased to 89% and the median to 95%, and for models with more than 50 genomes the first

quartile scaled to 94% and the median to 97%. This tendency was observed for all ranks (Sup-

plementary Fig. 3) and demonstrated that classification errors are better explained due to biased

data than to lack of information in enzyme patterns. Indeed, for some small taxa like classes Ar-

chaeoglobi (n = 7), Chlorobia (n = 12), Thermodesulfobacteria (n = 8) or Dictyoglomia (n = 2)

classification precision was 100%. Interestingly, most of these taxa exhibit powerful ecological

constraints reflected in very informative enzyme patterns that supports the ecological coherence

of higher ranks and its association to genome-encoded signatures, overcoming their low represen-

tation in the whole dataset. Anyway, these observations reinforce the importance of sequencing

genomes not only for the anthropocentric convenience but also for mere taxonomic interest, and

also warrant the optimization of our approach as new genomes become available.

The robustness of predictions was further tested by applying the algorithm to an exter-

nal set of 108 genomes obtained from very recent issues of Genome Announcements (http:
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//genomea.asm.org/), hence not used in any step of model construction. At genus rank the

average precision was 92% (Supplementary Tab. 1), holding that obtained with cross-validated

models. Interestingly, all misclassified genomes (n = 8) were predicted as unknown instead as

any known genus erroneously, reinforcing the resilience of classification models against false pos-

itives. Additionally, the classification was totally consistent for genomes whose genus was truly

unknown. For example, the bacilli bacterium VTI3104 was assigned within an unknown genus

inside the Bacillaceae family, in accordance to its divergent phylogenetic position inside bacilli 12.

Alike, the Oscillatoriales cyanobacterium MTP1 was in fact classified within the Oscillatoriales

order but was assigned to an unknown family and genus, in accordance to the low 16S iden-

tity (∼90%) against its closest neighbors 13. At higher ranks, classification was perfect for those

genomes which were correctly assigned at genus rank, since the algorithm takes benefit from the

hierarchical structure of taxonomy and stops once the sample has been assigned to a certain genus

by completing the lineage with precomputed information. Alike, when these genomes were tested

for selected ranks above genus the results were totally coherent with the corresponding taxon.

Seven out of 8 genomes that were incorrectly assigned at genus rank were then correctly classified

at family rank. No misclassifications were observed at order, class, phylum and domain ranks.

To ease the straightforward use of all models and datasets developed here, we built an R 14

package called KARL (https://github.com/giraola/KARL) that allows the user to pre-

dict the membership of any newly sequenced genome to each high taxonomic rank by inputing just

HTS reads, assembled genomes or annotation files. Additionally, the user can explore and improve

each taxon-specific classification model by performing automatic feature selection procedures and
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compare between same rank taxa. A handful of functions allows the identification, comparison and

visualization of meaningful metabolic signatures among taxa, including the automated production

of all graphs and illustrations herein presented. Finally, it can connect the PATRIC database 15

to automatically update models and datasets based on newly released genomes. The full KARL

pipeline is shown in Fig. 3. A detailed user guide explains theoretical and practical aspects from

installation to step-by-step implementation of all features herein described (Supplementary Meth-

ods). KARL is intended to be a useful tool for assisting polyphasic taxonomy and to perform

functional prospections and comparisons of prokaryotic genomes.

Methods

Genomic data. Annotation files were accessed from the PATRIC database 15 for a total of 33, 236

available prokaryotic genomes. In-house R 14 scripts were designed to extract enzymes and path-

ways data from each file and build a presence/absence matrix; each column in the matrix represents

one out of 1, 328 different enzymes detected in at least one genome and identified with its unique

EC number. The taxize R package 16 was used to retrieve the domain, phylum, class, order, family

and genus for each genome from the NCBI Taxonomy database.

Classification models. RWeka 17 was used to train Support Vector Machine (SVM) models by

splitting the data in two categories: one containing the considered taxon and other with the rest.

For all cases, given the binary nature of data, a linear kernel function was preferred 18. Each

model can be improved by performing a feature selection scheme that involved three steps: i)

attributes (enzymes) with a frequency lower than 0.1 or greater than 0.9 in both categories were
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removed, ii) over the remaining set highly correlated attributes (>0.9) were removed just keeping

those with lower average correlation values and, iii) Information Gain ratios were calculated for

each attribute and a Davies test for slope change was applied to identify the Gain Ratio cut-off

for keeping those most informative enzymes (Supplementary Methods). Evaluation was initially

performed by implementing a 3-repeated 10-fold cross-validation scheme to each model and then

misclassified genomes were evaluated using a metric based on the integration of Hamming dis-

tances in the PCA space (Supplemental Methods). Further testing was performed with an external

dataset (Supplementary Tab. 1).

Taxonomy prediction. The first step for predicting the membership of a new genome into any

taxonomic unit implies to determine its presence/absence pattern for the 1, 328 enzymes tested.

Assessing this depends on the input: for unassembled sequencing reads the SPAdes genome as-

sembler 19 generates a de novo assembly, else, if the input is a draft or finished genome the pipeline

starts using Prodigal 20 and/or Glimmer 21 to predict protein-encoding genes. Finally, BLASTp 22

identifies enzymes presence/absence by searching against individual databases built from FIG-

fams 23 and KEGG Orthology 24. A certain enzyme is considered present if there is any BLASTp

hit with identity >70%, query coverage >90% and e-value <0.001 (these values were selected

based on a grid search analysis that evaluated the classification performance using combinations

of identity from 25% to 95% and query coverage from 50% to 95%) (Supplementary Fig. 4). The

presence/absence vector is then inputed to each taxon-specific SVM model.

KARL package. The whole methods were implemented as an R package called KARL freely

available at GitHub repository (https://github.com/giraola/KARL). This package al-
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lows the standalone implementation of the whole applications described here in three operational

modules: Explorer, Predictor and Updater. Explorer implements a handful of functions for auto-

matic comparison of taxa, allowing to identify metabolic signatures at enzyme and pathway levels.

Predictor allows to predict taxonomy from sequencing reads, assembled or annotated genomes,

evaluate predictions and optimize classification models. Updater allows to automatically update

datasets and models with new available sequenced genomes in public databases. An in-depth de-

scription of practical and theoretical aspects are provided in the full user manual (Supplemental

Methods).
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Figure 1 Informativeness of enzyme patterns. A) Principal Component Analysis us-

ing enzyme presence/absence vectors shows the discrimination of different pairs of taxa

at every rank. B) For the same pairs of taxa, the frequency of each enzyme is plotted.

Enzymes with frequency >0.9 in one taxon and <0.1 in the other and viceversa are high-

lighted. C) Cladogram based on pairwise Jaccard’s distances.

Figure 2 Example on families Helicobacteraceae and Enterococcacae. A) Heatmap

showing the hierarchical clustering of genomes belonging to both families, exhibiting

taxon-specific enzyme clusters. B) Venn diagram showing the distribution of enzymes

between families. C) Distribution of enzymes inside metabolic pathways. Pathways that

significantly differ (see Supplementary Methods) between families are labeled accord-

ing to KEGG pathway identifiers. D) KEGG reference pathway for starch and sucrose

metabolism. Each enzyme box is divided in two: left side for Helicobacteraceae and right

side for Enterococcaceae. The frequency of each enzyme in each taxon is colored from

grey (0) to red (1).

Figure 3 KARL pipeline. A) The workflow for building the dataset from genomes and

annotations. B) Step-by-step analysis to classify a new genome. C) Schematic represen-

tation of included taxonomic ranks.
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