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Abstract

The excision of introns from pre-mRNA is an essential step in mRNA processing. We developed LeafCutter

to study sample and population variation in intron splicing. LeafCutter identifies variable intron splicing

events from short-read RNA-seq data and finds alternative splicing events of high complexity. Our approach

obviates the need for transcript annotations and circumvents the challenges in estimating relative isoform

or exon usage in complex splicing events. LeafCutter can be used both for detecting differential splicing

between sample groups, and for mapping splicing quantitative trait loci (sQTLs). Compared to contemporary

methods, we find 1.4–2.1 times more sQTLs, many of which help us ascribe molecular effects to disease-

associated variants. Strikingly, transcriptome-wide associations between LeafCutter intron quantifications

and 40 complex traits increased the number of associated disease genes at 5% FDR by an average of 2.1-fold

as compared to using gene expression levels alone. LeafCutter is fast, scalable, easy to use, and available at

https: // github. com/ davidaknowles/ leafcutter .
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Background

The alternative removal of introns during mRNA maturation is essential for major biological processes in eu-

karyotes including cellular differentiation, response to environmental stress, and proper gene regulation1,2,3,4.

Nevertheless, our ability to draw novel insights into the regulation and function of splicing is hindered by

the challenge of estimating transcript abundances from short-read RNA-seq data.

Most popular approaches for studying alternative splicing from RNA-seq estimate isoform ratios5,6,7,8 or

exon inclusion levels9,10. Quantification of isoforms or exons is intuitive because RNA-seq reads generally

represent mature mRNA molecules from which introns have already been removed. However, estimation of

isoform abundance from conventional short-read data is statistically challenging, as each read samples only

a small part of the transcript, and alternative transcripts often have substantial overlap11. Similarly, when

estimating exon expression levels from RNA-seq data, read depths are often overdispersed due to technical

effects, and there may be ambiguity about which version of an exon is supported by a read if there are

alternative 5’ or 3’ splice sites.

Further, both isoform- and exon-quantification approaches generally rely on transcript models, or pre-

defined splicing events, both of which may be inaccurate or incomplete12. Predefined transcript models

are particularly limiting when comparing splicing profiles of healthy versus disease samples, as aberrant

transcripts may be disease-specific; or when studying genetic variants that generate splicing events in a

subset of individuals only13. Even when transcript models are complete, it is difficult to estimate isoform or

exon usage of complex alternative splicing events12.

An alternative perspective is to focus on what is removed in each splicing event. Excised introns may be

inferred directly from reads that span exon-exon junctions. Thus, there is generally little ambiguity about

the precise intron that is cut out, and quantification of usage ratios is very accurate12. A recent method,

MAJIQ12, also proposed to estimate local splicing variation using split-reads and identified complex splicing

events, however it does not scale well above 30 samples and has not been adapted to map splicing QTLs

(sQTLs). At present, there are several software programs for sQTL mapping: GLiMMPS14, sQTLseekeR15

and Altrans16. However, all three rely on existing isoform annotations and both GLiMMPS and sQTLseeker

reported modest numbers of sQTLs in their analyses.

Here we describe LeafCutter, a suite of novel methods that allow identification and quantification of

novel and existing alternative splicing events by focusing on intron excisions. We show LeafCutter’s utility

by applying it to three important problems in genomics: (1) identification of differential splicing across
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conditions, (2) identification of sQTLs in multiple tissues or cell types, and (3) ascribing molecular effects

to disease-associated GWAS loci. Using an early version of LeafCutter, we found that alternative splicing

is an important mechanism through which genetic variants contribute to disease risk17. We now show

that LeafCutter dramatically increases the number of detectable associations between genetic variation and

pre-mRNA splicing, thus enhancing our understanding of disease-associated loci.

Results

Overview of LeafCutter

LeafCutter uses short-read RNA-seq data to detect intron excision events at base-pair precision by analyzing

split-mapped reads. LeafCutter focuses on alternative splicing events including skipped exons, 5’ and 3’

alternative splice site usage and additional complex events that can be summarized by differences in intron

excision12 (Supplementary Figure 1). LeafCutter’s intron-centric view of splicing is motivated by the ob-

servation that mRNA splicing predominantly occurs through the step-wise removal of introns from nascent

pre-mRNA19. (Unlike isoform quantification methods such as Cufflinks25, alternative transcription start

sites, and alternative polyadenylation are not directly measured by LeafCutter as they are not generally

captured by intron excision events.) The major advantage of this representation is that LeafCutter does not

require read assembly or inference on which isoform is supported by ambiguous reads, both of which are

computationally and statistically difficult problems. An implication of this is that we were able to improve

speed and memory requirements by an order of magnitude or more as compared to similar methods such as

MAJIQ12.

To identify alternatively-excised introns, LeafCutter pools all mapped reads from a study and finds over-

lapping introns demarcated by split reads. LeafCutter then constructs a graph that connects all overlapping

introns that share a donor or an acceptor splice site (Figure 1a). The connected components of this graph

form clusters, which represent alternative intron excision events. Finally, LeafCutter iteratively applies a

filtering step to remove rarely used introns, which are defined based on the proportion of reads supporting

an intron compared to other introns in the same cluster, and re-clusters leftover introns (Methods, Supple-

mentary Note 1). In practice, we found that this filtering is important to avoid arbitrarily large clusters

when read depth increases to a level at which noisy splicing events are supported by multiple reads.
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Figure 1: Overview of LeafCutter. (a) LeafCutter uses split reads to uncover alternative choices of intron excision
by finding introns that share splice sites. In this example, LeafCutter identifies two clusters of variably excised
introns. (b) LeafCutter workflow. First, short reads are mapped to the genome. When SNP data are available,
WASP18 should be used to filter allele-specific reads that map with a bias. Next, LeafCutter extracts junction reads
from .bam files, identifies alternatively excised intron clusters, and summarizes intron usage as counts or proportions.
Lastly, LeafCutter identifies intron clusters with differentially excised introns between two user-defined groups using a
Dirichlet-multinomial model or maps genetic variants associated with intron excision levels using a linear model. (c)
Visualization of differential splicing between 10 GTEx heart and brain samples using LeafViz. LeafViz is an interactive
browser-based application that allows users to visualize results from LeafCutter differential splicing analyses. In this
example, we observed that Rbfox1 shows differential usage of a mutually exclusive exon in heart compared to brain.
For all examples, visit https://leafcutter.shinyapps.io/leafviz/.

De novo identification of functional RNA splicing in mammalian organs

We tested LeafCutter’s novel intron detection method by analyzing mapped RNA-seq20 short read data from

2,192 samples (Supplementary Note 3) across 14 tissues from the GTEx consortium21. We then searched

introns predicted to be alternatively excised by LeafCutter, but that were missing in three commonly-
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used annotation databases (GENCODE v19, Ensembl, and UCSC). For this analysis, we ensured that the

identified introns were indeed alternatively excised by only considering introns that were excised at least

20% of the time as compared to other overlapping introns, in at least one fourth of the samples, analyzing

each tissue separately. We found that between 10.8% and 19.3% (Pancreas and Spleen, respectively) of

alternatively spliced introns are unannotated – excluding testis which is the major outlier, in which 48.5%

of alternatively spliced introns are novel (Figure 2a). The latter observation is compatible with the “out-of-

testis” hypothesis, which proposes that transcription is more permissive in testis and allows novel genes or

isoforms to be selected for if beneficial22,23. Thus 31.5% of the alternatively excised introns we detected are

unannotated (Supplementary Note 4), consistent with a recent study that identified a similar proportion of

novel splicing events in 12 mouse tissues12. To further confirm that these findings were not merely mapping

or GTEx-specific artefacts, we searched for junction reads in 21,504 human RNA-seq samples from the

Sequence Read Archive (SRA) obtained from Intropolis24. We found that most (86%, Figure 2c and

Supplementary Figure S13) novel junctions identified in our study were also present in at least one RNA-seq

sample from the corresponding tissue as identified in Intropolis. Furthermore, we found that, as expected,

unannotated junctions tend to be tissue-specific, and often involve complex splicing patterns (Supplementary

Figure S14 and Supplementary Note 4).

We next asked whether these novel introns show evidence of functionality as determined by sequence

conservation. When we averaged phastCons scores over unannotated splice sites of introns that were absent

in annotation databases, we found a moderate, but significant, signature of sequence conservation (Figure 2b).

In particular, we found that a significant number (4,616 or 15–25%) of novel splice sites are conserved across

vertebrates (ave. phastCons ≥ 0.6, Supplementary Figure S11), indicating that the alternative excision of

thousands of introns may be functional (Supplementary Note 4).

Fast and robust identification of differential splicing across sample groups

LeafCutter uses counts from the clustering step (Figure 1b) to identify introns with differential splicing be-

tween user-defined groups. Read counts in an intron cluster are jointly modeled using a Dirichlet-multinomial

generalized linear model (GLM), which we found offers superior sensitivity relative to a beta-binomial GLM

that tests each intron independently (Supplementary Figure S15). The implicit normalization of the multi-

nomial likelihood avoids the estimation of library size parameters required by methods such as DEXSEQ10.

We compared LeafCutter against other methods for differential splicing detection including Cufflinks25,

MAJIQ12, and rMATS26. We note that comparisons between algorithms have the complication that they
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Figure 2: (a) Using LeafCutter to discover novel introns, we find that for any given tissue, over 10% of alternatively
excised introns are unannotated. Remarkably, 48.5% of testis alternatively excised introns are unannotated. Different
colors denote the proportion of introns when one or more splice sites are unannotated “(ss absent)”, both splice sites
are annotated but the intron is not part of any transcript “(ss present)”, or when the intron is annotated in some but
not all databases. (b) The unannotated splice sites of novel introns show moderate signature of sequence conservation
as determined by vertebrate phastCons scores. Miss one: conservation of the unannotated splice site of an intron for
which the cognate splice site is annotated. Miss both: conservation of splice sites of introns with both splice sites
unannotated. (c) Barplots showing the numbers of unannotated and annotated junctions discovered using LeafCutter
that are also found in samples from the short read archive (SRA) using Intropolis24. Phenopredict25 was used to
predict the tissue type corresponding to the SRA samples analyzed in Intropolis.

there is typically no one-to-one mapping between the splicing events quantified by different methods. We

discuss this issue and our solution in Supplementary Note 2. For comparison, we applied each method to

identify splicing differences between 3, 5, 10, and 15 Yoruba (YRI) versus European (CEU) LCL RNA-seq

samples. In terms of runtime, we observed a large difference in scalability (Figure 3a). In our hands, only

LeafCutter completed all comparisons within an hour, while Cufflinks2, rMATS, and MAJIQ took as long

as 7.8, 55.7, and 66.2 hours to complete the largest comparison, respectively. In terms of memory usage, we

also found that LeafCutter greatly outperforms the other software, using less than 400Mb of RAM for all

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/044107doi: bioRxiv preprint 

https://doi.org/10.1101/044107


comparisons, while MAJIQ required over 50Gb of RAM to perform the larger comparisons (Supplementary

Figure S9). Although this range of sample sizes is representative for most biological studies, identifying

differential splicing across groups in large studies such as GTEx would be impractically slow using rMATS

or MAJIQ.

To compare their ability to detect differential splicing, we reasoned that the p-values or posterior prob-

abilities of the tests computed by each method are not directly comparable. We therefore computed an

empirical FDR from the p-values of real comparisons between biologically distinct sample groups (i.e. YRI

versus CEU here) and the p-values of permuted comparisons between samples with permuted labels (i.e.

both groups contain YRI and CEU samples). If the p-values are well-calibrated, the p-value distribution of

the permuted comparisons are expected to be uniform. Indeed, we observed that the distributions of Leaf-

Cutter and rMATS p-values for the comparisons were close to the theoretical null distribution (Figure 3b

and Supplementary Figure S3). However, we observed that the Cufflinks2 p-values were overly conservative

(Supplementary Note 2.3) and additionally the posterior probabilities P reported by MAJIQ for the per-

muted comparisons did not track the expected false discovery rate (FDR) of 1 − P (Supplementary Note

2.2). Altogether, we found that LeafCutter p-values showed better callibration compared to other methods,

and that LeafCutter detected more differentially spliced events at all reasonable FDRs (≤ 0.2). Importantly,

not only did LeafCutter detect more differentially spliced events at fixed FDRs, but it also achieved lower

false negative rates when we evaluated the four methods on artificial data in which we simulated various

levels of fold-changes in isoform levels (Figure 3c, Supplementary Note 2.4, Supplementary Figure S6). These

comparisons show that LeafCutter is a robust and highly scalable method for differential splicing analysis.

To evaluate LeafCutter’s suitability to detect differential splicing in a biological setting, we searched for

intron clusters that show differential splicing between tissue pairs collected by the GTEx consortium, using

all tissues to identify intron clusters. Combining all pairwise comparisons, we found 5,070 tissue-regulated

splicing clusters at 10% FDR and with an estimated absolute effect size greater than 1.5 (Methods). As

expected, GTEx samples mostly grouped by organ/tissue when hierarchically clustered according to the

excision ratios of the five hundred most differentially spliced introns among all tissue pairs (Figure 3d,

Supplementary Note 5).

To evaluate LeafCutter’s applicability to studies with smaller sample sizes, we used LeafCutter on a

small subset of all available GTEx samples and then evaluated the amount of replication when using a larger

subset. When using 220 samples (110 brain versus 110 muscle samples), we identified 1,906 differentially

spliced clusters with estimated effect sizes greater than 1.5 at 10% FDR, compared to 885 when using only
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8 samples (4 brain versus 4 muscle samples). Importantly, the strengths of associations (− log10 p-values)

were highly correlated between our two analyses (Pearson R2 = 0.72, Supplementary Note 6, Supplementary

Figure S17), and 98% of alternatively spliced clustered identified at 10% FDR in the analysis using 8 total

samples were replicated in the analysis using 220 samples, also at 10% FDR. These observations indicate that

LeafCutter can be used to detect differentially spliced introns even when the number of biological replicates

is small.

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/044107doi: bioRxiv preprint 

https://doi.org/10.1101/044107


Figure 3: Comparison of LeafCutter against other methods for detecting differential splicing. (a) Running time of various
differential splicing methods applied to comparisons between 3, 5, 10, and 15 YRI vs CEU LCLs RNA-seq samples. (b)
Cumulative distributions of differential splicing test p-values (1-posterior for MAJIQ) for the 15 YRI versus 15 CEU LCLs
comparison (red). The distribution of test p-values for a 15 versus 15 samples comparison with permuted labels is also shown
(black). LeafCutter detects more differential splicing compared to rMATS, MAJIQ, and Cufflinks2. Cufflinks2 distribution
omitted as it detected 0 significantly differentially spliced genes as described in Supplementary Note 2.3 (Supplementary Figure
S3). (c) Receiver operating characteristic (ROC) curves of LeafCutter, Cufflinks2, rMATS and MAJIQ when evaluating
differential splicing of genes with transcripts simulated to have varying levels of differential expression. ROC curves that do
not reach 1.00 True Positive Rates reflect the proportion of genes simulated to be differentially spliced that were not tested
(Supplementary Note 2.4). (d) LeafCutter identifies tissue-regulated intron splicing events from GTEx organ samples. Heatmap
of the intron excision ratios of the top 500 introns that were found to be differentially spliced between at least one tissue pair.
Tissues include brain (Br), muscle (Ms), heart (Ht), blood (Bd), pancreas (Pc), esophagus (Eg), and testis (Ts). (e) Tissue-
dependent intron excision is conserved across mammals. Heatmap showing intron exclusion ratios of introns differentially spliced
between pairs of tissues (Muscle vs Colon, Brain vs Liver, and heart vs Lung). Heatmap shows 100 random introns (97 for the
heart vs lung comparison) that were predicted to be differentially excised in human with p-value < 10−10 (LR-test) and that
had no more than 5 samples where the excision rate could not be determined due to low count numbers. Heatmap of all introns
that pass our criteria can be found in Supplementary Figure S18.
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We then investigated whether the differentially spliced clusters identified using LeafCutter are likely to

be functional by assessing the pan-mammalian conservation of their splicing patterns across multiple organs.

Two previous studies analyzed the evolution of alternative splicing in mammals and, when they clustered

samples using gene expression levels, saw clustering by organ as expected, however when they clustered

samples using exon-skipping levels, they instead saw a clustering by species27,28. These observations indicate

that a large number of alternative skipping events may lack function or undergo rapid turnover.

We initially attempted clustering using all splicing events and confirmed the previous findings27,28 that

the samples mostly clustered by species (Supplementary Figure S16). We then focused on a subset of

introns that LeafCutter identified as differentially excised across tissue pairs in human and found that this

subset shows splicing patterns that are broadly conserved across mammalian organs (Figure 3e). To do

this, we hierarchically clustered samples from eight organs in human and four mammals27 according to the

orthologous intron excision proportions of differentially excised introns (p-value < 10−10 and β > 1.5) from

our pairwise analyses of human GTEx samples (Supplementary Methods 5). Unlike in the previous analyses,

this revealed a striking clustering of the samples by organ, implying that hundreds of tissue-biased intron

excisions events are conserved across mammals and likely have organ-specific functional roles29. Thus, while

the majority of alternative splicing events likely undergo rapid turnover, events that show organ-specificity

are much more often conserved across mammals and, therefore, are more likely to be functionally important.

Mapping splicing QTLs using LeafCutter

Next, to evaluate LeafCutter’s ability to map splicing QTLs, we applied LeafCutter to 372 EU lymphoblas-

toid cell line (LCL) RNA-seq samples from GEUVADIS, and identified 42,716 clusters of alternatively excised

introns. We used the proportion of reads supporting each alternatively excised intron identified by LeafCutter

and a linear model30 to map sQTLs (Supplementary Note 7). We found 5,774 sQTLs at 5% FDR (compared

to 620 trQTLs in the original study at 5% FDR, i.e., one ninth times as many) and 4,543 at 1% FDR. To

perform a controlled comparison, we also processed 85 YRI GEUVADIS LCLs RNA-seq samples and quanti-

fied RNA splicing events using LeafCutter, Altrans16, and Cufflinks25. We then uniformly standardized and

normalized the estimates and used them as input to fastQTL30 to identify sQTLs (Supplementary Note 3.3

and 7.2). At similar false discovery rates, LeafCutter identifies 1.36X–1.46X and 1.83X–2.06X more sQTLs

than Cufflinks2 and Altrans, respectively (Table 1). The rate of sQTL discoveries shared between methods is

generally high (Storey’s π1 ranging from 0.53 to 0.72 for sQTLs identified at 10% FDR , Supplementary Note

7.3, Supplementary Figure S19), with LeafCutter sQTLs showing higher estimates of sharing (π1 = 0.70 and

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/044107doi: bioRxiv preprint 

https://doi.org/10.1101/044107


0.72 with Cufflinks2 and Altrans, respectively) than Cufflinks2 sQTLs (0.52 with Altrans) or Altrans sQTLs

(0.66 with Cufflinks2).

Method YRI sQTLs (0.01 FDR) YRI sQTLs (0.05 FDR) CEU sQTLs (0.05 FDR)
LeafCutter 1,294 1,982 5,775

Altrans 624 1,083 N/A
Cufflinks2 888 1,459 N/A

GEUVADIS study N/A 83 620

Table 1: Summary of sQTLs identified in GEUVADIS samples using LeafCutter, Altrans16, and Cufflinks25.
The numbers of transcript ratio QTLs (trQTLs) identified in the orginal GEUVADIS study31 are also listed
in the sQTL columns. N/A: Not available.

To further ensure that our sQTLs are not simply false positives, we verified that LeafCutter finds stronger

associations between intronic splicing levels and SNPs previously identified as exon eQTLs and transcript

ratio QTLs in GEUVADIS31 when compared to genome-wide SNPs (Figure 4a). Importantly, 399 (81.3%) of

the 491 top trQTLs tested are significantly associated to intron splicing variation, as identified by LeafCutter

(compared to 4.7% when our samples are permuted, Supplementary Note 7). Furthermore, we confirmed

that the sQTLs we identified are located near splice sites, are close to the introns they affect (Figure 4b),

and are enriched in expected functional annotations such as “splice regions” and DNaseI hypersensitivity

regions (Supplementary Figure S22).

We used LeafCutter to identify sQTLs in four tissues from the GTEx consortium. Overall, we found

442, 1,058, 1,047, and 692 sQTLs at 1% FDR in heart, lung, thyroid gland, and whole blood, respectively

(Supplementary Note 7). Using these, we estimated that 75–93% of sQTLs replicate across tissue pairs

(Figure 4c, Supplementary Figure S24, Supplementary Note 6). This agrees with a high proportion of sharing

of sQTLs across tissues32; and contrasts with much lower pairwise sharing reported for these data previously

(9-48%)21. The high level of replication is likely owing to LeafCutter’s increased power in detecting genetic

associations with specific splicing events. Nevertheless, this leaves 7-25% of sQTLs that show tissue-specificity

in our analysis. As expected we found that a large proportion of tissue-specific sQTLs arose from trivial

cases where the intron is only alternatively excised, and therefore variable, in one tissue (Supplementary

Figure S25). However, we also found cases in which the introns were alternatively excised in all tissues, yet

show tissue-specific association with genotype (Figure 4d).

LeafCutter sQTLs link disease-associated variants to mechanism

Finally, we asked whether sQTLs identified using LeafCutter could be used to ascribe molecular effects

to disease-associated variants as determined by genome-wide association studies. For example, eQTLs are
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Figure 4: (a) QQ-plot showing genome-wide sQTL signal in LCLs (black), sQTL signal conditioned on exon eQTLs
(purple) and conditioned on transcript ratio QTLs (dark purple) from31. Signal from permuted data in light grey
shows that the test is well-calibrated. (b) Positional distribution of sQTLs across LeafCutter-defined intron clusters.
1,421 of 4,543 sQTLs lie outside the boundaries (Supplementary Figure S22 for all sQTLs). (c) High proportion of
shared sQTLs across four tissues from21. (d) Example of a SNP associated to the excision level of an intron in blood
but not in other tissues.

enriched for disease-associated variants, and disease-associated variants that are eQTLs likely function by

modulating gene expression31,21. We recently showed that sQTLs identified in LCLs are also enriched

among autoimmune-disease-associated variants17. LeafCutter sQTLs can therefore help us characterize the

functional effects of variants associated with complex diseases. Indeed, when we looked at the association

signals of the top LeafCutter sQTLs and eQTLs from GEUVADIS to multiple sclerosis and rheumatoid

arthritis (Supplementary Note 8), we found that both QTL types were enriched for stronger associations
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(Figure 5a) compared to genome-wide variants. Consistent with recent findings17, SNPs associated with

multiple sclerosis are more highly enriched among sQTLs than eQTLs, while both eQTLs and sQTLs are

similarly enriched among SNPs associated with rheumatoid arthritis (Figure 5a).

To further explore the utility of LeafCutter sQTLs for understanding GWAS signals, we applied S-

PrediXcan33 to compute the association between predicted splicing quantification and 40 complex trait

GWASs using models trained on GEUVADIS data (Methods and Supplementary Note 9). When applied to

a rheumatoid arthritis (RA) GWAS, we found that considering intronic splicing allowed us to identify 18

putative disease genes (excluding genes in the extended MHC region), of which 13 were not associated using

gene expression level measurements (Figure 5b). Novel putative disease genes associated through intronic

splicing include CD40, a gene previously found to affect susceptibility to RA34. However, we found no overall

enrichment of functional categories among the 18 or 13 putative disease genes. Overall, using LeafCutter

splicing quantifications allowed us to increase the number of putative disease genes by an average of 2.1-

fold as compared to using gene expression alone (Supplementary Table 1). These results demonstrate that

by dramatically increasing the number of detected sQTLs, LeafCutter significantly enhances our ability to

predict the molecular effects of disease-associated variants.

In conclusion, our analyses show that LeafCutter is a powerful approach to study variation in alternative

splicing. By focusing on intron removal rather than exon inclusion rates, we can accurately measure the step-

wise intron-excision process orchestrated by the splicing machinery. Our count based statistical modeling,

accounting for overdispersion, allows identification of robust variation in intron excision across conditions.

Most importantly, LeafCutter allows the discovery of far more sQTLs than other contemporary methods,

which improves our interpretation of disease-associated variants.
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Figure 5: (a) Enrichment of low p-value associations to multiple sclerosis and rheumatoid arthritis among LeafCutter
sQTL and GEUVADIS eQTL SNPs. The numbers of top sQTLs and eQTLs that are tested in each GWAS are
shown in parentheses. (b) Manhattan plot of S-PrediXcan association p-values from prediction models for intron
quantification (LeafCutter; top) and gene expression (GEUVADIS; bottom). Genes that were found to be associated
through RNA splicing are highlighted in orange, those associated through gene expression in purple, and those
associated through both in black. The names of associated genes from the extended MHC region are not shown.
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Methods

Identifying alternatively excised introns

To identify clusters of alternatively excised intron, split-reads that map with minimum 6nt into each exon

are extracted from aligned .bam files. Overlapping introns defined by split-reads are then grouped together.

For each of these groups LeafCutter constructs a graph where nodes are introns and edges represent shared

splice junctions between two introns. The connected components of this graph define intron clusters. Sin-

gleton nodes (introns) are discarded. For each intron cluster, LeafCutter iteratively (1) removes introns that

are supported by fewer than a number of (default 30) reads across all samples or fewer than a proportion

(default 0.1%) of the total number of intronic read counts for the entire cluster, and (2) re-clustered introns

according to the procedure above.

Dirichlet-multinomial generalized linear model

Intron clusters identified from LeafCutter comprise of two or more introns. More specifically, each intron

clusters C identified using LeafCutter consists of J possible introns, which have counts yij for sample i and

intron j (and cluster total niC =
∑
j′ yij′), and N covariate column vectors xi of length P . LeafCutter uses

a Dirichlet-Multinomial (DM) generalized linear model (GLM) to test for changes in intron usage across the

entire cluster, instead of testing differential excision of each intron separately across conditions or genotypes.

yi1, ...,yiJ |niC ∼ DM(niC , α1pi1, . . . , αJpiJ), (1)

pij =
exp (xiβj + µj)∑
j′ exp (xiβj′ + µj′)

, (2)

where (2) corresponds to the softmax transform, which ensures
∑
j pij = 1. We perform maximum likelihood

estimation for the outputs: the J coefficient row vectors βj of length P , the intercepts µj and concentration

parameters αj . We use the following regularization to stabilize the optimization:

α ∼ Gamma(1 + 10−4, 10−4) (3)

The Dirichlet-Multinomial likelihood is derived by integrating over a latent probability vector π in the
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hierarchy

π|a ∼ Dirichlet(a)⇒ P (π|a) =
Γ(a.)∏
j Γ(aj)

∏
j

π
aj−1
j (4)

y1, ..., yJ |n, π ∼ Multinomial(n, π)⇒ P (y|n, π) =
∏
j

π
yj
j (5)

where a. =
∑
j aj , to give

DM(y|n, a) =
Γ(a.)

∏
j Γ(aj + yj)

Γ(a. + y.)
∏
j Γ(aj)

(6)

In the limit πj = eaj/
∑
j′ e

aj′ , aj → ∞ for all j, we have DM(n, a) → Multinomial(n, π). For the GLM

this means that as αj → ∞ we recover a multinomial model with no overdispersion. Smaller values of αj

correspond to more overdispersion.

While the Dirichlet-multinomial effectively accounts for overdispersion, it fails to handle extremely out-

lying in samples, which negatively impacts calibration. To reduce sensitivity to such outliers we developed

a robust likelihood model

yi|niC ∼ (1− θC)DM(niC ,α ◦ pi) + θCDM(niC ,1) (7)

where θC is a per-cluster mixture proportion giving the probability that a sample comes from the outlier

distribution. Using 1 as the parameter vector for the outlier distribution corresponds to the underlying

Dirichlet distribution being uniform over the simplex. θC is learnt jointly with the other parameters, and

given a prior Beta(1.01, 10−4).

Differential intron excision across conditions

To test differential intron excision between two groups of samples, we encode xi = 0 for one group and xi = 1

for the other in the Dirichlet-Multinomial generalized linear model. We apply two filters to ensure we only

perform reasonable tests:

• Only introns which are detected (i.e. have at least one corresponding spliced read) in at least five

samples are tested.

• A cluster is only tested if each group includes at least 4 individuals with 20 spliced reads supporting

introns in the cluster.
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The thresholds in these filters are easily customizable as optional parameters.

Mapping splicing QTLs

To identify splicing QTLs, RNA-seq reads are mapped onto the genome using a RNA-aligner such as STAR35

or OLego20. Because LeafCutter only uses reads that map across junctions to estimate intron excision

rates, it is essential to remove read-mapping biases caused by allele-specific reads. This is particularly

significant when a variant is covered by reads that also span intron junctions as it can lead to spurious

association between the variant and intron excision level estimates. Subsequent to mapping, LeafCutter

finds alternatively excised intron clusters and quantifies intron excision levels in all samples. LeafCutter

outputs intron excision proportions, which are used as input for standard QTL mapping tools such as

MatrixEQTL or fastQTL (Supplementary Methods 6).

S-PrediXcan analyses

Prediction models for intron quantification (LeafCutter) and gene expression (GEUVADIS) were trained

using Elastic Net on GEUVADIS data. A value of α = 0.5 was chosen for the mixing parameter. Prediction

performance for gene expression remains stable for a wide range of mixing parameters when α does not

approach 0.0 (Ridge Regression)36,37. For each gene, we used SNPs within 1Mb upstream of the TSS and

1Mb downstream of the TTS. Similar windows around each splicing clusters were chosen.

We downloaded a genome-wide association meta-analysis summary statistics for Rheumatoid Arthri-

tis from http://plaza.umin.ac.jp/yokada/datasource/software.htm, and ran S-PrediXcan using these

models. A total of 4,625 gene associations were obtained for the genetic expression model, and 41,196 intron

quantification cluster associations for the splicing model, that had a model prediction False Discovery Ratio

under 5%.

Visualizing LeafCutter differential splicing output

Using the R Shiny framework and ggplot2, we created an interactive browser-based application, LeafViz,

that allows users to visualize LeafCutter differential splicing analyses. LeafViz generates LeafCutter cluster

plots with information on the significance of the detected differential splicing and the estimated differences

of the splicing changes. All significant clusters are labelled as ”annotated” or ”cryptic” by intersecting

junctions with a user-defined set of transcripts (e.g. gencode v19). Users can directly download plots from

the website in PDF format, which can be easily edited for publication. An example of LeafViz applied

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/044107doi: bioRxiv preprint 

http://plaza.umin.ac.jp/yokada/datasource/software.htm
https://doi.org/10.1101/044107


to a differential splicing analysis between 10 brain and 10 heart samples from GTEx is available here:

https://leafcutter.shinyapps.io/leafviz/.
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1 Identifying alternatively spliced introns using LeafCutter

Starting from alignment files in .bam format, junctions from split-reads that map with minimum 6nt into

each exon are extracted using a script we provide (1) based on two OLego helper scripts. Then, the LeafCut-

ter clustering program (2) can be used to identify intron clusters supported by at least 30 (option -m) total

reads (across all samples) and introns supported by more than 0.1% (option -p) of the total read counts for

the entire cluster. The number of reads supporting each intron and cluster is then counted in all samples

separately and collated in a table for downstream analyses.

Figure S1: Helper method and LeafCutter workflow for intron clustering.

Because LeafCutter focuses on intron splicing rather than whole isoform quantification, alternative tran-

scription start site or polyadenylation sites are not captured. However, several prevalent types of alternative

splicing (Figure S2) are equivalent to specific intron excision events.
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Figure S2: Several types of common alternatively splicing events are captured by the alternative excision
of introns.
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2 Comparison of LeafCutter to other methods for differential splicing analysis

2.1 rMATS, MAJIQ, and Cufflinks2

To compare the ability of different software to detect differential splicing, a fair comparison needs to overcome

(1) differences in p-value calibration, and (2) differences in what is being measured e.g. transcript ratios

versus local splicing events. As test data, we chose to contrast lymphoblastoid cell lines (LCLs) derived from

Yoruba individuals against LCLs derived from central european (CEU) individuals. We chose LCLs as they

are homogeneous cell lines and splicing differences between populations should be subtle; both properties

are favorable for comparing sensitivity of the methods.

To overcome (1) the problem of p-value calibration, we computed the empirical false discovery rate (FDR)

as follows:

(a) First, we identify differential splicing between YRI and CEU LCLs using each method and record the

p-value (1-posterior for MAJIQ, see subsection below) distribution for all tests.

(b) Next, we permuted labels on the samples such that ∼ 1/2 of CEU samples are labeled as YRI samples

and vice versa. We then run each method on these permuted samples and the p-value (1-posterior for

MAJIQ) distribution are once again recorded.

(c) The number of differential splicing events discovered at a certain FDR (e.g. 5%) is defined as the

maximal number of events with test p-value less than p in the real data (Nreal) such that the number

of events with test p-value less than p in the permuted data (Nperm) respects the following constraints

Nperm/(Nperm +Nreal) < FDR.

The resulting p-value distributions of the 3v3, 5v5, 10v10, and 15v15 comparisons are shown in (Figure S3).

We observed that LeafCutter p-values were generally well-calibrated, which resulted in the largest number

of differentially spliced events compared to rMATS, MAJIQ, and Cufflinks2.

We observed that Cufflinks2 p-values were very conservative (see Cufflinks subsection below). We therefore

report the number of significantly differentially spliced events from Cufflinks2 directly. Interestingly, Cuf-

flinks2 reports 19 significantly different splicing events in the 3v3 comparison, but not in comparisons with

large sample sizes.
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To overcome (2) the problem of differences in what events are being measured, we collapsed all events in

rMATS and MAJIQ that shared a single splice site into a single event (as is done in LeafCutter).

2.2 MAJIQ

Instead of computing p-values for differentially splicing tests, MAJIQ computes posterior values reflecting

the confidence that a splicing event is differentially spliced at a ∆Ψ of at least P which is an user-defined

parameter. In our tests, we chose P to be 0.05. Choosing other values of P , e.g. 0.01 resulted in similar or

worse performance.

In principle it should be possible to use the posterior probabilities from MAJIQ’s Bayesian model to

directly control FDR. In particular, taking events with posterior probabilities ¿1-F should control FDR at F.

However, our permutation analysis shows this is clearly not the case since this approach results in a highly

inflated false positive rate (FPR) under the null. The fact that MAJIQ does not seem to give “true” posterior

probabilities suggests some degree of model mis-specification, i.e. that the statistics of real RNA-seq counts

do not quite match the assumptions made by the MAJIQ differential splicing model.

2.3 Cufflinks2

We sought to understand the source of Cuffdiff2’s overly conservative p-value distribution under the null. To

test for differential isoform usage for a specific gene Cuffdiff2 considers estimated isoform usage proportions

for a gene in two groups, denoted κ̂A and κ̂B as well as associated posterior covariances Σ̂A and Σ̂B . The test

statistic used is the Jensen-Shannon distance (JSD), d =
√
KL(κ̂A|m) +KL(κ̂B |m) with m = 1

2 κ̂
A + 1

2 κ̂
B .

Under the null κ̂A and κ̂B are drawn from the same distribution, which Cuffdiff2 assumes to be multivariate

normal. To approximate the sampling distribution of d, 105 pairs of samples are drawn from N(κ̂A, Σ̂A), and

the JSD for each pair. The procedure is repeated using N(κ̂B , Σ̂B) and the two resulting empirical p-values

are averaged.

To test the calibration of this procedure we simulated an idealized scenario where 1000 reads in each of

two conditions are unambiguously mapped to 5 isoforms of a gene. The true (shared) usage proportions

are sampled uniformly from the 5-simplex. Per condition counts are sampled from a Dirichlet-multinomial

distribution to model overdispersion, with a concentration parameter c = 10, typical for RNA-seq data. We

obtained maximum likelihood estimates of κ̂A and κ̂B under the “best-case” scenario of knowing the true c,

and corresponding Σ̂A and Σ̂B estimates using the inverse Hessian of the log likelihood function. We then

performed the Cuffdiff2 procedure using these values. The whole procedure was repeated for 100 different
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Figure S3: Cumulative distributions of differential splicing test p-values (1-posterior for MAJIQ) for the all
YRI versus CEU LCLs comparison (red). The distribution of test p-values for the permuted comparisons are
also shown (black). * Cufflinks2 reports 19 significantly differentially spliced genes in the 3 vs 3 comparison,
but none in the other comparisons.

simulated true usage proportions. This procedure recapitulates the overly conservative p-value distribution

(Figure S4 and S3) we observed when applying Cuffdiff2 to permuted real RNA-seq data. We hypothesize

that the root cause of the problem is that the multivariate normal is a poor approximation for distributions

constrained to the simplex, and as a result the estimated sampling distribution of d is considerably more

dispersed than it should be.

2.4 Comparison of false negative rates

To evaluate the false negative rates of differential splicing methods, we simulated sequencing reads for 160

protein coding genes each with 2 to 15 transcripts. For each gene, we only considered transcripts that differed
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Figure S4: Simulated isoform usage under the null of no differential splicing shows Cufflinks2 p-values are
overly conservative.

by at least one overlapping intron when compared to another transcript to avoid cases where two transcripts

only differ e.g. in the first or last exon or in an intron retention event (neither of which LeafCutter aims to

detect). We then simulated reads from these transcript models as follows:

1. We simulated 8 biological samples each with 5 technical replicates.

2. For each gene, we set a random transcript’s expression to 1X (no change), 1X, 1X, 1.1X, 1.25X, 1.5X,

3X, and 5X in the 8 biological samples in random order (note that we set 1X for 3 of 8 samples, so there

are 3 comparisons with no change of transcript expression; we used these to compute false positive

rates).

3. We used polyester38 to simulate sequencing reads, obtaining 8× 5 = 40 RNA-seq samples (we used

default parameters, e.g. 30X coverage and default error distributions).

4. We mapped reads from each sample using STAR and applied all four differential splicing detection

methods on all pairwise (8 choose 2) = 28 comparisons.

5. We computed the effective transcript fold-change for each gene (a transcript might be set to 1.5X and

3X in the two samples that are being compared resulting in a effective fold change of 2X) in all 28

pairwise comparisons.

6. We then collected all p-values for every gene/comparison (min p-value/max posterior if more than one

splicing event is tested per gene) and plotted their differential splicing test p-values binned by their
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effective transcript fold-change (Figure S5).

7. For each effective transcript fold-change, we computed the true positive and false positive rates for all

possible p-value or posterior cutoffs (Figure S6).

From these simulations and the receiver operating characteristic (ROC) curves, we conclude that while

Cufflinks2 appears to detect more transcripts with 1.1 fold-difference at reasonable FDRs, LeafCutter out-

performs all three other methods when transcripts differed by 1.25-fold or more (Figure S6). Of the four

methods tested, Cufflinks2 is the only method that estimates transcript levels, which might explain its higher

power in detecting small differences in transcript expression. Interestingly, the performance of MAJIQ and

LeafCutter were nearly identical when evaluated on transcripts that differed by 3-fold or more, but LeafCut-

ter outperformed MAJIQ when differences were more subtle. This can be explained by the observation that

LeafCutter has a lower false positive rate than compared to MAJIQ (see LeafCutter and MAJIQ panels at

1X effective fold-change in Figure S5).

2.5 Additional comparisons

As further comparisons and to ensure that the differentially spliced events detected using LeafCutter are

not simply noise. We first asked about the correlation of p-values between comparisons with varying sample

sizes. Here, we only compared LeafCutter to rMATS as MAJIQ do not report p-values and Cufflinks2 p-

values are overly conservative. To do this, we computed the Spearman correlation of the − log p of the tested

introns in the 15v15 comparison versus the corresponding − log p of the tested introns in the 3v3, 5v5 and

10v10 comparisons. As expected, the correlations increase monotonically for both methods as sample size

increases reflecting an increase in precision in our effect size estimates (Figure S7a). However, we do observe

a significantly higher correlation for LeafCutter compared to rMATS, suggesting that LeafCutter is more

robust to comparisons involving fewer samples.

We further observed that the ability of LeafCutter to recall genes with evidence of differentially splicing

discovered using an rMATS analysis was similar to that of MAJIQ, while Cufflinks2 showed the worst

performance of all (Figure S7b).

To estimate the concordance between methods, we ranked genes by our differential splicing p-values,

and asked about concordance at different bins of significance levels (50 genes per bin). We found that for

the most significant bin (i.e. the top 50 most significantly differentially spliced genes), the concordance was

high (65–75%) between rMATS and LeafCutter (we used a p-value cutoff of 0.05 to determine concordance)
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and even higher (80–82%) between LeafCutter or rMATS top genes and MAJIQ genes (we used a posterior

> 0.99 to determine concordance). These observations (Figure S26a,b) are in line with our expectation that

concordance rates rapidly decrease as our power to detect differentially spliced genes drops to zero.

Because LeafCutter, rMATS, and MAJIQ all measure splicing at a local level and not at the gene/isoform

level, we next verified how consistent LeafCutter was with other predictions in terms of these local events.

To this end, we ranked LeafCutter associations in terms of their p-values and asked whether LeafCutter

introns shared at least one splice site with introns that were predicted to be differentially spliced by rMATS

(p < 0.01) and MAJIQ (posterior > 0.95). We found that ∼ 90% of the introns that were found to be most

significantly differentially spliced using LeafCutter shared a splice site with rMATS and MAJIQ, suggesting

that LeafCutter identified the same differentially spliced events (Figure S26c). In contrast, only ∼ 60% of

the events shared a spliced site when no associations was in LeafCutter (p > 0.5). Although 60% might

appear high for the sharing between two “random” introns, it is useful to note that these are conditioned on

introns that show (1) alternative splicing and (2) are differential spliced in rMATS or MAJIQ. The random

overlap between LeafCutter-tested introns and rMATS-tested introns is less than 20%.

2.6 RAM usage

To measure RAM usage across methods, we used a custom script which calls strace -e trace=mmap

,munmap,brk on the main programs, except for rMATS. We found that rMATS launched additional processes

that are not measured directly. We therefore ran our custom script on rMATS.3.2.5/processGTF.BAMs.py

which appears to be the most RAM intensive script of the rMATS pipeline.
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Figure S5: Scatter and violin plots of the p-value and posterior distribution of differential test statistics
binned by true, simulated, effective transcript fold-change. For each method, tests of genes with five or
fewer transcripts and genes with more than five transcripts are plotted on the upper and bottom panels,
respectively. We observed a decrease in power to detect differential splicing as transcript number increases
using Cufflinks2, but not for the three other methods. Red dots represent genes with no tested splicing
event.
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Figure S6: Receiver operating characteristic (ROC) curve of LeafCutter, Cufflinks2, rMATS and MAJIQ
when evaluating differential splicing of genes with transcripts simulated to have varying levels of differential
expression. Top panel shows ROC curves when excluding genes that were not tested by each respective
methods. While the bottom plot includes genes that were not tested in the calculation of true positive rate.
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Figure S7: (a) Correlation of computed differential splicing − log10 (p-values) of introns between a 15 YRI
vs 15 CEU LCLs comparison and 3 vs 3, 5 vs 5, and 10 vs 10 comparisons. (b) QQ-plot of the differentially
splicing signal found using rMATS in a comparison between 15 YRI and 15 CEU LCLs samples. Differentially
spliced genes detected using LeafCutter and MAJIQ, but not Cufflinks2, are highly enriched in genes detected
using rMATS.

Figure S8: Estimates of concordances between differentially spliced genes detected using LeafCutter and
rMATS genes (a) and between LeafCutter or rMATS genes and MAJIQ genes (b). Genes were ranked in
terms of their significance levels (from LeafCutter and rMATS) and grouped into bins of size 50. Dashed lines
mark 245, i.e. the number of differentially spliced genes detected using LeafCutter at 5% FDR. (c) Estimates
of the proportion of shared splice sites between differentially spliced introns predicted using LeafCutter and
introns predicted to be differentially spliced using rMATS and MAJIQ. Genes were ranked in terms of their
significance levels (LeafCutter) and grouped into bins of size 50.
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Figure S9: Memory usage (RAM) of four differential splicing methods applied to comparisons between 3,
5, 10, and 15 YRI vs CEU LCLs RNA-seq samples. We omitted the 15v15 MAJIQ run due to its expensive
resource usage (both in terms of time and RAM). Right panel shows usage in log scale.
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3 RNA-seq data processing

3.1 GTEx for intron discovery

We downloaded 2,192 RNA-seq samples from GTEx (Table S9). To analyze these, we used OLego (v1.1.5)20

to map the RNA-seq reads to the human genome (hg19) and processed the resulting .bam files using Leaf-

Cutter. Specifically, we used the following command: olego -v -j hg19.intron.hmr.brainmicro.bed -e

6 hg19.fa.

Tissue Sample Number
Heart 153
Testis 67
Spleen 7
Skin 340
Brain 422
Colon 86
Blood 270

Pancreas 66
Adipose Tissue 172

Lung 151
Esophagus 238

Muscle 176
Kidney 8
Liver 35

Table S9: Sample sizes of processed GTEx RNA-seq short read data by tissue type.

The choice of OLego20 is based on our previous experience that it performs well for discovering unanno-

tated exons of small length (e.g. 9nt micro-exons)39. OLego is a program specifically designed for de novo

spliced mapping of mRNA-seq reads, while STAR35 does best when a set of junction is provided. Since

a chief objective of our GTEx analysis was to identify novel exons and to identify conserved alternative

splicing events across multiple species with annotations worse than that of human, we used OLego for our

GTEx differential splicing analyses (we used STAR for sQTL analyses because of fast running time and high

accuracy in mapping). To quantify the differences in mapping of the two aligners, we picked at random five

RNA-seq samples from the GTEx consortium that we previously aligned using OLego and re-aligned them

using STAR. We next analyzed the correspondence between the number of junction reads for each junction

across the two aligners. We found that while there are junctions whose read counts are orders of magnitude

different, only 4.8% of junctions differed by a count fold-difference of 1.1 or more (0.94% of junctions differed

by a count fold-difference of 2 or more).
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Figure S10: Comparisons of junction read numbers between STAR and OLego across 5 random GTEx
samples. Only junctions with total reads of more than 16, across both aligners, are shown. Note that only
junctions which were found using OLego in a bigger panel of GTEx tissues (i.e. all GTEx samples in this
study) were considered.
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3.2 GEUVADIS (YRI) for sQTL methods comparison

To compare splicing QTL (sQTL) calling methods, we aligned 85 YRI LCL samples from GEUVADIS using

STAR two-pass and used WASP to remove reads that mapped with allelic biases18. These aligned reads

were used as starting point for each of the sQTL calling methods. Specifically, the following command was

used:

STAR --genomeDir STAR_index --twopassMode --outSAMstrandField intronMotif

--readFilesCommand zcat --outSAMtype BAM Unsorted

3.3 GEUVADIS (CEU) for sQTL mapping

To control for differences in mapping procedures, we downloaded the .bam files directly from ArrayExpress (E-

GEUV-3) and processed them using LeafCutter to obtain intron clusters and quantifications. We recommend

the use of WASP18 to correct for biases caused by allelic reads. However, to make our comparison to other

tools fair, we used the aligned reads available on ArrayExpress, and removed all clusters with an association

to a SNP that overlap junction reads (see section entitled “sQTL mapping using LeafCutter”). This approach

is conservative as some allelic reads do not map with a bias.

3.4 GTEx for sQTLs mapping

Again, to control for differences in mapping procedures, we used the .bam files provided by the GTEx

consortium for sQTL mapping, and removed all clusters with an association to a SNP that overlap junction

reads.

4 Identification of unannotated introns in tissues from GTEx

To obtain a comprehensive set of annotated introns, we downloaded the GENCODE (v19), UCSC, and

RefSeq annotation databases in .gtf format. We classified introns as annotated if their 5’ and 3’ splice sites

correspond to the end and start, respectively, of two consecutive exons in at least one transcript. As such it

is possible that both 5’ and 3’ splices sites of a novel intron are annotated. We note that although a large

proportion of annotated introns are present in all three databases, we found that the GENCODE annotation

has the most comprehensive list of introns.

To estimate the number of unannotated alternatively excised (AE) introns, we first mapped 2,192 RNA-

seq samples from 14 tissues (GTEx) to the human genome (hg19) using OLego, allowing de novo splice
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junction predictions. We then used LeafCutter to identify alternatively excised introns by pooling all junction

reads. We then restricted our analyses to AE introns that were supported by at least 20% of the total number

of reads that support introns from the clusters they belong to in at least 25% of all samples, considering

each tissue separately. Although there is no minimum read count (an intron supported by 20 reads, 20% of

100, is less likely to be the outcome of noisy splicing than one supported by 2 reads out of 10), we reasoned

that requiring 20% percent-splicing in 25% of all samples will filter out most sequencing technical artifact

and noisy splicing. Importantly, using different cutoffs does not alter qualitatively our conclusions. This

resulted in 70,722 AE introns that met these criteria, of which 22,278 (31.5%) AE introns were absent from

all three annotation databases.

To investigate the functionality of these unannotated introns, we asked whether the unannotated splice

sites of the 22,278 AE novel introns show signature of sequence conservation across vertebrates. To do this, we

divided splice sites into three classes: (1) control splice sites, which are annotated in one or more databases,

but whose cognate splice site is unannotated, (2) the cognate splice site itself, and (3) splice sites of introns,

for which both splice sites are unannotated. To compute sequence conservation, we average the phastCons

score of the predicted splice sites (over 96% of which are AG/GT) plus 2 flanking bases. Interestingly, we

find that the average sequence conservation of unannotated splice sites is higher if its cognate splice site is

annotated (Figure 1d, Figure S11).

4.1 Validation of unannotated junctions in Intropolis

To verify that these unannotated splicing events are not a result of mapping errors or artefact unique to

samples from GTEx, we examined the number of splicing junctions that could also be found in the Short Read

Archive (SRA) using Intropolis24 (note that GTEx samples were excluded from the SRA). Intropolis

processed 21,504 human RNA-seq samples from the Sequence Read Archive (SRA) using RAIL-RNA to align

and refine junction calls to improve sensitivity40. This analysis therefore provides an additional replication

of the RNA-seq aligner (i.e. OLego) that we used to identify unannotated splicing events. Because the

SRA does not collect uniform cell-type or tissue labels for each sample, we used the cell-type or tissue labels

predicted by phenopredict25 to assign tissue identity to each SRA sample. Using this data, we quantified

the number of alternatively spliced junctions identified in our study that can also be found in SRA samples

(Figure S12). Overall, we found that, for instance, 86% of all novel junctions identified in GTEx testis using

LeafCutter could be replicated in testis samples from the SRA (94% of unannotated heart junctions could

be found in heart SRA samples). This is particularly impressive because (1) at most 56% of all unannotated
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Figure S11: PhastCons score distribution of splice site of novel introns. While ∼60% of annotated splice
sites have local phastCons score >0.6, only 15-25% of unannotated splice sites do. Thus ∼80% of novel splice
sites may represent noisy intron excision events.

junctions could be found in any other SRA tissues and (2) considering all tissues together increased the

proportion of unannotated junctions “replicated” by only 4%, to 90%. These observations cannot be simply

explained by a better sampling of testis in the SRA, as, for example, only 77% of the novel heart junctions

could be found in SRA testis samples versus 94% in SRA heart samples.
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Figure S12: Barplots showing the number of alternatively used junctions annotated from our GTEx analyses
that were found in Intropolis24. phenopredict25 was used to predict the tissue type corresponding to
the SRA samples analyzed in Intropolis. For each set of junctions, the proportion of junctions that were
found (at least 1 read) in any SRA sample (Any), or found in samples which were predicted to be from testis
(Testis) are highlighted. The predicted tissues with the highest number of supported junctions are colored
in purple. Eighty-six percent of all novel alternatively used testis junctions from our LeafCutter analysis
could be found in testis samples within SRA (not including GTEx).

Because the analysis above only quantified presence or absence of the unannotated junctions in at least

one sample from each tissue, we next characterized unannotated junctions by examining the proportion of

samples in which they could be found by tissue (Figure S13). As expected, we found that unannotated junc-

tions discovered in a given tissue tend to be present in a significant higher proportion of samples from the

same, corresponding, tissue. Again, this suggests that unannotated junctions likely represent real splicing

events that were not previously annotated as they tend to be highly tissue-specific.

To further profile this set of unannotated introns, we quantified their tissue-specificity, their levels of
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Figure S13: Number of junctions that were found in at least X percent of all SRA samples, by tissue.

usage, and the type of splicing patterns they generally correspond to. As expected, we found that the vast

majority of novel junctions were present in only a single GTEx tissue (Figure S14a). Similarly, we found

that novel junctions identified in a tissue were used at a significantly higher levels in the corresponding tissue

than in other tissues (Figure S14b), the differences were particularly striking for novel junctions discovered

in testis. When we characterized the type of splicing events in which the unannotated introns were apart

of, we found that, interestingly, 31.7% of all clusters with unannotated introns were complex, i.e. included

at least one exon skipping and one alternative splice site event. This is nearly twice as many as compared

to the 16.6% of complex clusters that are annotated. Overall, we conclude that unannotated junctions are

relatively lowly used, tend to be tissue-specific, and often involve complex splicing patterns.

40

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/044107doi: bioRxiv preprint 

https://doi.org/10.1101/044107


Figure S14: (a) Distribution of the number of different GTEx tissues in which junctions predicted to be
absent, or present in three commonly-used annotation databases, could be detected. (b) Relative junction
usage in multiple GTEx organs of annotated and unannotated junctions identified in four GTEx organs. (c)
Distribution of LeafCutter clusters from GTEx samples in terms of their splicing types. Clusters with only
annotated junctions and clusters with unannotated junctions were further separated.

41

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/044107doi: bioRxiv preprint 

https://doi.org/10.1101/044107


5 Statistical models

For cluster C containing J possible introns, let yij denote the count for sample i and intron j (and cluster

total niC =
∑
j′ yij′), and xi denote a P -vector of covariates.

5.1 Beta-binomial GLM.

Our initial approach was to test each specific intron j of a cluster using

yij |niC ∼ BB(niC , αpi, α(1− pi)), (8)

pi = σ(xiβ + µ) (9)

where BB is the beta-binomial distribution and σ(x) = 1/(1 + e−x) is the logistic function. Here the

parameters to be learnt are the P -vector β, intercept µ and concentration parameter α. Higher values

of α correspond to the underlying beta distribution concentrating around pi, and therefore to less count

overdispersion. In particular as α→∞ the BB likelihood converges to a multinomial likelihood, recovering

a logistic regression model.

Optimization. For both the beta-binomial and Dirichlet-multinomial models we use the Bayesian proba-

bilistic programming language Stan41 to define the model, generate efficient C++ code for likelihood and

gradient calculation, and to perform optimization using LBFGS.

Regularization. For some cases the likelihood as a function of the overdispersion parameter can be ex-

tremely flat, leading to numerical instability. In order to stabilize the optimization we use very weak regu-

larization in the form of the prior

α ∼ Gamma(1 + 10−4, 10−4) (10)

We experimented with two different versions of the DM GLM. The first uses a shared concentration

parameter αj = α for all introns j in a cluster (the beta-binomial GLM is a special case of this model). The

second allows a different αj for each intron in the cluster.

Identifiability. The DM GLM shares with the more standard Multinomial GLM that the form in Equation

2 has a spurious degree of freedom: in particular, adding a constant to the input of the softmax does not

42

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/044107doi: bioRxiv preprint 

https://doi.org/10.1101/044107


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●

●●●●
●●●
●●●●●●

●●●
●●
●●●

●●●
●●

●
● ●

●●●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●
●●
●●●●●●

●●
●●●
●●●●

●●
●●●
●
●●●●
●●●

●●
●●●●●

●●
●●●

●
●

● ●
●

●

●

●

●

●
● ●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ● ●● ●● ● ● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●● ●● ●●●●●
●

●●
●●● ●

●●
●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ● ●● ●● ● ● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●● ●● ●●●●●
●

●●
●●● ●

●●
●

●

●●

●

●

●

0

100

200

300

0 1 2 3
Expected −log10(p)

O
bs

er
ve

d 
−

lo
g1

0(
p)

shape
● observed

permuted

method
●

●

●

●

Binomial+Bonferroni
Binomial+Fisher
Multinomial.v1
Multinomial.v2

Figure S15: Comparison between beta-binomial and Dirichlet-multinomial models for differential splic-
ing analyses, performed on 10 male brain vs. heart samples from GTEx. Two approaches for combining
per-intron p-values into cluster level introns are compared: Bonferroni correction and Fisher’s combined
test. Bonferroni is very conservative, as expected. Fisher’s combined test has considerably lower power
than the multinomial approaches. However, only v2 of the Dirichlet-multinomial (which uses a per intron
concentration/overdispersion parameter) is well calibrated under permutations.

change its output. To remove this degree of freedom from the model we parameterize each βj as

βjp := β̄p(β̃jp −
1

J
) (11)

where β̃1p, ..., β̃Jp is constrained to lie on the J-simplex, i.e. β̃jp ≥ 0,
∑
j β̃jp = 1, a constraint Stan naturally

handles using a change of variables.
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5.2 Likelihood ratio tests

Likelihood ratio tests are generally better calibrated than alternatives such as Wald statistics for testing for

the significance of covariates, especially for modest sample sizes. We optimize wrt to β, µ, α separately for

the null and alternative models (excluding and including the group indicator x respectively) to obtain log

likelihoods λ0 and λ1 (for efficiency we initialize the optimization for the alternative model using the null

model parameters) and then perform a likelihood ratio test: under the null 2(λ1 − λ0) ∼ χ2
ρ where ρ is the

appropriate degrees of freedom. For the beta-binomial GLM ρ = P1 − P0 where P0 and P1 are the number

of covariates in the null and alternative models respectively. For the Dirichlet-multinomial GLM we have

ρ = (J − 1)(P1 − P0) where J is the number of introns in the cluster.
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6 Differential intron excision analyses

6.1 Identification of tissue-dependent intron excision levels

We used LeafCutter’s Dirichlet-multinomial GLM to identify intron clusters with at least one differentially

excised intron. We searched for intron excision level differences between all tissue pairs. However, we should

note that owing to sample size differences, we will have different power to detect differential splicing of

varying magnitude between pairs (we can detect splicing differences of small magnitude only in comparisons

with large sample sizes). When we hierarchically clustered all samples according to the intron excision levels

of introns that were present (i.e. were supported by reads) in all species, we saw a mix between tissue and

species clustering (Figure S16). However, when we conditioned on introns that were differentially excised

across human tissue pairs according to LeafCutter, we saw a clear clustering by tissue (Figure 2a).

Figure S16: Hierarchical clustering on all 1,258 introns that had no missing values in any of the samples.
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6.2 Effectiveness at small sample sizes

RNA-seq experiments are often performed on a handful of samples only. To determine whether LeafCutter

is effective in this setting we performed clustering, quantification and differential intron usage analysis on

4 male brain and 4 male muscle samples from GTEx. As a “bronze standard” we additionally performed

quantification and differential splicing on 110 muscle and 110 brain samples (using the introns and clusters

identified using 8 samples). With only N = 8 samples, LeafCutter appears to be well-calibrated under

permutations (Figure S17a) and has sufficient power to detect 885 clusters with evidence of differential

intron usage (FDR 10%, maximum absolute effect size > 1.5), compared to 1906 found at N = 220. The

per cluster p-values are highly correlated between the small and full sample sizes (R2 = 0.72, Figure S17b),

and 98% of the clusters significant at N = 8 are also significant at N = 220. Per intron effect sizes between

the two sample size settings are also highly correlated (R2 = 0.49, Figure S17c), although as expected the

variance of the N = 8 effect sizes is large. This is particularly the case when the intron is only observed at

all in one of the two tissues (Figure S17d).

6.3 Pan-mammalian tissue clustering of intron excision profiles

To evaluate the conservation of intron excision profiles across mammalian tissues, we used OLego to map

RNA-seq data27 from eight organs (testes, heart, kidney, liver, lung, brain, colon, and spleen) in four

mammals (mouse, rat, cow, and rhesus macaque) to their respective genomes. We then projected all introns

supported by RNA-seq reads onto the human genome using liftOver and clustered projected introns from

all four mammals and human GTEx samples using LeafCutter. We then focused on four disjoint pairwise

comparisons (Testis vs Kidney, Muscle vs Colon, Heart vs Lung, and Brain vs Liver, Figure S18).
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Figure S17: LeafCutter is effective even with as few as 8 samples. Here we performed differential splicing
analysis of 4 male brain vs 4 male muscle samples, and compared to results using 220 samples. a) p-values
under permutations are well-calibrated. b-c) p-values and effect sizes are highly correlated between the two
sample size datasets. d) Significant disparity in effect sizes between the two sample sizes is primarily driven
by an intron being unique to a tissue when N = 8.
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Figure S18: We restricted to introns that were found to be differentially excised between human tissues
(p-value < 10−10 and effect size > 1.0)
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7 sQTL mapping using LeafCutter

7.1 Mapping sQTLs in GEUVADIS LCL samples (linear regression)

To map sQTLs in GEUVADIS LCLs samples, we restricted our analysis on 372 samples derived from Eu-

ropean individuals. We downloaded genotype files from ArrayExpress (E-GEUV-1). We used LeafCutter

to obtain read proportions for all introns within alternatively excised intron clusters. We then standardized

the values across individuals for each intron and quantile normalized across introns42 and used this as our

phenotype matrix. We then used linear regression (as implemented in fastqtl)30 to test for associations

between variants (MAF ≥ 0.05) within 100kb of intron clusters and the rows of our phenotype matrix that

correspond to the introns within each cluster. As covariate, we used the first 3 principal components of the

genotype matrix plus the first 15 principal components of the phenotype matrix. To estimate the number

of sQTLs at any given false discovery rate (FDR), we used the correct p-values from fastqtl, and then used

Bonferroni correction to control for the number of introns we test per cluster (note that this is conservative).

We then use Benjamini-Hochberg to estimate the FDR (sample permutations show that our association

p-values at this step are well calibrated).

Unlike for YRI RNA-seq data where we used WASP18 to correct for biases in allelic reads, we did not

correct for biases caused by allelic reads for the CEU comparisons to keep comparisons fair with previous

GEUVADIS analyses. To avoid biases, we removed all associations that might be caused by SNPs that

overlap junction reads. To do this, we removed all intron clusters that had a variant that were 70 or fewer

base pairs (GEUVADIS RNA-seq read length is 75bp and at least 6nt must overlap with all exons) away

from the splice sites (in the exonic part).

7.2 sQTL mapping comparison between LeafCutter, Cufflinks2 and Altrans

We ran LeafCutter, Cufflinks2 and Altrans to estimate isoform and splicing events usage, respectively, on all

85 Yoruba WASP-processed18 RNA-seq aligned data. We then standardized the values across individuals

for each isoform/splicing event usage and quantile normalized across introns42. As covariate, we used the

first 3 principal components of the genotype matrix plus the first 15 principal components of the phenotype

matrix. We then used fastqtl30 to test for associations between variants (MAF ≥ 0.05) within 50kb of

the transcript (Cufflinks), the splicing event (Altrans), or splicing cluster (LeafCutter). To estimate the

number of sQTLs at any given false discovery rate (FDR), we used the correct p-values from fastqtl, then

use Benjamini-Hochberg to estimate the FDR. Altrans discovers splicing events using a forward and a reverse
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pass on the aligned RNA-seq data, thereby producing two measurement tables. To allow fair comparison

between Altrans and the other methods, we combined forward and reverse splicing QTLs and collapsed all

events that shared a splice site together (as is done in LeafCutter).

7.3 Sharing of sQTL discoveries between LeafCutter, Cufflinks2 and Altrans

To quantify the proportion of LCL sQTLs that are shared between Cufflinks2, Altrans, and LeafCutter, we

first took the most significant SNP-gene/cluster pairs for every gene/clusters that had a sQTL at a 10%

FDR. Note here that the following observations were qualitatively the same when we used a 1% FDR cutoff.

We then collected the p-values of the associations of the SNP-gene pairs (when there were more than one

splicing event tested per genes, we took the minimum p-values times the number of tested events) (Figure

S19) and used the Storey’s π0 method43 to estimate the proportion of shared discoveries (Figure S20).

Figure S19: Distribution of SNP-gene splicing association p-values. Three panels correspond to sQTLs
identified at 10% FDR using LeafCutter, Altrans, and Cufflinks2, respectively.

Overall, we find a higher pairwise sQTL sharing between LeafCutter and either of the two other methods

(Altrans and Cufflinks2) than compared to the sharing between Altrans and Cufflinks2. Conversely, we

found that while LeafCutter identified more sQTLs at 10% FDR, LeafCutter sQTLs were more enriched in

low sQTL p-values as measured by Altrans or Cufflinks2. These observations suggest that LeafCutter is both

more sensitive (lower proportion of false negatives) and more accurate (lower proportion of false positives).

7.4 Mapping sQTLs in GEUVADIS LCL samples (Dirichlet-multinomial GLM)

In addition to using linear regression, we also used LeafCutter’s Dirichlet-multinomial GLM to map sQTLs.

This approach has two main advantages: (1) it accounts for the over-dispersion of read count data, and
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Figure S20: Sharing of sQTL discoveries between Cufflinks2, Altrans, and LeafCutter estimated using
Storey’s π0 method.

(2) it combines signal from changes in intron excision levels across the entire cluster instead of considering

each intron independently. However, when we applied to our GEUVADIS data and controlled FDR using

permutations, we found fewer sQTLs than our linear model approach, likely driven by clusters with heavy-

tailed count distributions which are effectively handled by the quantile normalization in the linear approach.

7.5 Mapping sQTLs in four GTEx tissues

To identify sQTLs in GTEx tissues, we used the same strategy as in GEUVADIS LCLs (linear regression).

However, we used the first 5 genotype PCs and the first 10 PCs as covariates (5+10 instead of 3+15).

Tissue Number of individuals
Heart 95
Blood 170
Lung 128

Thyroid 118

Table S20: Sample sizes of processed GTEx .bam files for sQTL mapping.
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8 sQTL analyses

8.1 Identification of functional enrichment of sQTLs

To identify functional categories enriched in sQTLs, we first annotated all variants using SnpEff version

4.1f. We next sampled at random ∼200,000 SNPs that are located near genes (i.e. had the annotation

“Upstream”, “Downstream”, “Intronic”, or were exonic variants). This is because we only test SNPs that

are near genes. The number of sampled SNPs corresponds to 50 times the number of sQTLs identified in

our study. We computed the log-fold enrichment in functional annotations of the top most significant sQTLs

(n = 4, 543) over this random sample of SNPs. Finally, to obtain confidence intervals, we repeated the

random sampling procedure 500 times.

Figure S21: Functional enrichment of 4,543 sQTLs identified at 1%FDR from CEU GEUVADIS data. Bar
represent 95% confidence interval from 500 bootstraps.
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8.2 Comparison with GEUVADIS exon eQTLs, and trQTLs

Although LeafCutter does not explicitly search for genetic variants that are associated with differences in exon

level splicing or transcript ratios, we expected that these variants will also affect intron excision, which are

detected by LeafCutter. To verify this, we compared the distribution of p-values from the association between

LeafCutter intron excision and genome-wide SNPs to the p-values from the association between LeafCutter

intron excision and SNPs that were previously classified as exon eQTLs and transcription ratio QTLs in

GEUVADIS. More specifically, we downloaded the list of exon eQTLs and trQTLs from ArrayExpress (E-

GEUV-3) and for each exon/gene took the SNP with the strongest association to exon level or transcript

ratio. We then computed the association p-values of these SNPs with all tested LeafCutter intron excision

levels, using Bonferroni correction to adjust our p-values. As expected both exon eQTL and trQTL SNPs

were enriched in strong associations to intron excision levels compared to random SNPs, and trQTL SNPs

were most enriched in strong associations.

Figure S22: Meta-cluster representation of position of all 4,543 sQTLs identified at 1%FDR.

We next wished to verify that trQTLs detected in GEUVADIS were mostly identified as LeafCutter intron

sQTLs. We again took the best trQTL SNP for each gene, and estimated the number that were associated

with a cluster at a corrected p-value < 0.05. To correct for SNPs tested against multiple clusters, we used

Bonferroni correction to adjust the p-value of the strongest association. We find that 399 (81.3%) of the

491 top trQTLs we tested are significantly associated (p < 0.05); this percentage is likely higher because

our Bonferroni correction is conservative. Furthermore, as expected, when we use the same procedure to

ask how many of the top 491 trQTLs are significantly associated to intron splicing when our sample labels
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are permuted, we find that only 4.7% are (our statistical tests are well calibrated; ∼5% of our tests should

achieve a 0.05 significance under the null model).

8.3 Relationship between gene expression levels and power to detect sQTLs

We examined the expression profiles of the genes with significant sQTLs detected by LeafCutter. As expected

we found a strong positive relationship between our power to detect a sQTL for a gene and the expression

level of a gene (Figure S23a). Indeed, while most annotated genes (including non protein-coding genes) were

expressed at very low levels, we found almost no sQTLs for genes whose expression were less than 0.025

RPKM. While there is a clear decrease in LeafCutter’s ability to identify sQTLs in lowly expressed genes

(Figure S23a), we were able to find sQTLs for many lowly-expressed genes, starting from 0.1 RPKM (Figure

S23b).

Figure S23: (a) Distribution of median LCLs gene expression levels for all genes (top) and genes with one or
more LeafCutter sQTLs. (b) Scatter plot of LeafCutter p-value associations with respect to the expression
levels of the corresponding genes. Dashed lines correspond to approximately 0.025 RPKM.

8.4 Replication of sQTLs across GTEx tissues

To estimate the proportion of sQTLs that are replicable across tissue types, we took the best SNP of each

sQTL-cluster pair for each tissue and asked whether the sQTL association was significant (p < 0.05) in

another tissue. This estimate is likely to be conservative as it does not account for incomplete power. The

replication is therefore likely to be even higher than our current estimates of 75–93%.
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Figure S24: Example of a shared sQTL.

8.5 Tissue-specific sQTLs

To identify tissue-specific sQTLs, we searched for genetic variants that were associated significantly with

intron excision levels in one tissue, but not in any of the other three tissues (p > 0.1), requiring all tissues

to have junction reads in the intron cluster.

Figure S25: Example of a tissue-specific sQTL.
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9 LeafCutter sQTL signals in genome-wide association studies

To verify that LeafCutter sQTLs can help us identify disease-associated variants that function by modulating

splicing, we downloaded summary statistics from two autoimmune GWAS studies (multiple sclerosis44 and

rheumatoid arthritis45) and looked for enrichment of strong association p-values among the top LeafCutter

sQTLs and GEUVADIS gene eQTLs (we removed the extended MHC region from this analysis). We found

that 1,205 LeafCutter sQTL SNPs and 901 GEUVADIS eQTL SNPs (the SNP with most significant p-value)

were also tested (with >5% MAF) in the multiple sclerosis genome-wide association study, and that 3,069

LeafCutter sQTL SNPs and 2,250 GEUVADIS eQTL SNPs were tested in the rheumatoid arthritis study.

We then took the QTLs and plotted the distribution of − log10(p-value) of their association to each trait

separately. As expected17, we found that LeafCutter sQTLs were more highly enriched in associations with

low p-values compared to GEUVADIS eQTLs in multiple sclerosis and were similarly enriched in rheumatoid

arthritis. This is notable because we considered a larger number of LeafCutter sQTLs than GEUVADIS

eQTLs for both diseases. These observations suggest that LeafCutter allows us to identify as many or more

disease-associated variants that act by affecting splicing as compared to those that act by affecting total

expression levels.

9.1 Prediction Models and S-PrediXcan

Prediction models were trained by fitting Elastic-Net linear models to each gene for the expression models

and to each intron cluster for the splicing models using nearby SNPs dosages as features. Before fitting

the models, we removed non biallelic SNPs and any ambiguously stranded SNPs from the genotype data.

We downloaded normalized and PEER corrected expression data from the GEUVADIS study. Intron ex-

cision traits were corrected for genetic principal components and covariates (as outlined above). Once the

data had been preprocessed, for each gene or intron cluster, SNPs within 1Mb upstream and 1Mb down-

stream of their start and end sites were selected as variables for the model. Using the R package glmnet

we fit a 10-fold cross-validated Elastic-Net linear model using a mixing parameter of 0.5 for each gene

and intron cluster. Further details can be found in36,33,37 and training pipelines can be downloaded from

github.com/hakyimlab/PredictDBPipeline.

A total of 4625 gene associations were obtained for the genetic expression model, and 41196 intron quan-

tification cluster associations for the splicing model, that had a model prediction FDR < 5% (computed
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Consortium Phenotype URL
PGC Attention Deficit/Hyperactivity Disorder med.unc.edu/pgc/results-and-downloads
PGC Bipolar Disorder med.unc.edu/pgc/results-and-downloads
PGC Major Depressive Disorder med.unc.edu/pgc/results-and-downloads
PGC Autistic Spectrum Disorder med.unc.edu/pgc/results-and-downloads
PGC Schizophrenia med.unc.edu/pgc/results-and-downloads
CIAC Clozapine-Induced Agranulocytosis med.unc.edu/pgc/results-and-downloads
CONVERGE Major Depressive Disorder well.ox.ac.uk/converge
IGAP Alzheimer web.pasteur-lille.fr/en/recherche/u744/igap/igap download.php
TAG Tobacco Cigarettes per Day med.unc.edu/pgc/results-and-downloads
IBD Inflammatory Bowel Disease ibdgenetics.org/
IBD Ulcerative Colitis ibdgenetics.org/
IBD Crohn’s Disease ibdgenetics.org/
GIANT Body Mass Index broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

GIANT Waist-to-Hip Ratio broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

GIANT Waist Circumference broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

GIANT Hip Circumference broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

Table S25: List of Genome-wide Association Meta Analysis (GWAMA) Consortia and pheno-
types.

from the correlation between cross validated prediction and observed values).

We downloaded genomewide association meta analysis (GWAMA) results for 40 phenotypes from 18

consortia and performed S-PrediXcan analysis using both expression and intron models. The full list of

traits and consortia is displayed in Supplementary Table S25.
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10 Processed data availability

Data Accession
RNA-seq and genotype (GEUVADIS) E-GEUV-3 (ArrayExpress)

RNA-seq (Merkin et al., 2012) GSE41637 (GEO)
RNA-seq and genotype (GTEx) phs000424 (dbGaP)

Figure S26: Visualization of differential splicing between heart and brain identified by comparing 10
GTEx heart and brain samples using LeafCutter. All cluster figures are available at https://leafcutter.
shinyapps.io/leafvis2/.
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