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Abstract 
High-throughput sequencing of small RNAs (sRNA-seq) is a popular method used to discover and annotate 
microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs) and Piwi-associated RNAs (piRNAs). 
One of the key steps in sRNA-seq data analysis is alignment to a reference genome. sRNA-seq libraries often 
have a high proportion of reads which align to multiple genomic locations, which makes determining their true 
origins difficult. Commonly used sRNA-seq alignment methods result in either very low precision (choosing an 
alignment at random) or sensitivity (ignoring multi-mapping reads). Here, we describe and test an sRNA-seq 
alignment strategy that uses local genomic context to guide decisions on proper placements of multi-mapped 
sRNA-seq reads.  Tests using simulated sRNA-seq data demonstrated that this local-weighting method 
outperforms other alignment strategies using three different plant genomes.  Experimental analyses with real 
sRNA-seq data also indicate superior performance of local-weighting methods for both plant miRNAs and 
heterochromatic siRNAs. The local-weighting methods we have developed are implemented as part of the 
sRNA-seq analysis program ShortStack, which is freely available under a general public license. Improved 
genome alignments of sRNA-seq data should increase the quality of downstream analyses and genome 
annotation efforts.  
 
 

Introduction 
High-throughput sampling of cDNA libraries derived from endogenous small RNAs (sRNA-seq) is a proven 
and widely used method. sRNA-seq allows both discovery and quantification of diverse regulatory small RNAs, 
which can include microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs) and Piwi-associated 
RNAs (piRNAs), depending on the species and specimen. sRNA-seq data have played critical roles in the 
advancement of understanding of miRNAs, siRNAs, and piRNAs from numerous species. However, despite the 
large amounts of available sRNA-seq data, multiple issues remain. For example, the central miRNA database, 
miRBase, is thought to contain substantial numbers of incorrect annotations (Kozomara and Griffiths-Jones 
2014; Taylor et al. 2014). Additionally, annotation of siRNA loci is much less well developed, especially in 
plants where siRNAs frequently represent the majority of expressed small RNAs (Coruh et al. 2014). Many 
factors contribute to annotation errors and omissions, including the use of sub-optimal methodologies for small 
RNA-seq alignments to reference genomes.  
 
Alignment of small RNA-seq data to a reference genome remains a persistent, if perhaps under-recognized, 
problem. A major issue is the prevalence of multi-mapping (MMAP) reads in sRNA-seq data. MMAP reads 
occur when there are multiple best-scoring alignments to the reference genome. MMAP reads are quite rare in 
modern polyA+ mRNA-seq data due to their longer read-lengths, and due to the fact that polyA+ mRNAs 
generally are transcribed from single-copy sequences. In contrast, MMAP reads are much more frequent in 
sRNA-seq data due both to the short lengths of the reads and their tendency to originate from higher-copy 
number regions of the genome. Endogenous siRNAs are known to come from repetitive regions of many 
genomes (Matzke and Mosher 2014), while identical miRNAs are often encoded by multiple paralogous loci 
(Cuperus et al. 2011). 
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MMAP sRNA-seq reads are often dealt with simplistically, either by randomly selecting one the possible 
alignment positions, or by ignoring them entirely. For instance, the popular bowtie aligner (Langmead et al. 
2009) by default randomly selects one position for MMAP reads, and can also be configured to ignore them. 
Both of these approaches have the advantage of computational speed, but both also have significant downsides: 
random selection results in large error rates, while ignoring MMAP reads discards large portions of sRNA-seq 
libraries. More sophisticated approaches for placing MMAP reads have been described for mRNA-seq data. 
Expression estimation using the ERANGE method, where the expression of MMAP reads is measured as a 
proportion of uniquely mapped reads within a particular read-cluster, was shown to improve estimates of 
mRNA abundance from mRNA-seq data (Mortazavi et al. 2008). This approach has been applied to sRNA-seq 
with the SiLoCO method (Moxon et al. 2008; Stocks et al. 2012), where loci are identified by clustering and 
MMAP reads lend abundance proportional to their MMAP-value. A similar approach applied to cap analysis of 
gene expression (CAGE) data instead weights only by the number of different species of uniquely aligned 
reads, preventing highly expressed sequences from lending proportionally higher weight (Faulkner et al. 2008). 
Both of these methods improve the accuracy of mRNA quantification. The Rcount method uses similar ideas 
(Schmid and Grossniklaus 2015) but produces an alignment output, as opposed to solely a quantification of 
mRNA expression levels.  
 
sRNA-seq and mRNA-seq data are similar in that both data types are expected to frequently result in local 
genomic clusters of aligned reads with distinct sequences. For mRNA-seq, clustering of alignment positions 
results from experimentally induced fragmentation of longer mRNAs in preparation for cDNA synthesis and 
sequencing. In sRNA-seq, nature performs the fragmentation through various RNA processing events acting on 
longer precursor RNAs. For miRNAs, the precursor stem-loop RNA often produces multiple variants of the 
major miRNA, including miRNA*'s and isomirs (Coruh et al. 2014). Endogenous siRNAs from both animals 
and plants are also often produced from longer hairpin or dsRNA precursors that spawn multiple distinct 
siRNAs (Allen et al. 2005; Okamura et al. 2008), or from short dsRNA precursors that are themselves spawned 
from co-located genomic clusters (Blevins et al. 2015; Zhai et al. 2015). Finally, piRNAs are also produced in 
large genomic clusters in multiple animals (Aravin et al. 2006; Malone et al. 2009). We thus reasoned that the 
biologically expected clustering of sRNA-seq reads at their true loci of origin would enable an ERANGE- or 
Rcount-like algorithm to improve placement of MMAP sRNA-seq reads. All of the previously described 
implementations of this general read-rescue strategy have specific features and settings particular to mRNAs 
and hence are not directly useful for sRNA-seq analysis. Thus, we implemented these general ideas into the 
alignments performed by an updated version of our previously described sRNA-seq analysis tool, ShortStack 
(Axtell 2013). Here, we describe the implementation and testing of sRNA-seq alignment performance using a 
local-weighting method to better place MMAP small RNA reads. 
 
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2016. ; https://doi.org/10.1101/044099doi: bioRxiv preprint 

https://doi.org/10.1101/044099
http://creativecommons.org/licenses/by-nc/4.0/


 

 4 

Materials and Methods 
Alignment methods 
In thinking about treatment of MMAP sRNA-seq reads, we make two assumptions. First, we assume that each 
read in a sRNA-seq experiment represents a single small RNA molecule, which therefore must have had a 
single genomic origin. Note that this assumption does not mean we assume that all reads with the same 
sequence necessarily have the same genomic origin. For instance, if we find 100 reads of identical sequence 
with a MMAP value of two (e.g., two possible alignment positions), it's certainly possible that some of those 
reads came from one location, and the rest from the other. In other words, we treat single reads as indivisible, 
but multiple reads with the same sequence can each be placed in a different location. Second, we assume that 
the goal of sRNA-seq alignment to the reference genome is to identify the site of transcriptional origin of the 
small RNAs, not to list their possible targets. Target predictions, which usually involve lineage-specific 
parameters and only a subset of the genome (for instance, mature mRNAs only for most miRNAs), are a 
separate issue than determining the transcriptional origins.  

 
We implemented alternative methods for handling MMAP sRNA-seq reads into version 3 of our general-
purpose sRNA-seq analysis software, ShortStack (Axtell 2013), which is publicly available at 
https://github.com/MikeAxtell/ShortStack/releases. ShortStack takes in raw sRNA-seq data (in fasta, fastq, or 
color-space formats), and a corresponding reference genome, and performs alignment, annotation, and 
quantification of expressed small RNAs (Figure 1). In the first step of alignment (Figure 2A) ShortStack uses 
bowtie (Langmead et al. 2009) to identify all possible best-matched alignments for each read, subject to a 
default, user-adjustable limit of 50 alignments per read. ShortStack will then calculate a probability for each 
alignment according to one of three alternative methods. Consider an example read with two possible 
alignments to different loci in the genome (green-colored read in Figure 2B). Each of the two possible loci in 
this example have different "neighborhoods" of adjacent alignments of other reads. In random-placement mode, 
the probability of originating from a locus is simply 1/n, where n is the number of possible alignments; in the 
example read from Figure 2, each position thus has a probability of 50% (Figure 2C). This emulates the default 
behavior of bowtie (Langmead et al. 2009) and bwa (Li and Durbin 2009). In unique-weighting mode (U), the 
frequencies of uniquely aligned reads mapping within the vicinity of the alignment under consideration are 
tallied. For the example read in Figure 2, locus 1 has seven uniquely aligned reads in the vicinity, while locus 2 
has only one (Figure 2D). Thus, in U mode, the probability of the example read originating from locus 1 is 
calculated as 87.5%, while the probability of originating from locus is calculated as 12.5% (Figure 2D). The 

Figure 1. Overview of ShortStack methodology. 
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fractional method (F) uses all reads mapping within the vicinity of an alignment. Unique reads in the vicinity 
lend full weight, while MMAP reads provide weights inversely proportional to their MMAP-value. For the 
example read in Figure 2, the weighted probability for originating from locus 1 is thus calculated at 73.7%, 
while the probability for originating from locus 2 is calculated as 26.3% (Figure 2E). The calculated 
probabilities are then used as weightings in a random number selection to designate the primary alignment for 
the read (Figure 2F), and all of the other possible alignments are marked as secondary alignments. 
Alternatively, ShortStack can be instructed to simply ignore (N) all MMAP reads (Figure 2G), emulating the 
behavior of bowtie with option -m 1 set, or that of Novoalign's default settings. 

Figure 2. ShortStack3 alignment methodology. 
A) First step in alignment by ShortStack: Initial alignment of sRNA-seq reads to a reference genome. 
B) Example of local alignments for a read (green) with an MMAP-value of two. Numbers adjacent to reads 
indicate their MMAP-value. 
C) Weighting scheme for random placement of MMAP reads. 
D) Weighting scheme for ShortStack’s Unique method. 
E) Weighting scheme for ShortStack’s Fractional method.  
F) Final step: Choosing a single primary alignment based on calculated probabilities.  
G) Alignment tools grouped by MMAP methods. 
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The vicinities used in methods U and F are obtained by first dividing the reference genome into 50 nt bins. The 
bin of a given alignment is defined as the location of its left-most aligned nucleotide. The vicinity is then 
defined as the total number of reads in a five-bin window, with the center bin being that of the alignment in 
question. Thus, the vicinity is essentially a 250 nt window centered on the alignment in question. When run in 
modes U or F, MMAP reads for which the computed probabilities at all positions are equal remain a random 
guess. In those cases, such reads will be suppressed entirely (marked as unmapped) if they had more than three 
possible alignment positions (this threshold is user-adjustable).  
 
It's important to note that the U and F weighting methods are not 'winner-take-all'. For instance, if the U method 
was used for the example in Figure 2, there would be a 12.5% probability that the less-likely position would be 
marked as the primary alignment. Similarly, MMAP placement decisions are made on per-read basis, not a per-
sequence basis. For example, 100 MMAP sRNA-seq reads of identical sequence with two possible alignment 
positions of probabilities 80% and 20%, we expect approximately 80 of the reads to be placed in the first 
position, and approximately 20 of them to be placed in the second position.  
 
Data Sources 
sRNA-seq libraries from Arabidopsis thaliana, Oryza sativa, and Zea mays were obtained from the NCBI 
Sequence Read Archive (SRA) (Table S1). Libraries were selected that had over 5 million raw reads, were 
available in an unprocessed format, and were derived from an Illumina instrument. 3' adapter sequences were 
discovered using find_3p_adapter.pl (available at http://sites.psu.edu/axtell/) and removed using ShortStack's 
internal adapter trimming protocol. Simulated sRNA-seq libraries were produced to closely emulate real sRNA-
seq data. This process was accomplished through a custom python script and wrapper run under default settings: 
sRNA-simulator.py (File S1). This script uses a real sRNA-seq library as the basis for each simulated library. 
Real sRNA-seq libraries were aligned using bowtie (Langmead et al. 2009) reporting all alignments. Regions of 
the genome which had no alignments were removed from consideration as simulated loci, while genomic 
regions prone to alignments with certain length classes of sRNAs became candidate regions for simulated 
heterochromatic siRNA (hc-siRNA; 23 - 24 nt) and trans-acting siRNA (21 nt) loci. miRNA candidate regions 
were picked based on prior annotated loci, available through miRBase (Kozomara and Griffiths-Jones 2014). 
Simulated loci were chosen from these candidate regions at random. Five million reads were then generated 
from these simulated loci, generating roughly 3.25M hc-siRNA, 1.5M miRNA and 250k tasiRNA reads. Loci 
were made to approximate real loci in size and pattern: hc-siRNA as primarily 24 nt RNAs from 200-1000 nt 
loci, from both genomic strands; miRNA as 21 nt RNAs  from 125 nt loci with a miRNA and miRNA* pattern; 
tasiRNA as 21 nt RNAs from 140 nt loci producing a number of phased reads, from both genomic strands. All 
three loci types produced a realistic distribution of differently sized or shifted reads to simulate mis-processing. 
Sequencing errors are simulated at a rate of one mis-sequenced base per 10,000 reads. Unlike real data, 
simulated reads are traceable to their locus of origin, and thus are suitable to discern correct placements from 
incorrect ones. PolyA+ mRNA-seq data were obtained from SRA (Table S1). Reference genome versions were 
TAIR10 (Arabidopsis thaliana), IRGSP7 (Oryza sativa), and B73v3 (Zea mays). 
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Alignments and analyses  
sRNA-seq libraries were aligned using ShortStack (Axtell 2013), bowtie (Langmead et al. 2009), bwa (Li and 
Durbin 2009) and Novoalign (Novocraft.com). Specific versions and settings are specified in Table S2. mRNA-
seq libraries were trimmed using cutadapt (Martin 2011) or processed as needed to de-pair paired-end datasets, 
and aligned using tophat2 (Kim et al. 2013) with bowtie (Langmead et al. 2009) as its alignment algorithm. 
Data processing details for each analysis are listed in Table S1.  
 
Analysis of Pol IV / RDR2-dependent siRNAs 
Candidate RNA polymerase IV / RDR2 (P4R2)-dependent siRNA precursors were obtained from RNA-seq data 
from Arabidopsis thaliana dcl234 triple mutants (Li et al. 2015; Blevins et al. 2015; Zhai et al. 2015; Ye et al. 
2016). Alignment was performed using bowtie, tolerating no mismatches and retaining only uniquely aligned 
reads between 28 and 60 nts in length. These reads were then used to computationally generate four 24 nt 
siRNA ‘daughters’ from each putative precursor, corresponding to both ends of top and bottom strands of the 
presumed duplex. Computational daughters that were actually sequenced in the corresponding wild-type sRNA-
seq libraries (Table S1) were noted. The wild-type sRNA-seq data were aligned using different alignment 
approaches. The precision of the tracked MMAP daughter reads was assessed using the coordinates of the 
corresponding uniquely aligned precursor as the known true origins. 
 
sRNA-seq 
Total RNA was isolated from wild-type Col-0 Arabidopsis thaliana inflorescences using Tri-Reagent per the 
manufacturer’s instructions (ThermoFischer, 4368814). sRNA-seq libraries were constructed using the Tru-Seq 
sRNA kit (Illumina, RS-200-0012) per the manufacturer's instructions, and sequenced on an Illumina Hi-Seq 
2500. sRNA-seq data has been deposited at NCBI GEO under accession GSE76281 (Table S1). 
 
qRT-PCR of primary miRNA transcripts 
Total RNA was isolated from wild-type Col-0 Arabidopsis thaliana inflorescences using Tri-Reagent per the 
manufacturer’s instructions (Thermo Fisher, AM9738). Primers were designed using the NCBI PrimerBlast tool 
(Ye et al. 2012) and targeted the 3' region downstream of the Dicer-Like (DCL) cleavage sites. Primer 
sequences are given in Table S3. cDNA was synthesized by reverse transcription kit (Thermo Fisher, 4368814) 
and qRT-PCR experiments run on a Life Technologies StepOne Plus real-time PCR instrument using SYBR 
Green-based master mix (Quanta Biosciences, 95073-012) per manufacturer’s instructions. Expression is 
calculated as the fluorescence relative to Actin (ACT2), calculated using grouped PCR efficiencies from 
analysis by LinRegPCR (Ramakers et al. 2003; Čikoš et al. 2007). 
 
Data availability 
Information on sequencing libraries generated in this study are available through NCBI GEO, accession number 
GSE76281. Information and accessions for all other libraries used are available in Table S1. The sRNA-seq 
simulator script is provided as File S1 and all other scripts used in analysis are available upon request. 
Sequences and annotation information for miRNAs were acquired through miRBase (Kozomara and Griffiths-
Jones 2014). 
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Results and Discussion 
Prevalence of MMAP reads in sRNA-seq data 
In a survey of polyA+ mRNA-seq data from three plant species, MMAP percentages above 10% are rare 
(Figure 3A). In contrast, sRNA-seq datasets from the same three species frequently have over 50% MMAP 
reads (Figure 3A). This illustrates the extent of the MMAP problem specifically in sRNA-seq data. We 
examined a collection of studies (n = 20) where plant sRNA-seq data were aligned to a reference genome 
(Figure 3B, Table S4). In 80% of the cases, MMAP reads were handled by random selection, where a single 
possible alignment is randomly selected for each MMAP read. Although computationally easy, random 
selection is highly imprecise, as most random choices will be wrong. Another 10% of the studies examined 
simply ignored MMAP reads. This method has the clear disadvantage of discarding huge amounts of data, often 
over 50% (Figure 3A). This survey of data and published studies clearly indicates that MMAP reads are a large 
issue in sRNA-seq data analysis that are often dealt with ineffectively. 
 

  

Figure 3. Prevalence of MMAP reads and methods 
A) MMAP rates for reads from mRNA-seq and sRNA-seq 
data from Arabidopsis thaliana (At), Oryza sativa (Os), 
and Zea mays (Zm). Horizontal bars mark median values, 
circles mark values for individual libraries. 
B) Proportion of MMAP-selection methods for sRNA 
alignment in recent literature (n = 20; Table S4). 
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High-precision alignments of MMAP sRNA-seq reads 
We designed two alternative modes of proximity-based weighting systems (U and F) to place MMAP reads, and 
implemented them into the sRNA-seq analysis software ShortStack (Figure 2) (Axtell 2013). We then 
conducted a performance analysis comparing these methods to several other aligners with various settings. The 
alignment methods can be classified into three groups based on their treatment of MMAP reads (Figure 2): 
ShortStack-U and -F both use a proximity-weighted scheme to influence placement of MMAP reads. In 
contrast, under their default settings bowtie (Langmead et al. 2009) and bwa (Li and Durbin 2009) randomly 
place MMAP reads, as will ShortStack when run in the R mode. Finally, Novoalign, bowtie with setting -m 1, 
and ShortStack in mode N all will simply ignore MMAP reads. We simulated sRNA-seq data based on the 
properties of real datasets from Arabidopsis thaliana, Oryza sativa, and Zea mays. Unlike real data, the ‘correct’ 
alignment location for each MMAP is known for simulated data. This allows direct comparison of aligner 

Figure 4. Performance analysis of sRNA-seq alignment methods. 
A) Precisions, sensitivities, and F1 scores for alignments of simulated sRNA-seq data with the indicated methods for entire 
datasets. Boxplots show medians (central bars), the 1st to 3rd quartile range (boxes), other data out to 1.5 the interquartile 
range (whiskers), and outliers (dots). n=15, 12, and 21 for the At, Os, and Zm data, respectively. Treatments sharing a common 
letter indicate groups that are not significantly different by non-parametric analysis (Kruskal–Wallis ANOVA with Dunn multiple 
comparison test, α = 0.05). At: Arabidopsis thaliana, Os: Oryza sativa, Zm: Zea mays. 
B) MMAP reads only. Same analysis and plotting conventions as in panel A. 
C) False negative rates for alignments of real sRNA-seq data with the indicated methods for MMAP reads. Plotting conventions 
as in panel A. 
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performance. Specifically, we can count true positives (aligned reads that are put in the correct position; TP), 
false positives (aligned reads that are put in the incorrect position; FP), true negatives (unaligned reads that have 
no possible alignment position; TN), and false negatives (unaligned reads where there is at least one valid 
alignment position; FN). Precision (TP/(TP + FP)) and sensitivity (TP/(TP + FN)) can then be calculated in the 
standard manner.  
 
In nearly all cases, the highest precisions were obtained with ShortStack’s U method (Figure 4A).  
ShortStack-U had significantly (Kruskal–Wallis ANOVA with Dunn multiple comparison test, α = 0.05) higher 
precisions than any non-ShortStack method. The results were especially striking when examining the precision  

Figure 5. Influence of MMAP-value on 
performance 
A) Precision as a function of MMAP-value for 
simulated sRNA-seq data from the indicated 
species and alignment method. MMAP-value 
is the number of possible alignment positions 
for a read. Colored lines are standard 
deviations, black dots are mean values. 
Heavy dashed line at MMAP=50 indicates 
the default cutoff value for ShortStack, above 
which placement of MMAP reads is not 
attempted. At: Arabidopsis thaliana, Os: 
Oryza sativa, Zm: Zea mays. 
B) Cumulative precision as a function of 
MMAP-value for simulated sRNA-seq data 
from the indicated species and alignment 
method. Plotting conventions as in panel A. 
C) Cumulative proportion of real and 
simulated sRNA-seq data retained by 
ShortStack alignments under differing 
MMAP-value cutoffs. Note that simulated 
libraries have higher proportions of reads 
with high MMAP values. Plotting conventions 
as in panel A. 
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Figure 6. Experimental assessment of sRNA-seq alignment methods using miRNA 
paralogs 
A) Relative expression of the indicated primary MIRNA transcripts in Arabidopsis 
thaliana Col-0 inflorescences assessed via qRT-PCR. Values are normalized to 
1/1000 those of ACTIN2. Dots show values from biological replicates (n=3). 
B) Accumulation of the indicated mature miRNAs from each of their possible paralogs 
as determined by different sRNA-seq alignment methods. Values are from three 
biological replicate sRNA-seq libraries from Arabidopsis thaliana Col-0 
inflorescences. 
C) Squared residual errors from comparisons of scaled qRT-PCR data to scaled 
sRNA-seq alignment results. Boxplots show medians (horizontal bars), the 1st to 3rd 
quartile range (boxes), data out to 1.5 times the inter-quartile range (whiskers), and 
outliers (dots). Treatments sharing a common letter indicate groups that are not 
significantly different by non-parametric analysis (Kruskal–Wallis ANOVA with Dunn 
multiple comparison test, α = 0.05). 
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specifically for MMAP reads. ShortStack’s U method routinely achieved precision values of 75% or higher 
(Figure 4A). In contrast, none of the random-placement or ignore MMAP methods ever had MMAP precision 
values over 50%. The high precision does come at the cost of sensitivity: As described in the methods, 
ShortStack-U and -F will not place all MMAP reads. Instead, if a read has too many possible positions (default 
is > 50) or if the weighted probabilities are equal, MMAP reads are suppressed. Depressed sensitivities are more 
apparent in the more repetitive genome of Zea mays as compared to Arabidopsis thaliana (Figure 4A). We 
computed F1 scores (harmonic means of precision and sensitivity) to assess the balance between precision and 
sensitivity. By this metric, ShortStack-U and -F both performed significantly (Kruskal–Wallis ANOVA with 
Dunn multiple comparison test, α = 0.05) better than any other method in all three species (Figure 4A). 
 
Analysis of real libraries is limited to examination of false negative rates (FNR = FN / (FP + TP)), as TP and FP 
cannot be distinguished. As expected, FNRs are higher in Zea mays and Oryza sativa relative to Arabidopsis 
thaliana, reflecting the higher proportions of reads with high MMAP-values from the more repetitive genomes 
(Figures 4C). Under default settings, ShortStack’s U and F methods discard ~30-50% of the MMAP reads from 
rice and maize, but are likely placing the remainder with very high confidence. 
 
Precision is a function of MMAP-value 
As discussed above, our methods by default will not attempt weighting or placement of MMAP reads with more 
than 50 possible alignment positions. This is based on the prediction that for reads with very high MMAP-
values, we will have an unacceptably high error rate. We tested this prediction by examining the precision 
values in our simulated datasets as a function of MMAP value (Figures 5A-B). As expected, precision declines 
as a function of higher MMAP values in all cases (Figure 5A), with random having the most severe drop-off. 
Notably, the U method consistently gives the highest precisions at a given MMAP value. Analysis of 
cumulative precisions showed that plateaus of precision generally became apparent at MMAP-values ~ 50 
(Figure 5B), justifying our default settings to ignore reads with more than 50 possible alignment positions. Our 
simulated data had more high MMAP reads than real data (Figure 5C), indicating that aligner performance with 
real data is likely to be superior to that of estimated using simulated reads.  
 
Experimental testing of alignment methods 
Mature miRNAs are frequently encoded by multiple paralogous loci, which causes sRNA-seq reads 
corresponding to the mature miRNA to be MMAPed. However, the primary transcripts derived from each of the 
paralogs typically are much longer and have distinct sequences, such that qRT-PCR approaches can distinguish 
them. We used accumulation levels of primary transcripts as proxies for the true expression levels of various 
Arabidopsis thaliana MIRNA loci that encode identical mature miRNAs, and compared those data to estimates 
derived from small RNA-seq alignments (Figure 6). qRT-PCR indicated sharp differences in primary transcript 
accumulation for each of the three miRNA families we studied (Figure 6A). ShortStack’s U method produced 
mature miRNA alignments that were mostly similar to the results from qRT-PCR of the primary transcripts 
(Figure 6B). In contrast, the other alignment methods suggested nearly equal accumulation of mature miRNAs 
from each of the paralogs. We quantified the fit between the qRT-PCR data and the sRNA-seq alignment data 
by analyzing the squared residual errors between the scaled expression levels (Figure 6C). By this metric, 
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ShortStack-U predicts the specific contributions of miRNA paralogs significantly (Kruskal–Wallis ANOVA 
with Dunn multiple comparison test, α = 0.05) better than all other tested methods.  
 
When DCL enzymes are absent from Arabidopsis thaliana, longer double-stranded RNAs accumulate that are 
dependent on RNA polymerase IV (Pol IV) and RNA-dependent RNA polymerase 2 (RDR2) (Li et al. 2015; 
Blevins et al. 2015; Zhai et al. 2015; Yang et al. 2016; Ye et al. 2016). These are likely to be the direct 
substrates for the DCL3-mediated production of 24 nt siRNAs by excision from the ends of precursors. We 
identified a set of longer precursors from dcl2/dcl3/dcl4 triple mutant plants that could be uniquely mapped to 
the reference genome. We then computationally diced this set of precursors to create predicted mature 24 nt 
siRNAs, and examined the corresponding wild-type sRNA-seq libraries to find cases where the putative mature 
siRNAs actually were sequenced. The wild-type sRNA-seq libraries were aligned with various methods. Cases 
where the mature siRNAs of interest were MMAP allowed assessment of alignment precision, as we presume 
their uniquely aligned precursors represent the correct alignment positions. ShortStack-U significantly 
(Kruskal–Wallis ANOVA with Dunn multiple comparison test, α = 0.05) outperformed other alignment 
methods (Figure 7) in this analysis, as measured by precision. Thus, experimental data from both miRNAs and 
endogenous siRNAs supports the hypothesis that ShortStack’s U alignment method is superior. 
 
Bowtie shows bias in random read placement 
When run under default settings, bowtie (Langmead et al. 2009) randomly selects one possible alignment 
position for MMAP reads. However, the software documentation warns that biased strand selection, where 
alignment positions from one strand are favored, can occur (Langmead et al. 2009). For sRNA-seq data, we 
have observed that this strand bias is quite strong. We observe a strong top strand bias when bowtie is run under 

Figure 7. Precisions from alignments of Arabidopsis 
thaliana MMAP 24 nt siRNAs whose true origins are 
known based on a unique precursor alignment. Dots: data 
from individual libraries; horizontal bars: medians. 
Treatments sharing a common letter indicate groups that 
are not significantly different by non-parametric analysis 
(Kruskal–Wallis ANOVA with Dunn multiple comparison 
test, α = 0.05). 
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default settings to align sRNA-seq data (Figure 8). Indeed, this can affect estimation of miRNA accumulation 
from paralogs (Figure 6B, miR166e). This bias is not apparent when other methods are used (Figure 8). Small 
RNA polarity is an important feature used for annotations, so it is conceivable that this strand bias could distort 
results. 
 
Speed testing 
We compared the alignment speed of our methods with those of other aligners. To account for differences 
caused by different genome sizes and/or sRNA-seq libraries, we measured speed in normalized units. Because 
bowtie under default settings was always the fastest method, we normalized each run to a multiple of the 

Figure 8. Strand-biased selection of 
MMAP alignment positions by bowtie. 
Bias is shown as the overall ratio of top-
strand aligned reads to bottom, based on 
simulated libraries from Arabidopsis 
thaliana (n=15). Boxplots show medians 
(horizontal bars), the 1st to 3rd quartile 
range (boxes), data out to 1.5 times the 
inter-quartile range (whiskers), and 
outliers (dots). Treatments sharing a 
common letter indicate groups that are 
not significantly different by non-
parametric analysis (Kruskal–Wallis 
ANOVA with Dunn multiple comparison 
test, α = 0.05). 
 

Figure 9. Comparison of alignment times for real sRNA-seq libraries with the indicated 
methods. Boxplots show medians (central bars), the 1st to 3rd quartile range (boxes), 
other data out to 1.5 the interquartile range (whiskers), and outliers (dots). n=15, 12, 
and 21 for the At, Os, and Zm data, respectively. At: Arabidopsis thaliana, Os: Oryza 
sativa, Zm: Zea mays. 
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bowtie-default completion speed. The time spent on genome-indexing was not part of this assessment. In 
general, our favored method, ShortStack-U, was five to ten times slower than bowtie-default, but comparable to 
bwa (Figure 9). Given that the results of ShortStack-U are superior to the other methods, we feel that the extra 
time is an acceptable trade-off. In absolute terms, the wall-time for our ShortStack-U runs on these data ranged 
from 6 minutes to 2.5 hours, compared with bowtie-default which ranged from 1 to 32 minutes.  
 
Conclusions  
A particularly important goal of ours is to reduce the likelihood of false discoveries in small RNA gene 
annotation. Reducing the number of incorrect alignments is likely to reduce spurious annotations. ShortStack-U 
gives fewer false positives for MMAP reads than all other methods for sRNA-seq alignment (Figure 4, 5, 7). 
The experimental evidence identifying miRNA alignment is striking, as mature miRNA are remarkably poorly 
placed through standard approaches (Figure 6). It is likely that misalignment of this nature is significantly 
misrepresenting the abundance of many loci, conceivably resulting in mis-annotations.  ShortStack-U’s 
alignment method reduces these risks, striking a balance between precision and sensitivity. 
 
A method which is capable of identifying the true site of origin for all MMAP sRNA-seq reads is elusive. To 
achieve reasonable precision, our methods sacrifice some sensitivity by ignoring highly MMAP reads.  
However, it should be kept in mind that these reads are part of the small RNA profile too and should not be 
completely ignored. Future development of sRNA-seq alignment methods should focus on increasing precisions 
to allow confident placement of even the most repetitive reads. Until then, these most highly-repetitive reads 
can be analyzed using methods independent of alignment to the reference genome. 
 
Overall, our work demonstrates that sRNA-seq alignments can be significantly improved by using local 
weighting to guide placement of multi-mapped reads, and that biases in placement of multi-mapped reads can 
influence downstream analyses. 
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Supplemental Table 4: Methods used for placement of MMAP sRNA-seq reads in 20 previous studies. 
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