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Abstract 

A key to understanding visual cognition is to determine where, when and how 
brain responses reflect the processing of the specific visual features that 
modulate categorization behavior—the what. The N170 is the earliest Event-
Related Potential (ERP) that preferentially responds to faces. Here, we 
demonstrate that a paradigmatic shift is necessary to interpret the N170 as 
the product of an information processing network that dynamically codes and 
transfers face features across hemispheres, rather than as a local stimulus-
driven event. Reverse-correlation methods coupled with information-theoretic 
analyses revealed that visibility of the eyes influences face detection behavior.  
The N170 initially reflects coding of the behaviorally relevant eye contra-
lateral to the sensor, followed by a causal communication of the other eye 
from the other hemisphere. These findings demonstrate that the deceptively 
simple N170 ERP hides a complex network information processing 
mechanism involving initial coding and subsequent cross-hemispheric transfer 
of visual features. 
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Introduction 

The ultimate goal of cognitive neuroscience is to understand the brain as an organ of 
information processing.  We subscribe to the assumption that the information 
processing systems of the brain, like all information processing systems, can be 
fruitfully described at different levels of abstraction, with specific contributions from 
different levels of granularity of brain signals (Marr, 1982; Tanenbaum and Austin, 
2012).  However, analysis at any level of abstraction will remain difficult unless we 
understand more directly what information the brain processes when it categorizes 
the external world.  For example, our brain can quickly detect the presence of a face, 
implying that brain networks can extract and process the specific visual information 
required for face detection. As experimenters, we typically do not have a detailed 
description of such task-specific information and so we cannot explicitly test 
hypotheses about its algorithmic processing in brain signals.  

 Here, we address this issue by first isolating what specific information 
modulates face detection behavior. Then we examine, where, when and how this 
face information modulates dynamic signals of integrated brain activity on the left and 
right hemispheres. Since neural activity produces these integrated signals, from them 
we can derive the timing and approximate regions where neural populations are 
processing the specific face information underlying behavioral responses.  

In humans, the N170 is the first integrated measure of cortical activity that 
preferentially responds to faces, with larger amplitudes to entire faces than to stimuli 
from other categories (Bentin et al., 1996; Rossion and Jacques, 2008). We 
developed this account, demonstrating that the N170 waveform reflects a feature 
coding mechanism (Schyns et al., 2003, 2007; Smith et al., 2004; van Rijsbergen 
and Schyns, 2009; Rousselet et al., 2014a).  With face stimuli, coding starts with the 
eye contra-lateral to the recording sensor (e.g. the left eye on the right sensor, see 
Figure 1), on the downward slope of the N170 (~ 140 ms post-stimulus), followed in 
some face categorizations by the coding of task-relevant features—e.g. coding of the 
diagnostic contra-lateral wrinkled nose corner in ‘disgust,’ or the diagnostic corner of 
the wide-opened mouth in ‘happy’. By coding, we refer to the N170 time windows 
when the single-trial visibility of face features—randomly sampled with the Bubbles 
procedure, which uses a number of randomly positioned Gaussian apertures on 
individual trials to sample contiguous pixels from the face stimuli—covaries with the 
corresponding single-trial EEG responses.   

Thus, converging evidence from face detection and categorization reveals 
that early face coding on the N170 differs between the left and right hemispheres.  
Specifically, as illustrated in Figure 1, at time t1 the right eye (represented in red) is 
initially coded on the left hemisphere N170, and the left eye (represented in blue) is 
coded on the right hemisphere N170 (Smith et al., 2007; Rousselet et al., 2014a). 
Furthermore, the later part of the N170 waveform additionally codes the eye ipsi-
lateral to the sensor at time t2 (i.e. the right eye on the right sensor; the left eye on 
the left sensor, (Smith et al., 2007; Rousselet et al., 2014a)). 

We know from anatomy and physiology that the visual system is lateralized 
across two hemispheres, with a separate visual hierarchy in each that processes the 
contra-lateral visual hemifield, from early to higher order visual areas, where 
processing becomes bi-lateral (Essen et al., 1982; Clarke and Miklossy, 1990; Saenz 
and Fine, 2010). Could the later N170 ipsi-lateral eye coding at t2 reflect the transfer 
of specific features coded at t1, across the hemispheres, through to high-level visual 
areas?   
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Figure 1 illustrates our hypothesis in the context of a face detection task, 
where the eyes (predominantly the left one) modulate reaction times (Rousselet et 
al., 2014a).  Panels LOT and ROT (for Left and Right Occipito-Temporal sensors, 
respectively) illustrate initial coding of the contra-lateral eye at early time t1, closely 
followed by coding of the eye ipsi-lateral to the sensor at a later time t2—e.g. the right 
eye on ROT. Later coding of the right eye at t2 could arise from a causal transfer from 
its earlier coding at t1 on LOT on the opposite hemisphere.  A demonstration of such 
feature transfer would suggest a reinterpretation of the N170, from a local event often 
interpreted as coding the entire face (Bentin et al., 1996; Eimer, 2000), to the 
reflection of a more global information processing network that spans both 
hemispheres across multiple stages of face coding in the visual hierarchy. Here, we 
demonstrate that the N170 does indeed reflect network-level information processing 
mechanisms.  

In a face detection task (Rousselet et al., 2014a, 2014b), we instructed 
observers (N = 16) to detect on each trial the presence of a face sparsely and 
randomly sampled with small Gaussian apertures, see Figure 2A and (Rousselet et 
al., 2014a).  Half of the trials sampled face images; the remaining half sampled 
amplitude spectrum matched noise, to dissociate spatial attention to feature location 
from feature coding per se.  We recorded each observers’ EEG and face detection 
responses (correct vs. incorrect and Reaction Times, RTs (Rousselet et al., 2014a, 
2014b)). 

Results 

Behavior.  Observers were both fast and accurate, median of the median RT = 376 
ms, [range = 287, 492]; mean accuracy = 91%, [range = 84, 97].  We used Mutual 
Information (MI) to compute the association between the sampled pixels and 
observer detection responses (face vs. noise). This revealed a significant relationship 
between pixel variations and behavior indicating that the pixels representing the left 
eye region in the image are relevant for behavior (Rousselet et al., 2014a Fig. 3). 
Computation of MI between sampled face pixels and the more sensitive RT measure 
revealed that most observers responded faster on trials that revealed the left eye—a 
minority also responded faster to trials revealing the right eye (Rousselet et al., 
2014a Fig. 3).  On noise trials, MI values were low and not clustered on specific face 
features. Henceforth, we focus on the EEG coding and transfer of the eyes on face 
trials due to their prominence across observers in the face detection task (Rousselet 
et al., 2014a). 

EEG.   We removed one observer from analysis due to poor EEG signal.  For the 
remaining 15 observers and for each sensor we computed the sensitivity of the EEG 
to the left and right eyes as follows. First, we used a mask for the left and the right 
eye regions and summed the Gaussian apertures within each eye region. The 
resulting two scalar values represent the visibility of each eye on each trial (Figure 
2B).  Then, across trials we quantified the relationship (MI) between eye visibility 
values and the Current Source Density EEG measured at each sensor and time 
point—henceforth we refer to these interchangeably as MI time courses or eye 
coding curves. To remove any effects of weak statistical dependence between the 
left and right eye sampling, throughout when we refer to MI about an eye feature we 
actually calculated Conditional Mutual Information (CMI), conditioning out any effect 
of the visibility of the alternate eye. On each hemisphere, we then identified the 
single occipital-temporal sensor (i.e. LOT and ROT) with largest MI to the contra-
lateral eye within the N170 time window (100-200ms)—see Materials and Methods.  
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To address our hypothesis (cf. Figure 1), we propose three requirements that 
are necessary for the existence of a causal transfer of stimulus features between two 
brain regions.  The first requirement is coding:  Both regions should code the same 
stimulus feature (e.g. the right eye at t1 on the LOT N170; the right eye at t2 on the 
ROT N170). The second requirement is temporal precedence:  Feature coding in the 
first region should occur before coding of the same feature in the other region (e.g. 
the right eye on LOT N170 at t1 and the right eye on ROT N170 at t2). Finally there 
must be coding equivalence: Feature coding should be the same in both regions 
(e.g. coding of the right eye at t1 on LOT and at t2 on ROT should be the same).   

Coding 

To operationalize coding, we refer to the MI time courses of the chosen LOT and 
ROT sensors for the left and right eye. Figure 3 illustrates this analysis for one 
observer.  For reference, the black curve shows a typical N170 obtained on the ROT 
sensor.  Standard interpretations would consider this average as a local response to 
full-face stimuli, in contrast to other categories (Bentin et al., 1996; Eimer, 2000).  
Here, random sampling with bubbles changes the visibility of the left and right eyes 
across trials (Figure 2B) and so we can analyze how eye visibility modulates single-
trial N170 responses. On the ROT N170, we split the trials into 10 bins of left eye 
visibility (deciles of the distribution across trials; represented with shades of blue) and 
right eye visibility (represented with shades of red).  For each bin we computed and 
plotted the mean ERP. Figure 3 illustrates that increased left eye visibility causes an 
earlier and larger N170. Increased visibility of the right eye caused larger N170 
amplitude, with no change in latency. 

Plotting the ERP for bin of eye visibility demonstrates a modulation.  To 
quantify this coding, we calculated, for each eye, the MI between eye visibility and 
the corresponding EEG response at each time point at LOT and ROT sensors (see 
Methods). In Figure 3, MI time courses indicate with a thicker line the time windows 
of a statistically significant relationship (p=0.01, corrected for multiple comparison 
over time [0-400ms], all sensors and the two eye features with the method of 
maximum statistics). MI time courses show that in this observer the ROT N170 codes 
the left and right eyes. All 15 observers showed significant MI on the contra-lateral 
sensor for at least one eye (13/15 significant for both eyes). 14/15 observers also 
showed significant MI of the eye ipsi-lateral to the sensor, for at least one eye (13/15 
significant for both eyes). These results satisfy the coding requirement because 
across observers and stimulus features we found 26 instances (out of 30 = 15 
subjects x left/right eye) of significant eye MI on both contra-lateral and ipsi-lateral 
sensors. 

Temporal Precedence 

In Figure 3, the lower plots report the eye coding MI curves superimposed as hue on 
the ROT ERP time-course, to directly visualize the timing of left and right eye coding 
on this sensor. The ROT N170 codes the contra-lateral left eye throughout its time, 
with a strongest early effect at the onset of the negative deflection (see blue arrow). 
The ROT N170 also codes the ipsi-lateral right eye, but only later, with the strongest 
effect just after the N170 peak (see red arrow). This illustrates that the ROT N170 
codes the contra-lateral left eye before the ipsi-lateral right eye. 

We now demonstrate the temporal precedence of the left (or right) eye across 
the contra and ipsi-lateral sensors. To visualize this comparison, Figure 4A reveals 
the peak-normalized MI time courses of the left eye on ROT (plain blue line) and LOT 
(dashed blue line); Figure 4B presents the MI of the right eye on LOT (plain red line) 
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and ROT (dashed red line).  Comparison of the solid (contra-lateral sensor) to the 
dashed (ipsi-lateral sensor) MI curves illustrates contral-lateral temporal precedence 
in both cases. To quantify temporal precedence, we considered each instance 
(specific observer and eye feature) with significant same eye coding across the 
contra- and ipsi-lateral sensors (N = 26).  For each instance, we quantified the coding 
latency by normalizing the MI curves to their peak values and calculating the average 
delay between the MI curves over the y-axis region where both were significant (grey 
region, Figure 4C; see Materials and Methods). At the group level, observers showed 
a significant temporal precedence of same eye coding on the contra-lateral before 
the ipsi-lateral sensor (Figure 4D; Sign Rank test, p=7.4e-7). The median contra-to-
ipsi coding delay was 15.7 ms (1st quartile = 7.7, 3rd quartile = 25.5 ms). 13/15 
observers have significant bilateral coding with a contra-ipsi latency of greater than 7 
ms for at least one eye feature.  Across observers, we have now established 
temporal precedence of same eye coding from the contra-lateral to the ipsi-lateral 
sensor. 

Coding Equivalence 

We turn to coding equivalence, the third and final necessary condition for causal 
feature transfer. Figure 5A schematizes our results so far. We know that the LOT 
N170 codes the contra-lateral right eye at t1—this is represented with plain lines. We 
also know that the ROT N170 codes the same eye at a later time, t2—this is 
represented with dashed lines.  Now, we establish that the eye feature coded at 
these two different time points and on different sensors is mostly equivalent. 

To provide an intuitive understanding of coding equivalence, consider Figure 
5A and a putative observer who would read out only the early EEG responses from 
the LOT sensor.  Could they predict the visibility of the right eye on each trial?  
Would adding information from the later EEG responses on ROT improve their 
prediction?  If the early LOT and later ROT information were the same, adding the 
later ROT responses would not add any new knowledge about right eye visibility and 
thus would not improve prediction. However, if adding ROT information did improve 
prediction, then ROT responses would contain extra information about the visibility of 
the eye that is not already available in LOT responses, indicating that ROT and LOT 
coding of the right eye were not equivalent.  

We formalized such coding equivalence with an information theoretic quantity 
called redundancy illustrated in Figure 5B (see Methods). Venn diagrams represent 
the MI (at peak time) to the right eye on LOT (plain line) and ROT (dashed line). 
Coding equivalence corresponds to their overlap (i.e. their intersection). Because MI 
is additive we measure this overlap directly, with a simple linear combination of MI 
quantities. We sum the LOT and ROT MI separately (which counts the overlapping 
MI twice) and subtract the MI obtained when LOT and ROT responses are 
considered together (which counts the overlap once). The resulting redundancy 
value measures coding equivalence—i.e. the MI that is shared between the LOT and 
ROT responses. 

For each observer, we computed redundancy between the N170 MI peaks for 
for the left eye (a transfer from right to left hemispheres) and for the right eye (the 
opposite transfer, from left to right hemispheres). Figure 5C illustrates the 
redundancy topography time courses for one typical observer.  Redundancy is 
computed with respect to a seed response—a particular time point (MI peak) of 
either LOT (for right eye redundancy, red topographies, seed indicated with black 
marker) or ROT (for left eye redundancy, blue topographies, seed indicated with 
black marker). At 130ms there is contra-lateral, but no ipsi-lateral coding of either eye 
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(indicated with bars); ipsi-lateral redundant coding appears 10-20ms later (arrows). 
The redundancy topographies also illustrate that our analyses do not depend on the 
choice of a single seed sensor in each hemisphere. Figure 5D shows a histogram of 
the normalised redundancy over all 15 observers. In almost all cases redundancy is 
large (median = 88%) demonstrating the high coding similarity of the same eye 
across hemispheric locations and time segments of the N170. 14/15 observers have 
contra-ipsi redundancy greater than 50% for at least one eye feature (21/26 bi-lateral 
instances).  

To provide further evidence that delayed redundancy across hemispheres 
actually represents feature transfer between the two regions, we calculated the MI 
between LOT and ROT peaks directly, conditioning out the effect of variability of both 
eye features. These values were large (compared to stimulus feature coding) and 
significant. All 26 instances showed significant conditional MI: median = 0.32 bits, 
min = 0.07 bits, max = 0.65 bits; median of the lower boundaries of the 99% 
bootstrap confidence interval = 0.25 bits, min = 0.04 bits, max = 0.55 bits). This 
demonstrates that there is a time-delayed relationship between LOT and ROT on 
single trials, over and above the relationship that could be expected if these two 
regions received a common eye feature signal from a third region but did not 
exchange information with each other. This can be interpreted as causal transfer 
within the Wiener-Granger framework (Wiener, 1956; Granger, 1969; Bressler and 
Seth, 2011), and so shows that our observations are better explained by a model that 
includes genuine transfer of eye information between the regions, rather than a 
model involving a third region that sends the same eye signal with a different delay to 
LOT and ROT. 

Discussion 

In a face detection task, we derived an abstract, high-level information processing 
interpretation of brain activity.  First, using the Bubbles procedure coupled with 
behavioral responses, we showed what information supports face detection: the eyes 
of a face.  Then, with the Bubbles procedure coupled with CSD transformed EEG 
data to improve spatial localization (Tenke and Kayser, 2012), we reconstructed a 
network revealing that the sources generating the N170 code and transfer the eyes 
of a face. We specified three necessary conditions for inferring feature transfer within 
our measurement paradigm:  coding of the same features in two brain regions, 
temporal precedence of coding in one region with respect to the other and 
redundancy of feature coding between the two regions. Our analyses revealed that 
13/15 observers individually meet all three conditions.  Specifically, in each observer 
we demonstrated coding of the same eye on the LOT and ROT sensors.  We 
showed the temporal precedence of same eye coding at contra- before ipsi-lateral 
sensors.  Finally, we showed high redundancy (i.e. high coding similarity) between 
early and late coding of the same eye on opposite hemispheres.  Together, these 
three conditions suggest causal transfer of eye information in the Wiener-Granger 
sense (e.g. right eye from the early part of the LOT N170 to late part of the ROT 
N170). Though we selected one LOT and one ROT electrode per observer for 
statistical analyses, the topographic maps of Figures S2-S16 reveal that the three 
conditions would be met by choosing other electrodes from the extended lateral 
regions of delayed redundancy across hemispheres. The clear separation between 
the clusters of redundant information on the left and right hemispheres further 
supports the claim that LOT and ROT signals originate from different brain regions. 
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The N170 now appears as a deceptively simple signal that actually reflects an 
inter-hemispheric information processing network that codes and transfers face 
features. A distinctive feature of our approach is that we are not just reconstructing a 
network on the basis that two brain regions communicate; we are revealing what they 
are communicating about—i.e. the information content underlying face detection.  It 
is the novel quantification of the content of information coding and transfer that 
represents an important step towards a new brain algorithmics to model the 
information processing mechanisms of perception and cognition (Schyns et al., 
2009). This is a radical departure from typical N170 quantifications and 
interpretations, which compare peak amplitude and latency differences between the 
average EEG responses to a few categories comprising complete stimulus images 
(Bentin et al., 1996; Rossion and Jacques, 2008).  In contrast, here we decompose 
the stimulus with Bubbles to test the N170 responses against random samples of 
stimulus pixels presented on each trial. This enables a precise characterization of the 
information subtending the task and the dynamics of coding alongside the N170 time 
course in individual observers.  We demonstrated that focusing on the average N170 
peak was restricting interpretation of the N170 signals because (a) feature coding is 
represented in the single trial variance of the N170 (not its mean), revealing that (b) 
contra-lateral eye coding starts on the N170 downward slope, ~40 ms prior its peak 
(see also (Schyns et al., 2007)) and that (c) the rebound from the peak codes the 
transferred ipsi-lateral eye from the other hemisphere. Together, our results 
demonstrate that the N170 cannot be fully interpreted as an isolated event on one 
hemisphere. Rather, it reflects the coding and transfer functions of an information 
processing network involving both hemispheres. 

Feature Transfer.  Our results provide strong evidence for causal feature 
communication between hemispheres. We review the evidence in turn.  First, the 
lateralized anatomy of the visual system prescribes that the first cortical processing 
of each eye should occur in the early part of the contra-lateral visual hierarchy. This 
is congruent with our findings.  As there is no direct anatomical pathway from the 
ipsi-lateral hemifield (only a contra-lateral pathway), the ipsi-lateral eye information 
present in the second part of the LOT and ROT N170 should be transferred from the 
opposite hemisphere. We demonstrated this functionally, without recourse to 
anatomical priors in our analysis. Second, the latency timings of inter-hemispheric 
feature transfer (median 11 ms) are consistent with previously reported inter-
hemispheric transfer times (Brown et al., 1994; Ipata et al., 1997). Third, we 
demonstrate that the coding redundancy between LOT and ROT occurs in the 
context of single-trial temporal relationships between these regions that cannot be 
explained simply by a third region sending a common eye feature signal with a 
different delay. In sum, the reported evidence is consistent with a transfer between 
the two hemispheres, a proportion of which is about the eye. 

Sources Generating the N170.  Further research will seek to reduce the 
abstract information dynamics presented here. We will examine the networks of brain 
sources that generate the left and right hemisphere N170s and implement the 
information processing functions of task-dependent contra-lateral and ipsi-lateral 
feature coding and cross-hemispheric transfer.  In our data, topographic maps of 
contralateral eye coding suggest the involvement of posterior-lateral sources. Source 
analyses or correlations between BOLD and ERP amplitudes suggest that the N170 
sources locate around the STS (Watanabe et al., 2003; Itier and Taylor, 2004; Sato 
et al., 2008; Nguyen and Cunnington, 2014), the fusiform gyrus (Horovitz et al., 
2004), or both (Sadeh et al., 2010; Dalrymple et al., 2011; Prieto et al., 2011). To 
better localize these sources and understand how they code and transfer task-
relevant features, we could apply our bubbles paradigm with single-trial fMRI-EEG 
measures. In fact, an MEG reverse-correlation study revealed coding of face 
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features, including the eyes, in the time window of the M170 in lateral cortical areas 
(Smith et al., 2009). Finally, intracranial data also support the involvement of occipital 
and temporal lateral areas, such as the right inferior occipital gyrus, to generate scalp 
N1/ N170 (Sehatpour et al., 2008; Rosburg et al., 2010; Engell and McCarthy, 2011; 
Jonas et al., 2012, 2014). So, lateral sources are likely to be involved in the 
generation of the N170. The information processing mechanisms revealed here 
guide their study at the source level, in terms of the timing of coding and transfer of 
specific features. 

Advantages of Information Theory for Analysis of Brain Signals.  It is often 
thought that the EEG signal is too noisy for single-trial analyses as done here.  It is 
worth noting that several novel methodological developments delivered important 
advances. First, a copula-based MI estimator provided a flexible and powerful 
multivariate statistical framework to quantify feature coding over the full temporal 
resolution of EEG (Ince et al., 2015). Second, as an improved measure of EEG 
activity, we considered the bivariate variable consisting of the recorded voltage at 
each time point together with the temporal gradient (see Methods and Figure S1).  
Third, to eliminate effects of the alternative eye when computing eye coding, we used 
conditional MI throughout our analyses. Conditional MI is a powerful and rigorous 
approach to quantify feature coding when stimulus features are correlated, and is 
applicable in any sensory modality. Finally, the additivity of MI enables a direct 
quantification of feature coding interactions between different regions of the brain 
and time points of their activity. Here, we used MI additivity to compute redundancy, 
but the same computation can also reveal synergistic interactions. Using MI to 
quantify coding redundancy and synergy has broad applications in neuroimaging, 
from quantifying the interactions between different spatial regions and time points to 
construct brain representations (as considered here), to quantifying the relationships 
between signals from different brain imaging modalities (e.g. EEG/fMRI). 

 Hierarchical Analysis of Information Processing.  Our interpretative approach 
can be applied hierarchically, to different levels of granularity of response (e.g. from 
behavior to EEG to neurons), to quantify information processing mechanisms at each 
level.  At the coarsest level, with behavioral measures (accuracy and RT) we 
determine what visual features the organism processes to discriminate faces from 
noise—i.e. the two eyes. This reduces the full high-dimensional stimulus to a few, 
lower-dimensional task-relevant features.  Going down the hierarchy, with integrated 
EEG measures we determine where, when and how states of brain activity (e.g. 
variance of the early and late parts of the single-trial N170 signals) code and transfer 
task-relevant features.  That is, we relate information processing to a few states of 
brain activity (e.g. coding of the contra-lateral eye during the early part of the ROT 
and LOT N170; coding of the ipsi-lateral eye over the later part). We also relate 
operations on information (e.g. transfer of the ipsi-lateral eye across hemispheres) to 
brain state transitions (e.g. eye transfer occurs between the early and late part of the 
LOT and ROT N170s). Experimentally, we can repeat the exercise one (or several) 
hierarchical level(s) down, for instance measuring the localized MEG sources that 
generate the N170, to add the details of information processing that would be 
reverse engineered from the finer grained measures of neural activity.  We expect 
these more detailed information processing descriptions to be consistent with the 
results described here.  

The critical point is that while the information processing ontology produces 
finer information processing details with increasing granularity of brain measures, it 
preserves the information gained from analyses at more abstract levels (as shown 
here between behavior and the EEG that preserves the eyes).  Abstract levels guide 
the search for detailed implementation of the behaviorally relevant information (e.g. 
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contra- and ipsi-later eyes) and functions (e.g. coding, transfer) in the increased 
complexity of the lower levels—i.e. whatever else the neural populations in the 
sources of the N170 may be encoding, the population must be sensitive to first the 
contra- and then the ipsi-lateral eye and transfer of the latter should come from a 
population on the other hemisphere. Our approach is similar to analyzing a 
computing architecture hierarchically across levels, from the most abstract (e.g. 
“send mail”), to its programming language algorithm, to its assembly language, to its 
machine-specific implementation.  The critical difference between a brain and a 
computer is that whereas we can directly engineer (via a hierarchy of compilers) an 
abstract information algorithm into a computer hardware, we can only reverse 
engineer an information processing algorithm from brain data to infer a hierarchy.  

Influences of Categorization Tasks.  Our approach will be particularly 
interesting when applied to study the processing of the same stimuli when the 
observer is performing different tasks. For example, with multiple categorizations of 
the same faces (e.g. gender, expression and identity), we could determine from 
behavior the specific features that are relevant for each task (the what) and then 
trace, as we have done here, where and when each feature set is coded and 
transferred between localized brain sources (e.g. with MEG (Smith et al., 2009)). As 
the task and the associated behaviorally relevant information changes, we can 
determine how the corresponding processing in brain networks is affected: Where 
and when are task-relevant features coded and task-irrelevant features suppressed? 
This is a pre-requisite to addressing elusive questions such as the locus of selective 
attention, the role of top-down priors, and their influence on the construction of the 
information content of stimulus perception and categorization. How does network 
feature communication change with task? Again, this is an important condition to 
understand for example information integration. Our results propose a specific timing 
on feature coding and transfer that could constrain the study of feature integration 
mechanisms—specifically, these should occur after transfer of the contra-laterally 
coded features, possibly in occipito-temporal sources.  Can we relate selective 
coding of behaviorally relevant features to specific decision-making processes (Smith 
et al., 2004; Philiastides and Sajda, 2006)(Philiastides and Sajda, 2006)? 

Here, by addressing the what, where, when and how questions of information 
processing, we proposed a radically new interpretation of the N170, as reflecting a 
network that codes and transfers a specific information content across hemispheres. 
The main methodological advantage of focusing on the what and then reducing its 
processing across the levels of an information processing ontology is akin to the 
main recommendation of Marr’s computational analysis:  The abstract information 
goals of the system guide the analysis.  Revealing the information, from behavior to 
the processing states of the brain and their transitions brings us one step closer to 
the ultimate goal of cognitive neuroimaging of understanding the brain as a machine 
that processes information.  
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Materials and Methods 

The data considered here were already reported in (Rousselet et al., 2014a). Full 
experimental details are provided there. Data are available at (Rousselet et al., 
2014b). 

Observers 

The study comprised 16 observers: 9 females, 15 right-handed, median age 23 (min 
20, max 36). Prior to the experiment, all observers read a study information sheet 
and signed an informed consent form. The experiment was approved by the Glasgow 
University College of Science and Engineering Ethics Committee with approval no. 
CSE00740. All observers had normal or corrected-to-normal vision and contrast 
sensitivity of 1.95 and above (normal score).  

Stimuli 

Stimuli were gray-scale pictures of faces and textures (Rousselet et al., 2014a Fig. 
1). Faces from 10 identities were used; a unique image was presented on each trial 
by introducing noise (70% phase coherence) into the face images (Rousselet et al., 
2008). Textures were face images with random phase (0% phase coherence). All 
stimuli had an amplitude spectrum set to the mean amplitude of all faces. All stimuli 
also had the same mean pixel intensity, 0.2 contrast variance and spanned 9.38 x 
9.38 degrees of visual angle. The face oval was 4.98 x 7.08 degrees of visual angle. 
Face and noise pictures were revealed through 10 two-dimensional Gaussian 
apertures (sigma = 0.368 degrees) randomly positioned with the constraint that the 
center of each aperture remained in the face oval and was at a unique position. In 
the rest of this article, we refer to these masks with Gaussian apertures as bubble 
masks.  

Experimental Procedure 

At the beginning of each of two experimental sessions, we fitted observers with a 
Biosemi head cap comprising 128 EEG electrodes. We instructed observers as to 
the task, including a request to minimize blinking and movements. We asked 
observers to detect images of faces and textures as fast and as accurately as 
possible. They pressed the numerical pad of a keyboard for response (‘1’ for face vs. 
‘2’ for texture) using the index and middle fingers of their dominant hand. Each 
experimental session comprised 1,200 trials, presented in blocks of 100, including 
100 practice trials. All observers participated in two experimental sessions lasting in 
total about 4 hours and bringing the total number of trials per observer to 2,200.  

Each trial began with the presentation of a small black fixation cross (0.48 x 
0.48 degrees of visual angle) displayed at the center of the monitor screen for a 
random time interval between 500 to 1000 ms, followed by a face or texture image 
presented for ~82 ms (seven refresh frames). A blank gray screen followed stimulus 
presentation until observer response. 

EEG Preprocessing 

EEG data were re-referenced offline to an average reference, band-pass filtered 
between 1Hz and 30Hz using a fourth order Butterworth filter, down-sampled to 500 
Hz sampling rate and baseline corrected using the average activity between 300ms 
pre-stimulus and stimulus presentation. Noisy electrodes and trials were detected by 
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visual inspection on an observer-by-observer basis. We performed ICA to reduce 
blink and eye-movement artifacts, as implemented in the infomax algorithm from 
EEGLAB. Components representing blinks and eye movements were identified by 
visual inspection of their topographies, time-courses and amplitude spectra. After 
rejection of artefactual components (median = 4; min = 1; max = 10), we again 
performed baseline correction. Finally, we computed single-trial spherical spline 
Current Source Density (CSD) waveforms using the CSD toolbox with parameters 
iterations = 50, m = 4, lambda = 1.0e-5  (Kayser and Tenke, 2006; Tenke and 
Kayser, 2012). The CSD transformation is a 2nd spatial derivative (Laplacian) of the 
EEG voltage over the scalp that sharpens ERP topographies and reduces the 
influence of volume-conducted activity. The head radius was set to 10 cm, so that the 
ERP units in all figures are μV/cm2. We also calculated the central-difference 
numerical temporal derivative of the CSD signal for each sensor and on each trial. 

Behavior Information:  Mutual Information between Pixels and 
Detection and Reaction Time  

Our analysis focuses on the single trial bubble masks because they control the 
visibility of the underlying image. Bubble masks take values between 0 and 1, 
controlling the relative opacity of the mask at each pixel, with 0 being completely 
opaque (pixel was shown grey) and 1 being completely translucent (pixel of 
underlying image was shown unaltered). We analyzed the bubble masks at a 
resolution of 192 x 134 pixels. For each observer and for each image pixel, we 
applied Mutual Information (MI) (Cover and Thomas, 1991) to compute the 
relationship between single-trial pixel visibility and detection responses, and 
separately the relationship between single-trial pixel visibility and reaction times.  We 
computed one MI pixel image for the face trials and a separate MI image for the 
texture trials. We found (Rousselet et al., 2014a Fig. 3) that the main face regions 
that systematically produced an effect on behavior were the eyes of the face images, 
but there was no such effect on texture trials. In the ensuing EEG analyses, we 
therefore only considered the face trials. 

EEG Information:  Mutual Information between Eye Visibility and 
EEG Sensor Response 

As the eyes are the critical regions affecting behavioral measures, we reduced the 
dimensionality of the single trial bubble masks to a measure of the visibility of each 
eye, to directly track their coding in the EEG. To this aim, we manually specified two 
circular spatial filters, one to cover each eye region (determined from the mean face 
image). We applied each of these filters to the bubble mask on each trial to derive a 
scalar value representing the visibility of the left eye and another scalar value 
representing the visibility of the right eye. Specifically, for each trial we sum the total 
bubble mask visibility within the left eye region (and separately for the right eye 
region).  These two scalars represent the area of each eye that is was visible on that 
trial (Figure 2B). We used the same eye region filters for all observers. 
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For each observer, we then used MI to quantify the relationship between the 
scalar visibility of each eye on each trial and the corresponding EEG signal, on each 
electrode (median 118, range 98-125). MI is a statistical quantity that measures the 
strength of the dependence (linear or not) between two random variables. It can also 
be viewed as the effect size for a statistical test of independence. One advantage of 
MI is that it can be applied with multivariate response variables, as done here. For 
each sensor and time point we considered a bivariate EEG response comprising the 
raw voltage value and the instantaneous gradient (the temporal derivative of the raw 
EEG). Supplemental Figure S1 illustrates with an example the smoothing effect of 
including the instantaneous gradient in the MI calculation. The top plot reproduces 
the panel of Figure 3 showing how visibility of the left eye modulates the ERP 
waveform. The rank correlation plot illustrates rank correlations between left eye 
visibility and EEG voltage measured at each time point. Correlation is a signed 
quantity that reveals transitions between regions of positive correlations (when ERP 
voltage increases with increased eye visibility) and regions of negative correlations 
(when ERP voltage decreases with increased eye visibility). At each transition (zero 
crossing), there is no measurable effect in the raw EEG voltage, even though this 
time point is within the time window when eye visibility clearly affects the ERP 
waveform. With MI, we addressed this shortcoming by computing at each time point 
the relationship between eye visibility and the bivariate EEG response comprising the 
raw EEG voltage and its instantaneous gradient. The two bottom MI plots 
demonstrate that the effect of adding the instantaneous gradient to smooth out the 
transitions and provide a more faithful and interpretable measure of coding 
dynamics. 

The sampling strategy using bubbles (with fixed number of 10 bubble 
apertures per bubble mask on each trial) induces a weak dependence between the 
two (left and right) eye feature values across trials (median MI = 0.011 bits, range 
0.0015-0.023 bits, significant at p = 0.01 uncorrected for 12/15 observers). This 
arises because a high visibility value of the left eye on a given trial indicates a high 
concentration of individual bubbles in that area, implying that fewer bubbles are 
distributed over the remainder of the face, including the right eye. This dependence 
introduces an ambiguity for interpretation. For example, if the EEG signal had a high 
left eye MI value and a low right eye MI value at a given time point, two 
interpretations would be possible. First, the EEG genuinely codes the right eye, 
irrespective of the visibility of the left eye. Second, the EEG only codes the left eye, 
and the low right eye MI value arises from the statistical dependence between the 
two eyes, as just discussed. We addressed this potential ambiguity with Conditional 
Mutual Information (CMI, the information theoretic analogue of partial correlation) 
(Cover and Thomas, 1991; Ince et al., 2012). CMI quantifies the relationship between 
any two variables (e.g. left eye visibility and the EEG response) while removing the 
common effect of a third variable (e.g. right eye visibility). We thus calculate CMI 
between left eye and the EEG signal, conditioned on the right eye (i.e. removing its 
effect), and similarly the CMI between the right eye and the EEG signal conditioned 
on the left eye (removing its effect). Throughout the paper whenever we refer to MI 
about eye visibility, we actually calculated CMI conditioned on the alternative eye. 

We calculated CMI using a bin-less rank based approach based on copulas. 
Due to its robustness this approach is particularly well suited for noisy continuous 
valued neuroimaging data such as EEG and provides greater statistical power than 
MI estimates based on binning. The following paragraphs detail this MI estimator. 
They can be skipped without loss of continuity.  

A copula (Nelsen, 2007) is a statistical structure that expresses the 
relationship between two random variables (e.g. between the left eye visibility and 
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the EEG response on one electrode, at one time point). The negative entropy of a 
copula between two variables is equal to their MI (Ma and Sun, 2011). On this basis, 
we fit a Gaussian copula to the empirical copula obtained from the eye visibility and 
EEG response, estimate its entropy and then obtain MI as the negative of this 
entropy. While this use of a Gaussian copula does impose a parametric assumption 
on the form of the interaction between the two variables, it does not impose any 
assumptions on the marginal distributions. This is important because the distribution 
of the visibility of the eye across trials is highly non-Gaussian. Since the Gaussian 
distribution is the maximum entropy distribution for a given mean and covariance, the 
Gaussian copula has higher entropy than any other parametric copula model that 
preserves those statistics. This MI estimation is therefore a lower bound on the true 
MI.   

In practice, we calculated the empirical CDF values for a particular sensor 
and time point by ranking the data recorded across trials, and then scaling the ranks 
between 0 and 1. We then obtained the corresponding standardized value from the 
inverse CDF of a standard normal distribution. We performed this normalization 
separately for the EEG voltage and gradient, before concatenating them to form a 2D 
EEG response variable R. We computed CMI between these standardized variables 
using the analytic expressions for the entropy of uni-, bi-, tri-and quad-variate 
Gaussian variables (Misra et al., 2005; Magri et al., 2009): 

����; �|��� � 	��� , ��� � 	��� , �� � 	��� , �� , �� � 	���� 

We estimated entropy terms and corrected for the bias due to limited 
sampling using the analytic expressions for Gaussian variables (Misra et al., 2005; 
Magri et al., 2009). A particular advantage of this estimation method is its multi-
variate performance, which we exploit here with our 2D EEG voltage and gradient 
responses.  

We determined statistical significance with a permutation approach, and 
addressed the problem of multiple comparisons using the method of maximum 
statistics (Holmes et al., 1996). For each of 200 permutations, we randomly shuffled 
the recorded EEG data across trials and repeated the MI calculation for each sensor 
and time point. We computed the maximum of the resulting 3D MI matrix (time vs. 
EEG sensors vs. left and right eye visibility) for each permutation.  For each observer 
we used the 99th percentile across permutations as the statistical threshold for each 
observer.  

Selection of LOT and ROT Sensors 

As described above we calculated MI between EEG and visibility of each eye for 
each sensor and time point. We selected for further analyses the lateral occipito-
temporal sensors with maximum MI for the eye contra-lateral to the sensor in a time 
window 100 and 200 ms post stimulus. On the left hemisphere, for LOT we selected 
the sensor with maximum right eye MI from sensors on the radial axes of P07, P7 
and TP7 (excluding midline Oz and neighboring O1 radial axes). On the right 
hemisphere, for ROT we selected the sensor with maximum left eye MI from sensors 
on the radial axes of PO8, P8, TP8 (excluding midline Oz and neighboring O2 radial 
axes). This selection was necessary for simpler statistical analysis but, as indicated 
by the full topography plots in Figure 5C and supplemental figures S2-S16, our 
results are robust to different methods of LOT and ROT sensor selection.  
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Coding: MI Statistical Significance 

We determined the statistical significance of left and right eye coding on LOT 
and ROT as follows.  We compared the maximum MI value within a window of 
0 to 400 ms post stimulus, to the 99th percentile over permutations (described 
above) of the maximum MI over those time points, all electrodes and both 
features. This resulted in a determination of whether there was any 
statistically significant coding during that time interval, corrected for multiple 
comparisons over all electrodes (necessary since we selected LOT and ROT 
based on MI values), time points and both left and right eye visibility.  

Temporal Precedence: Latency measures 

Whereas a human observer can easily determine which of two time varying 
noisy signals leads the other, it is not straightforward to rigorously define and 
quantify this. Here, we are interested in the relative timings of the contra-
lateral and ipsi-lateral eye MI on LOT and ROT, rather than their amplitudes. 
We therefore first normalized the MI curves to their maximum value (in the 
window 150-250 ms post-stimulus, as plotted in Figure 4A and B). The 
variability of these curves makes any latency measure that depends on a 
specific time point problematic due to a lack of robustness. To illustrate, 
consider the time courses in Figure 4A and B where a simple peak-to-peak 
measure would result in a value ~100ms for the left eye (blue curves), and -
30ms for the right eye (red curves). These values do not sensibly reflect the 
actual relationship – for left eye the value seems too high, and for the right 
eye it is in the wrong direction; the solid contra-lateral curve appears to lead 
the dashed ipsi-lateral curve in the period 130-180 ms. Similar problems 
would affect any measure that compares two specific points.  

Hence, we considered the latency of the MI curves not over a single 
value, but over a range of y-axis values (Figure 4C). We restricted our 
analysis to 100-300 ms post-stimulus, and considered normalized MI values 
where both curves were significant. We split the range of normalized MI 
values above the highest significance threshold into 100 values and 
calculated the mean latency between the two curves over these values 
(indicated by grey lines in Figure 4C). This is equivalent to integrating the 
latency of the curves over the y-axis and normalizing by the y-axis range.  

Coding Equivalence: Redundancy 

Redundancy (equivalent to negative interaction information (Cover and 
Thomas, 1991)) quantifies the MI overlap between two variables—that is the 
amount of MI about eye visibility that is common to both EEG responses. We 
calculated this as described in the main text and illustrated in Figure 5B.  As 
previously noted, all MI values were calculated with CMI, conditioning out (i.e. 
eliminating) the contribution of the alternative eye feature: 

�
��������; ����
� � ����; ����

|��� � ����; ����
|��� � ����; ����� , �����|��� 

����/����  represent the response across trials at each electrode at the 
appropriate MI peak (here left eye). Redundancy is bounded above by each of 
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the individual MI values and the MI between the two EEG responses (Cover 
and Thomas, 1991). We therefore normalized by the minimum of these three 
quantities: 

�
��������; ����
�

min �����; ����
|���, ����; ����

|���, ������; ����
��

 

We calculated redundancy between LOT and ROT for each eye feature at the 
time of the peak of the MI timecourse (within 50-250ms; Table 1). 

 Left eye Right Eye 

ROT 167  (140 188) 180  (156 246) 

LOT 177  (148 216) 162  (140 180) 

Table 1: Time of MI peak used for redundancy calculation. Median (min max) in ms. 

For the redundancy topography plots in Figure 5C and Supplemental Figures 
S2-S16 we fixed the contra-lateral electrode and MI peak time as above (i.e. 
ROT for left eye, LOT for right eye) as a seed response. For each eye, we 
then calculated the redundancy between this seed response and every other 
sensor and time point where there was significant MI about that eye (p=0.01 
with multiple comparison correction as described above). 

 We also computed MI directly between ���� and ���� conditioning out 
any variation due to either stimulus: ������; ����

|��� , ����. Since it is not 
possible to define a permutation scheme to for multivariate conditional mutual 
information we performed 1000 bootstrap samples (resampling with 
replacement), and took the 0.5th percentile as the lower bound of a 99% 
confidence interval.  

 

  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044065doi: bioRxiv preprint 

https://doi.org/10.1101/044065
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

Acknowledgements 

We thank Cesare Magri and Daniel Chicharro for useful discussions. KJ is 
supported by a BBSRC DTP (WestBio) Studentship. JG and PGS are 
supported by the Wellcome Trust  [098433, 107802]. GAR, PGS and NJvR 
are supported by the BBSRC [BB/J018929/1]. SP is supported by the 
VISUALISE project of the Future and Emerging Technologies (FET) 
Programme within the Seventh Framework Programme for Research of the 
European Commission (FP7-ICT-2011.9.11) under grant agreement number 
FP7-600954.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044065doi: bioRxiv preprint 

https://doi.org/10.1101/044065
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

References 

 

Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological 
Studies of Face Perception in Humans. J Cogn Neurosci 8:551–565. 

Bressler SL, Seth AK (2011) Wiener–Granger Causality: A well established 
methodology. NeuroImage 58:323–329. 

Brown WS, Larson EB, Jeeves MA (1994) Directional asymmetries in 
interhemispheric transmission time: Evidence from visual evoked 
potentials. Neuropsychologia 32:439–448. 

Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal 
connections, related myelo- and cytoarchitecture, and putative 
boundaries of functional visual areas. J Comp Neurol 298:188–214. 

Cover TM, Thomas JA (1991) Elements of information theory. Wiley New 
York. 

Dalrymple KA, Oruç I, Duchaine B, Pancaroglu R, Fox CJ, Iaria G, Handy TC, 
Barton JJS (2011) The anatomic basis of the right face-selective N170 
IN acquired prosopagnosia: A combined ERP/fMRI study. 
Neuropsychologia 49:2553–2563. 

Eimer M (2000) The face-specific N170 component reflects late stages in the 
structural encoding of faces. NeuroReport Rapid Commun Neurosci 
Res 11:2319–2324. 

Engell AD, McCarthy G (2011) The Relationship of Gamma Oscillations and 
Face-Specific ERPs Recorded Subdurally from Occipitotemporal 
Cortex. Cereb Cortex 21:1213–1221. 

Essen DV, Newsome WT, Bixby JL (1982) The pattern of interhemispheric 
connections and its relationship to extrastriate visual areas in the 
macaque monkey. J Neurosci 2:265–283. 

Granger CW (1969) Investigating causal relations by econometric models and 
cross-spectral methods. Econom J Econom Soc:424–438. 

Holmes AP, Blair RC, Watson G, Ford I (1996) Nonparametric Analysis of 
Statistic Images from Functional Mapping Experiments. J Cereb Blood 
Flow Metab 16:7–22. 

Horovitz SG, Rossion B, Skudlarski P, Gore JC (2004) Parametric design and 
correlational analyses help integrating fMRI and electrophysiological 
data during face processing. NeuroImage 22:1587–1595. 

Ince RAA, Giordano BL, Kayser C, Rousselet GA, Gross J, Schyns PG (2015) 
A bin-less rank based mutual information estimator for M/EEG data. 
Prep. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044065doi: bioRxiv preprint 

https://doi.org/10.1101/044065
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Ince RAA, Mazzoni A, Bartels A, Logothetis NK, Panzeri S (2012) A novel test 
to determine the significance of neural selectivity to single and multiple 
potentially correlated stimulus features. J Neurosci Methods 210:49–
65. 

Ipata A, Girelli M, Miniussi C, Marzi CA (1997) Interhemispheric transfer of 
visual information in humans: the role of different callosal channels. 
Arch Ital Biol 135:169–182. 

Itier RJ, Taylor MJ (2004) Source analysis of the N170 to faces and objects. 
Neuroreport 15:1261–1265. 

Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvée M, Guye M, 
Vignal J-P, Vespignani H, Rossion B, Maillard L (2012) Focal electrical 
intracerebral stimulation of a face-sensitive area causes transient 
prosopagnosia. Neuroscience 222:281–288. 

Jonas J, Rossion B, Krieg J, Koessler L, Colnat-Coulbois S, Vespignani H, 
Jacques C, Vignal J-P, Brissart H, Maillard L (2014) Intracerebral 
electrical stimulation of a face-selective area in the right inferior 
occipital cortex impairs individual face discrimination. NeuroImage 
99:487–497. 

Kayser J, Tenke CE (2006) Principal components analysis of Laplacian 
waveforms as a generic method for identifying ERP generator patterns: 
I. Evaluation with auditory oddball tasks. Clin Neurophysiol 117:348–
368. 

Magri C, Whittingstall K, Singh V, Logothetis NK, Panzeri S (2009) A toolbox 
for the fast information analysis of multiple-site LFP, EEG and spike 
train recordings. BMC Neurosci 10:81. 

Ma J, Sun Z (2011) Mutual Information Is Copula Entropy. Tsinghua Sci 
Technol 16:51–54. 

Marr D (1982) Vision: A Computational Investigation into the Human 
Representation and Processing of Visual Information. New York: W.H. 
Freeman. 

Misra N, Singh H, Demchuk E (2005) Estimation of the entropy of a 
multivariate normal distribution. J Multivar Anal 92:324–342. 

Nelsen RB (2007) An introduction to copulas. Springer. 

Nguyen VT, Cunnington R (2014) The superior temporal sulcus and the N170 
during face processing: Single trial analysis of concurrent EEG–fMRI. 
NeuroImage 86:492–502. 

Philiastides MG, Sajda P (2006) Temporal Characterization of the Neural 
Correlates of Perceptual Decision Making in the Human Brain. Cereb 
Cortex 16:509–518. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044065doi: bioRxiv preprint 

https://doi.org/10.1101/044065
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

Prieto EA, Caharel S, Henson R, Rossion B (2011) Early (N170/M170) Face-
Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired 
Prosopagnosia. Front Hum Neurosci 5 Available at: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257870/ [Accessed 
October 30, 2015]. 

Rosburg T, Ludowig E, Dümpelmann M, Alba-Ferrara L, Urbach H, Elger CE 
(2010) The effect of face inversion on intracranial and scalp recordings 
of event-related potentials. Psychophysiology 47:147–157. 

Rossion B, Jacques C (2008) Does physical interstimulus variance account 
for early electrophysiological face sensitive responses in the human 
brain? Ten lessons on the N170. NeuroImage 39:1959–1979. 

Rousselet GA, Ince RAA, Rijsbergen NJ van, Schyns PG (2014a) Eye coding 
mechanisms in early human face event-related potentials. J Vis 14:7. 

Rousselet GA, Ince RAA, van Rijsbergen NJ, Schyns PG (2014b) Data from: 
Eye coding mechanisms in early human face event-related potentials. 
Dryad Digit Repos. 

Rousselet GA, Pernet CR, Bennett PJ, Sekuler AB (2008) Parametric study of 
EEG sensitivity to phase noise during face processing. BMC Neurosci 
9:98. 

Sadeh B, Podlipsky I, Zhdanov A, Yovel G (2010) Event-related potential and 
functional MRI measures of face-selectivity are highly correlated: A 
simultaneous ERP-fMRI investigation. Hum Brain Mapp 31:1490–1501. 

Saenz M, Fine I (2010) Topographic organization of V1 projections through 
the corpus callosum in humans. NeuroImage 52:1224–1229. 

Sato W, Kochiyama T, Uono S, Yoshikawa S (2008) Time course of superior 
temporal sulcus activity in response to eye gaze: a combined fMRI and 
MEG study. Soc Cogn Affect Neurosci 3:224–232. 

Schyns PG, Gosselin F, Smith ML (2009) Information processing algorithms 
in the brain. Trends Cogn Sci 13:20–26. 

Schyns PG, Jentzsch I, Johnson M, Schweinberger SR, Gosselin F (2003) A 
principled method for determining the functionality of brain responses. 
Neuroreport 14:1665–1669. 

Schyns PG, Petro LS, Smith ML (2007) Dynamics of Visual Information 
Integration in the Brain for Categorizing Facial Expressions. Curr Biol 
17:1580–1585. 

Sehatpour P, Molholm S, Schwartz TH, Mahoney JR, Mehta AD, Javitt DC, 
Stanton PK, Foxe JJ (2008) A human intracranial study of long-range 
oscillatory coherence across a frontal–occipital–hippocampal brain 
network during visual object processing. Proc Natl Acad Sci 105:4399–
4404. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044065doi: bioRxiv preprint 

https://doi.org/10.1101/044065
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

Smith ML, Fries P, Gosselin F, Goebel R, Schyns PG (2009) Inverse Mapping 
the Neuronal Substrates of Face Categorizations. Cereb Cortex 
19:2428–2438. 

Smith ML, Gosselin F, Schyns PG (2004) Receptive Fields for Flexible Face 
Categorizations. Psychol Sci 15:753–761. 

Smith ML, Gosselin F, Schyns PG (2007) From a face to its category via a 
few information processing states in the brain. NeuroImage 37:974–
984. 

Tanenbaum AS, Austin T (2012) Structured Computer Organization, 6 edition. 
Boston: Pearson. 

Tenke CE, Kayser J (2012) Generator localization by current source density 
(CSD): Implications of volume conduction and field closure at 
intracranial and scalp resolutions. Clin Neurophysiol 123:2328–2345. 

van Rijsbergen NJ, Schyns PG (2009) Dynamics of Trimming the Content of 
Face Representations for Categorization in the Brain. PLoS Comput 
Biol 5 Available at: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768819/ [Accessed 
September 11, 2013]. 

Watanabe S, Kakigi R, Puce A (2003) The spatiotemporal dynamics of the 
face inversion effect: A magneto- and electro-encephalographic study. 
Neuroscience 116:879–895. 

Wiener N (1956) The theory of prediction. McGraw-Hill: New York, NY, USA. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/044065doi: bioRxiv preprint 

https://doi.org/10.1101/044065
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures 

 

 

Figure 1.  Hypothesis of cross-hemisphere feature transfer along the N170 time-
course.  At time t1, the Left Occipito Temporal (LOT) and the Right Occipito Temporal 
(ROT) sensors reflect coding of the contra-lateral left and right eye, respectively.  
Coding strength is represented with variations of hue (blue for the left eye; red for the 
right eye) directly on the LOT and ROT N170 ERP waveforms.  At a later time t2, 
ROT also codes the ispi-lateral right eye. The anatomy of the visual system suggests 
that this sensitivity could arise from cross-hemisphere transfer from LOT, where the 
right eye is coded at t1.  
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Figure 2.  Bubble sampling and eye visibility.  A.  Design.  On each trial, we used a 
bubble mask comprising 10 Gaussian apertures to sample visual information from 
either a texture or a face image. Observers pressed a key to indicate which they 
detected (“face” or “noise”).  B. Left, Right Eye Visibility Measure.  For each trial, we 
applied to the bubble mask a filter covering the spatial region of the left eye (left eye 
filter) and the right eye (right eye filter), counting the number of pixels the bubbles 
revealed within each regions.  This produced two scalar values per trial representing 
the visibility of the left and right eye, respectively. 
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Figure 3.  Coding. The top panel illustrates the ERP measured on ROT for a typical 
observer (black curve). For this observer, ROT was selected as electrode B9 in the 
Biosemi coordinate system, which is posterior to PO8 (on the same radial axis). The 
left eye and right eye schematics illustrate with their color-coded blue and red scales 
the deciles of eye visibility across experimental trials (with 10 = highest eye visibility 
trials and 1 = lowest).  Directly below, we recomputed ROT ERPs using only the trials 
from each decile of left and right eye visibility, to illustrate how changes of eye 
visibility modulates ERPs. The next row of curves show the MI between left eye (blue 
curve) and right eye (red curve) visibility and corresponding ROT EEG response (a 
thicker line indicates regions of statistically significant MI, referred to as left and right 
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eye coding).  Finally, the bottom panels illustrate the MI curves reported on the ERP 
curve to precisely indicate when, over the time course of the ERP, eye coding peaks 
(indicated with a color-coded arrow). 
 
 
 

 
 
Figure 4.  Latency.  A.  Left Eye Coding on ROT and LOT Sensors.  The peak-
normalized MI curves indicate the initial coding of the left eye on the contra-lateral 
ROT sensor (plain curve) and the later coding of the same eye on the ipsi-lateral 
LOT sensor (dashed curve). Thicker sections of the MI curves represent statistical 
significance. B.  Right Eye Coding on LOT and ROT Sensors.  The normalized MI 
curves indicate the initial coding of the right eye on the LOT sensor (plain curve) and 
the later coding of the same eye on the ROT sensor (dashed curve). Thicker sections 
of the MI curves represent statistical significance.  C. Integral Latency Calculation 
(see Methods).  Illustration of the eye coding latency calculation  (left eye, blue; right 
eye, red) from the normalized MI curves of the contra- and ipsi-lateral sensors (solid, 
dashed lines respectively).  D. Group Ipsi-Contra Latency. Box plot of the group 
latency (in ms) between contra- and ispi-lateral coding of the same eye across 
hemispheric sensors. Positive values correspond to earlier contra-lateral coding.  
Each dot above represents a particular observer and eye feature—blue for left eye 
(ROT to LOT latency), red for right eye (LOT to ROT latency). 
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Figure 5.  Redundancy.  A. Illustration of the coding redundancy of the right eye 
between early LOT and late ROT.  Coding redundancy of the right eye is computed 
between LOT and ROT at the peak of each MI curve (i.e. at t1 on LOT and t2 on 
ROT).  B.  Redundancy Computation.  Venn diagrams illustrate the computation of 
redundant (i.e. intersecting) eye information on LOT and ROT. C.  Redundancy 
Topography.  Using as seed the peak MI time point on LOT (marked with black circle 
on red topographies), and ROT (black circle on blue topographies) the time courses 
of redundancy topographies illustrate when and where (see color-coded arrow)  
redundant ipsi-lateral coding of the eyes begins. Note that for both eyes, the 130ms 
time point (indicated with bar) shows no ipsi-lateral redundancy.  D.  Group 
Redundancy.   Left (in blue) and right (in red) eye coding redundancy between LOT 
and ROT, at the respective peaks of the MI curves, expressed as percentages. 
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Supplemental Figures 

 

Figure S1. Mutual information calculated on bivariate EEG response including 
temporal gradient. From top to bottom, plots show (i) the ERP calculated from trials 
in each decile of left eye visibility (c.f. Figure 3) on ROT of observer 1, (ii) 
Spearman’s rank correlation between the left eye visibility and EEG voltage, 
calculated separately for each time point, (iii) MI between the left eye visibility and 
EEG voltage calculated separately for each time point and (iv) MI between left eye 
visibility and the 2D EEG response consisting of voltage and temporal gradient, 
calculated separately for each time point. Zero crossings of rank correlation, where 
the directionality of the voltage modulation changes, are indicated with vertical bars.  
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Figure S2. Group average results for temporal precedence and coding equivalence. 
A. Mean normalized MI time course over all instances with bilateral coding 
significance (observer and left or right eye, N=26 / 30) for contra- and ipsi-lateral 
sensors (LOT/ROT). B. Mean contra-ipsi difference over instances, with 99% 
bootstrap confidence interval. C. Mean normalized redundancy topography 
sequences calculated as described in the text.  
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Figures S3-S16. Individual observer results for temporal precedence and coding 
equivalence. Time courses show the normalized MI time courses for the left eye 
visibility (blue, left plot) and right eye visibility (red, right plot) on the contra-lateral  
(solid line) and ipsi-lateral sensors (dashed line). Topography sequences show 
normalized redundancy (seed sensor and time indicated with black circle).  
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