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Article Summary: 

High-throughput sequencing of small RNAs (sRNA-seq) is a frequently used technique in the 

study of small RNAs. Alignment to a reference genome is a key step in processing sRNA-seq 

libraries, but suffers from enormous rates of multi-mapping reads. Current methods for sRNA-

seq alignment either place these reads randomly or ignore them, both of which distort 

downstream analyses. Here, we describe a locality-based weighting approach to make better 

decisions of placement of multi-mapped sRNA-seq data, and test our implementation of this 

method. We find that our method gives superior performance in terms of placing multi-mapped 

sRNA-seq data. An implementation of our method is freely available within the ShortStack small 

RNA analysis program. Use of this method may dramatically improve genome-wide analyses of 

small RNAs. 
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Abstract 

High-throughput sequencing of small RNAs (sRNA-seq) is a popular method used to discover 

and annotate microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs) and Piwi-

associated RNAs (piRNAs). One of the key steps in sRNA-seq data analysis is alignment to a 

reference genome. sRNA-seq libraries often have a high proportion of reads which align to 

multiple genomic locations, which makes determining their true loci of origin difficult. 

Commonly used sRNA-seq alignment methods result in either very low precision (choosing an 

alignment at random) or sensitivity (ignoring multi-mapping reads). Here, we describe and test 

an sRNA-seq alignment strategy that uses local genomic context to guide decisions on proper 

placements of multi-mapped sRNA-seq reads.  Tests using simulated sRNA-seq data 

demonstrated that this local-weighting method outperforms other alignment strategies using three 

different plant genomes.  Experimental analyses with real sRNA-seq data also indicate superior 

performance of local-weighting methods for both plant miRNAs and heterochromatic siRNAs. 

The local-weighting methods we have developed are implemented as part of the sRNA-seq 

analysis program ShortStack, which is freely available under a general public license. Improved 

genome alignments of sRNA-seq data should increase the quality of downstream analyses and 

genome annotation efforts.  
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Introduction 

High-throughput sampling of cDNA libraries derived from endogenous small RNAs (sRNA-seq) 

is a proven and widely used method. sRNA-seq allows both discovery and quantification of 

diverse regulatory small RNAs, which can include microRNAs (miRNAs), endogenous short 

interfering RNAs (siRNAs) and Piwi-associated RNAs (piRNAs), depending on the species and 

specimen. sRNA-seq data have played critical roles in the advancement of understanding of 

miRNAs, siRNAs, and piRNAs from numerous species. However, despite the large amounts of 

available sRNA-seq data, multiple issues remain. For example, the central miRNA database, 

miRBase, is thought to contain substantial numbers of incorrect annotations (Kozomara and 

Griffiths-Jones 2014; Taylor et al. 2014). Additionally, annotation of siRNA loci is much less 

well developed, especially in plants where siRNAs frequently represent the majority of 

expressed small RNAs (Coruh et al. 2014). Many factors contribute to annotation errors and 

omissions, including the use of sub-optimal methodologies for small RNA-seq alignments to 

reference genomes.  

 

Alignment of small RNA-seq data to a reference genome remains a persistent, if perhaps under-

recognized, problem. A major issue is the prevalence of multi-mapping (MMAP) reads in sRNA-

seq data. MMAP reads occur when there are multiple best-scoring alignments to the reference 

genome. MMAP reads are quite rare in modern polyA+ mRNA-seq data due to their longer read-

lengths, and due to the fact that polyA+ mRNAs generally are transcribed from single-copy 

sequences. In contrast, MMAP reads are much more frequent in sRNA-seq data due both to the 

short lengths of the reads and their tendency to originate from higher-copy number regions of the 

genome. Endogenous siRNAs are known to come from repetitive regions of many genomes 
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(Matzke and Mosher 2014), while identical miRNAs are often encoded by multiple paralogous 

loci (Cuperus et al. 2011). 

 

MMAP sRNA-seq reads are often dealt with simplistically, either by randomly selecting one the 

possible alignment positions, or by ignoring them entirely. Both of these approaches have the 

advantage of computational speed, but both also have significant downsides: random selection 

results in large error rates, while ignoring MMAP reads discards large portions of sRNA-seq 

libraries. More sophisticated approaches for placing MMAP reads have been described for 

mRNA-seq data. Expression estimation using the ERANGE method, where the expression of 

MMAP reads is measured as a proportion of uniquely mapped reads within a particular read-

cluster, was shown to improve estimates of mRNA abundance from mRNA-seq data (Mortazavi 

et al. 2008). A similar approach applied to cap analysis of gene expression (CAGE) data instead 

weights only by the number of different species of uniquely aligned reads, preventing highly 

expressed sequences from lending proportionally higher weight (Faulkner et al. 2008). Both of 

these methods improve the accuracy of mRNA quantification. The Rcount method uses similar 

ideas (Schmid and Grossniklaus 2015) but produces an alignment output, as opposed to solely a 

quantification of mRNA expression levels.  

 

sRNA-seq and mRNA-seq data are similar in that both data types are expected to frequently 

result in local genomic clusters of aligned reads with distinct sequences. For mRNA-seq, 

clustering of alignment positions results from experimentally induced fragmentation of longer 

mRNAs in preparation for cDNA synthesis and sequencing. In sRNA-seq, nature performs the 

fragmentation through various RNA processing events acting on longer precursor RNAs. For 

miRNAs, the precursor stem-loop RNA often produces multiple variants of the major miRNA, 
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including miRNA*'s and isomirs (Coruh et al. 2014). Endogenous siRNAs from both animals 

and plants are also often produced from longer hairpin or dsRNA precursors that spawn multiple 

distinct siRNAs (Allen et al. 2005; Okamura et al. 2008), or from short dsRNA precursors that 

are themselves spawned from co-located genomic clusters (Blevins et al. 2015; Zhai et al. 2015). 

Finally, piRNAs are also produced in large genomic clusters in multiple animals (Aravin et al. 

2006; Malone et al. 2009). We thus reasoned that the biologically expected clustering of sRNA-

seq reads at their true loci of origin would enable an ERANGE- or Rcount-like algorithm to 

improve placement of MMAP sRNA-seq reads. All of the previously described implementations 

of this general read-rescue strategy have specific features and settings particular to mRNAs and 

hence are not directly useful for sRNA-seq analysis. Thus, we implemented these general ideas 

into the alignments performed by an updated version of our previously described sRNA-seq 

analysis tool, ShortStack (Axtell 2013). Here, we describe the implementation and testing of 

sRNA-seq alignment performance using a local-weighting method to better place MMAP small 

RNA reads. 
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Materials and Methods 

Alignment methods 

In thinking about treatment of MMAP sRNA-seq reads, we make two assumptions. First, we 

assume that each read in a sRNA-seq experiment represents a single small RNA molecule, which 

therefore must have had a single genomic origin. Note that this assumption does not mean we 

assume that all reads with the same sequence necessarily have the same genomic origin. For 

instance, if we find 100 reads of identical sequence with a MMAP value of two (e.g., two 

possible alignment positions), it's certainly possible that some of those reads came from one 

location, and the rest from the other. In other words, we treat single reads as indivisible, but 

multiple reads with the same sequence can each be placed in a different location. Second, we 

assume that the goal of sRNA-seq alignment to the reference genome is to identify the site of 

transcriptional origin of the small RNAs, not to list their possible targets. miRNAs, siRNAs, and 

piRNAs all have a broadly similar function: guidance of repressive protein complexes to RNA 

targets based on complementarity between the small RNA and target. Small RNA-target 

complementarity is rarely perfect, and therefore target identification generally requires 

specialized methods optimized for the particular species and small RNA type in question. 

 

We implemented alternative methods for handling MMAP sRNA-seq reads into version 3 of our 

general purpose sRNA-seq analysis software, ShortStack (Axtell 2013), which is publicly 

available at https://github.com/MikeAxtell/ShortStack/releases. ShortStack takes in raw sRNA-

seq data (in fasta, fastq, or color-space formats), and a corresponding reference genome, and 

performs alignment, annotation, and quantification of expressed small RNAs (Figure 1). 

ShortStack uses bowtie (Langmead et al. 2009) as the underlying alignment engine to identify all 
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possible best-matched alignments for each read, subject to a default, user-adjustable limit of 50 

alignments per read. ShortStack will then calculate a probability for each alignment according to 

one of three alternative methods (Figure 2). The calculated probabilities are then used to select a 

primary alignment for the read, and all of the other possible alignments are marked as secondary 

alignments. Alternatively, ShortStack can be instructed to simply ignore (N) all MMAP reads 

(Figure 2A), emulating the behavior of bowtie with option -m 1 set, or that of Novoalign's 

default settings. ShortStack’s random-weighting (R) method weights each alignment as simply 1 

over n, where n is the number of possible alignment positions (Figure 2C). This emulates the 

default behavior of bowtie (Langmead et al. 2009) and bwa (Li and Durbin 2009). In contrast, 

ShortStack’s unique-weighting (U) method is calculated as the number of uniquely-mapping 

reads mapping within the vicinity of an alignment (Figure 2D). MMAP alignment positions in 

the vicinity lend no weight with this method. The fractional method (F) uses all reads mapping 

within the vicinity of an alignment. Unique reads in the vicinity lend full weight, while MMAP 

reads provide weights inversely proportional to their MMAP-value (Figure 2E). The vicinities 

used in methods U and F are obtained by first dividing the reference genome into 50 nt bins. The 

bin of a given alignment is defined as the location of its left-most aligned nucleotide. The 

vicinity is then defined as the total number of reads in a five-bin window, with the center bin 

being that of the alignment in question. Thus, the vicinity is essentially a 250 nt window centered 

on the alignment in question. When run in modes U or F, MMAP reads for which the computed 

probabilities at all positions are equal remain a random guess. In those cases, such reads will be 

suppressed entirely (marked as unmapped) if they had more than three possible alignment 

positions (this threshold is user-adjustable). 
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It's important to note that the U and F weighting methods are not 'winner-take-all'. For instance, 

if the U method was used for the example in Figure 2, there would be a 12.5% probability that 

the less-likely position would be marked as the primary alignment. Similarly, MMAP placement 

decisions are made on per-read basis, not a per-sequence basis. For example, 100 MMAP sRNA-

seq reads of identical sequence with two possible alignment positions of probabilities 80% and 

20%, we expect approximately 80 of the reads to be placed in the first position, and 

approximately 20 of them to be placed in the second position.  

 

Data Sources 

sRNA-seq libraries from Arabidopsis thaliana, Oryza sativa, and Zea mays were obtained from 

the NCBI Sequence Read Archive (SRA) (Table S1). Libraries were selected that had over 5 

million raw reads, were available in an unprocessed format, and were derived from an Illumina 

instrument. 3' adapter sequences were discovered using an in-house perl script: 

find_3p_adapter.pl (available at http://sites.psu.edu/axtell/) and removed using ShortStack's 

internal adapter trimming protocol. Simulated sRNA-seq libraries were produced to closely 

emulate real sRNA-seq data. This process was accomplished through a custom python script and 

wrapper: sRNA-simulator.py (File S1). This script uses a real sRNA-seq library as the basis for 

each simulated library. Real sRNA-seq libraries were aligned using bowtie (Langmead et al. 

2009) reporting all alignments. Regions of the genome which had no alignments were removed 

from consideration as simulated loci, while genomic regions prone to alignments with certain 

length classes of sRNAs became candidate regions for simulated heterochromatic (het) siRNA 

(23 - 24 nt) and trans-acting siRNA (21 nt) loci. miRNA candidate regions were picked based on 

prior annotated loci, available through miRBase (Kozomara and Griffiths-Jones 2014). 

Simulated loci were chosen from these candidate regions at random. Five million reads were 
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then generated from these simulated loci, generating roughly 3.25M het-siRNA, 1.5M miRNA 

and 250k tasiRNA reads. Loci were made to approximate real loci in size and pattern: het-siRNA 

as primarily 24 nt RNAs from 200-1000 nt loci, from both genomic strands; miRNA as 21 nt 

RNAs  from 125 nt loci with a miRNA and miRNA* pattern; tasiRNA as 21 nt RNAs from 140 

nt loci producing a number of phased reads, from both genomic strands. All three loci types 

produced a realistic distribution of differently sized or shifted reads to simulate mis-processing. 

Sequencing errors are simulated at a rate of one mis-sequenced base per 10,000 reads. Unlike 

real data, simulated reads are traceable to their locus of origin, and thus are suitable to discern 

correct placements from incorrect ones. polyA+ mRNA-seq data were obtained from SRA 

(Table S1). Reference genome versions were TAIR10 (Arabidopsis thaliana), IRGSP7 (Oryza 

sativa), and B73v3 (Zea mays). 

 

Alignments and analyses  

sRNA-seq libraries were aligned using ShortStack (Axtell 2013), bowtie (Langmead et al. 2009), 

bwa (Li and Durbin 2009) and Novoalign (Novocraft.com). Specific versions and settings are 

specified in Table S2. mRNA-seq libraries were aligned using tophat2 (Kim et al. 2013) with 

bowtie (Langmead et al. 2009) as its alignment algorithm.  

 

Analysis of Pol IV / RDR2-dependent siRNAs 

Candidate RNA polymerase IV / RDR2 (P4R2)-dependent siRNA precursors were obtained 

from RNA-seq data from Arabidopsis thaliana dcl234 triple mutants (Li et al. 2015; Blevins et 

al. 2015; Zhai et al. 2015; Ye et al. 2016). Alignment was performed using bowtie, tolerating no 

mismatches and retaining only uniquely aligned reads between 28 and 60 nts in length. These 

reads were then used to computationally generate four 24 nt siRNA ‘daughters’ from each 
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putative precursor, corresponding to both ends of top and bottom strands of the presumed duplex. 

Computational daughters that were actually sequenced in the corresponding wild-type sRNA-seq 

libraries (Table S1) were noted. The wild-type sRNA-seq data were aligned using different 

alignment approaches. The precision of the tracked MMAP daughter reads was assessed using 

the coordinates of the corresponding uniquely aligned precursor as the known true origins. 

 

sRNA-seq 

Total RNA was isolated from wild-type Col-0 Arabidopsis thaliana inflorescences using Tri-

Reagent per the manufacturer’s instructions (ThermoFischer, 4368814). sRNA-seq libraries were 

constructed using the Tru-Seq sRNA kit (Illumina, RS-200-0012) per the manufacturer's 

instructions, and sequenced on an Illumina Hi-Seq 2500. sRNA-seq data has been deposited at 

NCBI GEO under accession GSE76281 (Table S1). 

 

qRT-PCR of primary miRNA transcripts 

Total RNA was isolated from wild-type Col-0 Arabidopsis thaliana inflorescences using Tri-

Reagent per the manufacturer’s instructions (Thermo Fisher, AM9738). Primers were designed 

using the NCBI PrimerBlast tool (Ye et al. 2012) and targeted the 3' region downstream of the 

Dicer-Like (DCL) cleavage sites. Primer sequences are given in Table S3. cDNA was 

synthesized by reverse transcription kit (Thermo Fisher, 4368814) and qRT-PCR experiments 

run on a Life Technologies StepOne Plus real-time PCR instrument using SYBR Green-based 

master mix (Quanta Biosciences, 95073-012) per manufacturer’s instructions. Expression is 

calculated as the fluorescence relative to Actin (ACT2), calculated using grouped PCR 

efficiencies from analysis by LinRegPCR (Ramakers et al. 2003; Čikoš et al. 2007). 
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Data availability 

Information on sequencing libraries generated in this study are available through NCBI GEO, 

accession number GSE76281. Information and accessions for all other libraries used are 

available in Table S1. The sRNA0seq simulator script is provided as File S1 and all other scripts 

used in analysis are available upon request. Sequences and annotation information for miRNAs 

were acquired through miRBase (Kozomara and Griffiths-Jones 2014). 
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Results and Discussion 

Prevalence of MMAP reads in sRNA-seq data 

In a survey of polyA+ mRNA-seq data from three plant species, MMAP percentages above 10% 

are rare (Figure 3A). In contrast, sRNA-seq datasets from the same three species frequently have 

over 50% MMAP reads (Figure 3A). This illustrates the extent of the MMAP problem 

specifically in sRNA-seq data. We examined a collection of studies (n = 20) where plant sRNA-

seq data were aligned to a reference genome (Figure 3B, Table S4). In 80% of the cases, MMAP 

reads were handled by random selection, where a single possible alignment is randomly selected 

for each MMAP read. Although computationally easy, random selection is highly imprecise, as 

most random choices will be wrong. Another 10% of the studies examined simply ignored 

MMAP reads. This method has the clear disadvantage of discarding huge amounts of data, often 

over 50% (Figure 3A). This survey of data and published studies clearly indicates that MMAP 

reads are a large issue in sRNA-seq data analysis that are often dealt with ineffectively. 

 

High-precision alignments of MMAP sRNA-seq reads 

We designed two alternative modes of proximity-based weighting systems (U and F) to place 

MMAP reads, and implemented them into the sRNA-seq analysis software ShortStack (Figure 2) 

(Axtell 2013). We then conducted a performance analysis comparing these methods to several 

other aligners with various settings. The alignment methods can be classified into three groups 

based on their treatment of MMAP reads (Figure 2A): ShortStack-U and -F both use a 

proximity-weighted scheme to influence placement of MMAP reads. In contrast, under their 

default settings bowtie (Langmead et al. 2009) and bwa (Li and Durbin 2009) randomly place 

MMAP reads, as will ShortStack when run in the R mode. Finally, Novoalign, bowtie with 
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setting -m 1, and ShortStack in mode N all will simply ignore MMAP reads. We simulated 

sRNA-seq data based on the properties of real datasets from Arabidopsis thaliana, Oryza sativa, 

and Zea mays. Unlike real data, the ‘correct’ alignment location for each MMAP is known for 

simulated data. This allows direct comparison of aligner performance. Specifically, we can count 

true positives (aligned reads that are put in the correct position; TP), false positives (aligned 

reads that are put in the incorrect position; FP), true negatives (unaligned reads that have no 

possible alignment position; TN), and false negatives (unaligned reads where there is at least one 

valid alignment position; FN). Precision (TP/(TP + FP)) and sensitivity (TP/(TP + FN)) can then 

be calculated in the standard manner.  

 

In nearly all cases, the highest precisions were obtained with ShortStack’s U method (Figure 

4A). ShortStack-U had significantly (Kruskal–Wallis ANOVA with Dunn multiple comparison 

test, α = 0.05) higher precisions than any non-ShortStack method. The results were especially 

striking when examining the precision specifically for MMAP reads. ShortStack’s U method 

routinely achieved precision values of 75% or higher (Figure 4A). In contrast, none of the 

random-placement or ignore MMAP methods ever had MMAP precision values over 50%. The 

high precision does come at the cost of sensitivity: As described in the methods, ShortStack-U 

and -F will not place all MMAP reads. Instead, if a read has too many possible positions (default 

is > 50) or if the weighted probabilities are equal, MMAP reads are suppressed. Depressed 

sensitivities are more apparent in the more repetitive genome of Zea mays as compared to 

Arabidopsis thaliana (Figure 4A). We computed F1 scores (harmonic means of precision and 

sensitivity) to assess the balance between precision and sensitivity. By this metric, ShortStack-U 

and -F both performed significantly (Kruskal–Wallis ANOVA with Dunn multiple comparison 

test, α = 0.05) better than any other method in all three species (Figure 4A). 
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Analysis of real libraries is limited to examination of false negative rates (FNR = FN / (FP + 

TP)), as TP and FP cannot be distinguished. As expected, FNRs are higher in Zea mays and 

Oryza sativa relative to Arabidopsis thaliana, reflecting the higher proportions of reads with high 

MMAP-values from the more repetitive genomes (Figures 4C). Under default settings, 

ShortStack’s U and F methods discard ~30-50% of the MMAP reads from rice and maize, but 

are likely placing the remainder with very high confidence. 

 

Precision is a function of MMAP-value 

As discussed above, our methods by default will not attempt weighting or placement of MMAP 

reads with more than 50 possible alignment positions. This is based on the prediction that for 

reads with very high MMAP-values, we will have an unacceptably high error rate. We tested this 

prediction by examining the precision values in our simulated datasets as a function of MMAP 

value (Figures 5A-B). As expected, precision declines as a function of higher MMAP values in 

all cases (Figure 5A), with random having the most severe drop-off. Notably, the U method 

consistently gives the highest precisions at a given MMAP value. Analysis of cumulative 

precisions showed that plateaus of precision generally became apparent at MMAP-values ~ 50 

(Figure 5B), justifying our default settings to ignore reads with more than 50 possible alignment 

positions. Our simulated data had more high MMAP reads than real data (Figure 5C), indicating 

that aligner performance with real data is likely to be superior to that of estimated using 

simulated reads.  

 

Experimental testing of alignment methods 
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Mature miRNAs are frequently encoded by multiple paralogous loci, which causes sRNA-seq 

reads corresponding to the mature miRNA to be MMAPed. However, the primary transcripts 

derived from each of the paralogs typically are much longer and have distinct sequences, such 

that qRT-PCR approaches can distinguish them. We used accumulation levels of primary 

transcripts as proxies for the true expression levels of various Arabidopsis thaliana MIRNA loci 

that encode identical mature miRNAs, and compared those data to estimates derived from small 

RNA-seq alignments (Figure 6). qRT-PCR indicated sharp differences in primary transcript 

accumulation for each of the three miRNA families we studied (Figure 6A). ShortStack’s U 

method produced mature miRNA alignments that were mostly similar to the results from qRT-

PCR of the primary transcripts (Figure 6B). In contrast, the other alignment methods suggested 

nearly equal accumulation of mature miRNAs from each of the paralogs. We quantified the fit 

between the qRT-PCR data and the sRNA-seq alignment data by analyzing the squared residual 

errors between the scaled expression levels (Figure 6C). By this metric, ShortStack-U predicts 

the specific contributions of miRNA paralogs significantly (Kruskal–Wallis ANOVA with Dunn 

multiple comparison test, α = 0.05) better than all other tested methods. 

 

When DCL enzymes are absent from Arabidopsis thaliana, longer double-stranded RNAs 

accumulate that are dependent on RNA polymerase IV (Pol IV) and RNA-dependent RNA 

polymerase 2 (RDR2) (Li et al. 2015; Blevins et al. 2015; Zhai et al. 2015; Yang et al. 2016; Ye 

et al. 2016). These are likely to be the direct substrates for the DCL3-mediated production of 24 

nt siRNAs by excision from the ends of precursors. We identified a set of longer precursors from 

dcl2/dcl3/dcl4 triple mutant plants that could be uniquely mapped to the reference genome. We 

then computationally diced this set of precursors to create predicted mature 24 nt siRNAs, and 

examined the corresponding wild-type sRNA-seq libraries to find cases where the putative 
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mature siRNAs actually were sequenced. The wild-type sRNA-seq libraries were aligned with 

various methods. Cases where the mature siRNAs of interest were MMAP allowed assessment of 

alignment precision, as we presume their uniquely aligned precursors represent the correct 

alignment positions. ShortStack-U significantly (Kruskal–Wallis ANOVA with Dunn multiple 

comparison test, α = 0.05) outperformed other alignment methods (Figure 7) in this analysis, as 

measured by precision. Thus, experimental data from both miRNAs and endogenous siRNAs 

supports the hypothesis that ShortStack’s U alignment method is superior. 

 

Bowtie shows bias in random read placement 

When run under default settings, bowtie (Langmead et al. 2009) randomly selects one possible 

alignment position for MMAP reads. However, the software documentation warns that biased 

strand selection, where alignment positions from one strand are favored, can occur (Langmead et 

al. 2009). For sRNA-seq data, we have observed that this strand bias is quite strong. We observe 

a strong top strand bias when bowtie is run under default settings to align sRNA-seq data (Figure 

8). Indeed, this can affect estimation of miRNA accumulation from paralogs (Figure 6B, 

miR166e). This bias is not apparent when other methods are used (Figure 8). Small RNA 

polarity is an important feature used for annotations, so it is conceivable that this strand bias 

could distort results. 

 

Speed testing 

We compared the alignment speed of our methods with those of other aligners. To account for 

differences caused by different genome sizes and/or sRNA-seq libraries, we measured speed in 

normalized units. Because bowtie under default settings was always the fastest method, we 

normalized each run to a multiple of the bowtie-default completion speed. The time spent on 
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genome-indexing was not part of this assessment. In general, our favored method, ShortStack-U, 

was five to ten times slower than bowtie-default, but comparable to bwa (Figure 9). Given that 

the results of ShortStack-U are superior to the other methods, we feel that the extra time is an 

acceptable trade-off. In absolute terms, the wall-time for our ShortStack-U runs on these data 

ranged from 6 minutes to 2.5 hours, compared with bowtie-default which ranged from 1 to 32 

minutes.  

 

Conclusions  

A particularly important goal of ours is to reduce the likelihood of false discoveries in small 

RNA gene annotation. Reducing the number of incorrect alignments is likely to reduce spurious 

annotations. ShortStack-U gives fewer false positives for MMAP reads than all other methods 

for sRNA-seq alignment (Figure 4, 5, 7). The experimental evidence identifying miRNA 

alignment is striking, as mature miRNA are remarkably poorly placed through standard 

approaches (Figure 6). It is likely that misalignment of this nature is significantly 

misrepresenting the abundance of many loci, conceivably resulting in mis-annotations.  

ShortStack-U’s alignment method reduces these risks, striking a balance between precision and 

sensitivity. 

 

A method which is capable of identifying the true site of origin for all MMAP sRNA-seq reads is 

elusive. To achieve reasonable precision, our methods sacrifice some sensitivity by ignoring 

highly MMAP reads.  However, it should be kept in mind that these reads are part of the small 

RNA profile too and should not be completely ignored. Future development of sRNA-seq 

alignment methods should focus on increasing precisions to allow confident placement of even 
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the most repetitive reads. Until then, these most highly-repetitive reads can be analyzed using 

methods independent of alignment to the reference genome. 

 

Overall, our work demonstrates that sRNA-seq alignments can be significantly improved by 

using local weighting to guide placement of multi-mapped reads, and that biases in placement of 

multi-mapped reads can influence downstream analyses. 
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Figure Legends 

Figure 1. Overview of ShortStack methodology. 

 

Figure 2. Weighting methods for placement of MMAP reads. 

A) Alignment tools grouped by MMAP methods.  

B) Example of local alignments for a read (green) with an MMAP-value of two. Numbers 

adjacent to reads indicate their MMAP-value 

C) Weighting scheme for random placement of MMAP reads. 

D) Weighting scheme for ShortStack’s Unique method. 

E) Weighting scheme for ShortStack’s Fractional method.  

 

Figure 3. Prevalence of MMAP reads and methods 
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A) MMAP rates for reads from mRNA-seq and sRNA-seq data from Arabidopsis thaliana (At), 

Oryza sativa (Os), and Zea mays (Zm). Horizontal bars mark median values, circles mark values 

for individual libraries. 

B) Proportion of MMAP-selection methods for sRNA alignment in recent literature (n = 20; 

Table S4). 

 

 

Figure 4. Performance analysis of sRNA-seq alignment methods. 

A) Precisions, sensitivities, and F1 scores for alignments of simulated sRNA-seq data with the 

indicated methods for entire datasets. Boxplots show medians (central bars), the 1st to 3rd 

quartile range (boxes), other data out to 1.5 the interquartile range (whiskers), and outliers (dots). 

n=15, 12, and 21 for the At, Os, and Zm data, respectively. Treatments sharing a common letter 

indicate groups that are not significantly different by non-parametric analysis (Kruskal–Wallis 

ANOVA with Dunn multiple comparison test, α = 0.05). At: Arabidopsis thaliana, Os: Oryza 

sativa, Zm: Zea mays. 

B) MMAP reads only. Same analysis and conventions as in panel A. 

C) False negative rates for alignments of real sRNA-seq data with the indicated methods for 

MMAP reads. Plotting conventions as in panel A. 

 

Figure 5. Influence of MMAP-value on performance 

A) Precision as a function of MMAP-value for simulated sRNA-seq data from the indicated 

species and alignment method. MMAP-value is the number of possible alignment positions for a 

read. Colored lines are standard deviations, black dots are mean values. Heavy dashed line at 
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MMAP=50 indicates the default cutoff value for ShortStack, above which placement of MMAP 

reads is not attempted. At: Arabidopsis thaliana, Os: Oryza sativa, Zm: Zea mays. 

B) Cumulative precision as a function of MMAP-value for simulated sRNA-seq data from the 

indicated species and alignment method. Plotting conventions as in panel A. 

C) Cumulative proportion of real and simulated sRNA-seq data retained by ShortStack 

alignments under differing MMAP-value cutoffs. Note that simulated libraries have higher 

proportions of reads with high MMAP values. Plotting conventions as in panel A. 

 

Figure 6. Experimental assessment of sRNA-seq alignment methods using miRNA paralogs 

A) Relative expression of the indicated primary MIRNA transcripts in Arabidopsis thaliana Col-0 

inflorescences assessed via qRT-PCR. Values are normalized to 1/1000 those of ACTIN2. Dots 

show values from biological replicates (n=3). 

B) Accumulation of the indicated mature miRNAs from each of their possible paralogs as 

determined by different sRNA-seq alignment methods. Values are from three biological replicate 

sRNA-seq libraries from Arabidopsis thaliana Col-0 inflorescences. 

C) Squared residual errors from comparisons of scaled qRT-PCR data to scaled sRNA-seq 

alignment results. Boxplots show medians (horizontal bars), the 1st to 3rd quartile range (boxes), 

data out to 1.5 times the inter-quartile range (whiskers), and outliers (dots). Treatments sharing a 

common letter indicate groups that are not significantly different by non-parametric analysis 

(Kruskal–Wallis ANOVA with Dunn multiple comparison test, α = 0.05). 

 

Figure 7. Precisions from alignments of Arabidopsis thaliana MMAP 24 nt siRNAs whose true 

origins are known based on a unique precursor alignment. Dots: data from individual libraries; 

horizontal bars: medians. Treatments sharing a common letter indicate groups that are not 
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significantly different by non-parametric analysis (Kruskal–Wallis ANOVA with Dunn multiple 

comparison test, α = 0.05). 

 

Figure 8. Strand-biased selection of MMAP alignment positions by bowtie. Bias is shown as the 

overall ratio of top-strand aligned reads to bottom, based on simulated libraries from Arabidopsis 

thaliana (n=15). Boxplots show medians (horizontal bars), the 1st to 3rd quartile range (boxes), 

data out to 1.5 times the inter-quartile range (whiskers), and outliers (dots). Treatments sharing a 

common letter indicate groups that are not significantly different by non-parametric analysis 

(Kruskal–Wallis ANOVA with Dunn multiple comparison test, α = 0.05). 

 

Figure 9. Comparison of alignment times for real sRNA-seq libraries with the indicated 

methods. Boxplots show medians (central bars), the 1st to 3rd quartile range (boxes), other data 

out to 1.5 the interquartile range (whiskers), and outliers (dots). n=15, 12, and 21 for the At, Os, 

and Zm data, respectively. At: Arabidopsis thaliana, Os: Oryza sativa, Zm: Zea mays. 

 

Supplemental Data 

Supplemental Table 1: Dataset accession numbers and descriptions 

Supplemental Table 2: Versions and settings 

Supplemental Table 3: Oligo sequences 

Supplemental Table 4: Methods used for placement of MMAP sRNA-seq reads in 20 previous 

studies. 

 

Supplemental File 1: sRNA-simulator.py : Python script used to create simulated sRNA-seq 

datasets. 
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Figure  1.  Overview  of  ShortStack  methodology.  
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Figure  2.  Weighting  methods  for  placement  of  MMAP  reads.  
A)  Alignment  tools  grouped  by  MMAP  methods.    
B)  Example  of  local  alignments  for  a  read  (green)  with  an  MMAP-­value  of  two.  Numbers  adjacent  to  reads  
indicate  their  MMAP-­value  
C)  Weighting  scheme  for  random  placement  of  MMAP  reads.  
D)  Weighting  scheme  for  ShortStack’s  Unique  method.  
E)  Weighting  scheme  for  ShortStack’s  Fractional  method.    
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Figure  3.  Prevalence  of  MMAP  reads  and  methods  
A)  MMAP  rates  for  reads  from  mRNA-­seq  and  sRNA-­seq  data  from  Arabidopsis  thaliana  (At),  Oryza  
sativa  (Os),  and  Zea  mays  (Zm).  Horizontal  bars  mark  median  values,  circles  mark  values  for  individual  
libraries.  
B)  Proportion  of  MMAP-­selection  methods  for  sRNA  alignment  in  recent  literature  (n  =  20;;  Table  S4).  
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Figure  4.  Performance  analysis  of  sRNA-­seq  alignment  methods.  
A)  Precisions,  sensitivities,  and  F1  scores  for  alignments  of  simulated  sRNA-­seq  data  with  the  indicated  
methods  for  entire  datasets.  Boxplots  show  medians  (central  bars),  the  1st  to  3rd  quartile  range  (boxes),  
other  data  out  to  1.5  the  interquartile  range  (whiskers),  and  outliers  (dots).  n=15,  12,  and  21  for  the  At,  
Os,  and  Zm  data,  respectively.  Treatments  sharing  a  common  letter  indicate  groups  that  are  not  
significantly  different  by  non-­parametric  analysis  (Kruskal–Wallis  ANOVA  with  Dunn  multiple  comparison  
test,  α  =  0.05).  At:  Arabidopsis  thaliana,  Os:  Oryza  sativa,  Zm:  Zea  mays.  
B)  MMAP  reads  only.  Same  analysis  and  plotting  conventions  as  in  panel  A.  
C)  False  negative  rates  for  alignments  of  real  sRNA-­seq  data  with  the  indicated  methods  for  MMAP  
reads.  Plotting  conventions  as  in  panel  A.     

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044099doi: bioRxiv preprint 

https://doi.org/10.1101/044099
http://creativecommons.org/licenses/by-nc/4.0/


31  

  
  
Figure  5.  Influence  of  MMAP-­value  on  performance  
A)  Precision  as  a  function  of  MMAP-­value  for  simulated  sRNA-­seq  data  from  the  indicated  species  and  
alignment  method.  MMAP-­value  is  the  number  of  possible  alignment  positions  for  a  read.  Colored  lines  
are  standard  deviations,  black  dots  are  mean  values.  Heavy  dashed  line  at  MMAP=50  indicates  the  
default  cutoff  value  for  ShortStack,  above  which  placement  of  MMAP  reads  is  not  attempted.  At:  
Arabidopsis  thaliana,  Os:  Oryza  sativa,  Zm:  Zea  mays.  
B)  Cumulative  precision  as  a  function  of  MMAP-­value  for  simulated  sRNA-­seq  data  from  the  indicated  
species  and  alignment  method.  Plotting  conventions  as  in  panel  A.  
C)  Cumulative  proportion  of  real  and  simulated  sRNA-­seq  data  retained  by  ShortStack  alignments  under  
differing  MMAP-­value  cutoffs.  Note  that  simulated  libraries  have  higher  proportions  of  reads  with  high  
MMAP  values.  Plotting  conventions  as  in  panel  A.     
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Figure  6.  Experimental  assessment  
of  sRNA-­seq  alignment  methods  
using  miRNA  paralogs  
A)  Relative  expression  of  the  
indicated  primary  MIRNA  transcripts  
in  Arabidopsis  thaliana  Col-­0  
inflorescences  assessed  via  qRT-­
PCR.  Values  are  normalized  to  
1/1000  those  of  ACTIN2.  Dots  show  
values  from  biological  replicates  
(n=3).  
B)  Accumulation  of  the  indicated  
mature  miRNAs  from  each  of  their  
possible  paralogs  as  determined  by  
different  sRNA-­seq  alignment  
methods.  Values  are  from  three  
biological  replicate  sRNA-­seq  libraries  
from  Arabidopsis  thaliana  Col-­0  
inflorescences.  
C)  Squared  residual  errors  from  
comparisons  of  scaled  qRT-­PCR  data  
to  scaled  sRNA-­seq  alignment  results.  
Boxplots  show  medians  (horizontal  
bars),  the  1st  to  3rd  quartile  range  
(boxes),  data  out  to  1.5  times  the  
inter-­quartile  range  (whiskers),  and  
outliers  (dots).  Treatments  sharing  a  
common  letter  indicate  groups  that  
are  not  significantly  different  by  non-­
parametric  analysis  (Kruskal–Wallis  
ANOVA  with  Dunn  multiple  
comparison  test,  α  =  0.05).  
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Figure  7.  Precisions  from  alignments  of  Arabidopsis  thaliana  MMAP  24  nt  siRNAs  whose  true  origins  are  
known  based  on  a  unique  precursor  alignment.  Dots:  data  from  individual  libraries;;  horizontal  bars:  
medians.  Treatments  sharing  a  common  letter  indicate  groups  that  are  not  significantly  different  by  non-­
parametric  analysis  (Kruskal–Wallis  ANOVA  with  Dunn  multiple  comparison  test,  α  =  0.05).  
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Figure  8.  Strand-­biased  selection  of  MMAP  alignment  positions  by  bowtie.  Bias  is  shown  as  the  overall  
ratio  of  top-­strand  aligned  reads  to  bottom,  based  on  simulated  libraries  from  Arabidopsis  thaliana  (n=15).  
Boxplots  show  medians  (horizontal  bars),  the  1st  to  3rd  quartile  range  (boxes),  data  out  to  1.5  times  the  
inter-­quartile  range  (whiskers),  and  outliers  (dots).  Treatments  sharing  a  common  letter  indicate  groups  
that  are  not  significantly  different  by  non-­parametric  analysis  (Kruskal–Wallis  ANOVA  with  Dunn  multiple  
comparison  test,  α  =  0.05).  
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Figure  9.  Comparison  of  alignment  times  for  real  sRNA-­seq  libraries  with  the  indicated  methods.  Boxplots  
show  medians  (central  bars),  the  1st  to  3rd  quartile  range  (boxes),  other  data  out  to  1.5  the  interquartile  
range  (whiskers),  and  outliers  (dots).  n=15,  12,  and  21  for  the  At,  Os,  and  Zm  data,  respectively.  At:  
Arabidopsis  thaliana,  Os:  Oryza  sativa,  Zm:  Zea  mays.  
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