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Climate change is expected to increase fire activity and woody plant encroachment in arctic14

and alpine landscapes. However, it is unknown whether increases in woody species and fire15

will interact to exacerbate changes in structure, function and composition of these ecosys-16

tems. Here we use field surveys and experimental manipulations to examine warming and17

fire effects on recruitment, growth and survival of seedlings of evergreen obligate seeding18

alpine shrubs. We find that fire substantially increased shrub seedling establishment (up19

to 32–fold) and that warming doubled tall shrub seedling growth rates and could increase20

survival. Warming had limited or no effect on shrub recruitment, post-fire gap-infilling by21

grass, or competitive effects of grass on shrub seedling growth and survival. These findings22

indicate that rising temperatures coupled with more frequent or severe fires will likely exac-23

erbate increases in tall evergreen shrubs by increasing recruitment, doubling growth rates,24

and potentially increasing shrub survival.25

Accurately forecasting the effects of climatic warming on vegetation dynamics requires an26

understanding of the mechanisms by which climate and vegetation interact. Most forecasting27

models include the direct effects of climatic conditions on species distributions, but largely ig-28

nore biotic interactions and the type, frequency and severity of disturbances that are also likely to29

change1–3. Because disturbance strongly influences recruitment opportunities, and thus, composi-30

tion and structure of plant communities and biomes worldwide4, 5, it has the capacity to exacerbate31

or diminish how climate affects vegetation. Seedlings are the life stage most vulnerable to climate32

and disturbance, and the life stage which determines the long-term persistence of a species and33

its capacity to establish in new areas. Consequently, it is imperative to understand how seedlings34
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respond to both changing climate and disturbance regimes6, 7.35

Field manipulative experiments have been widely used to investigate the effects of climate36

change on plant communities. These experiments have provided invaluable information on how37

climate change directly influences plant phenology8, 9, reproduction10, morphology11, growth12,38

floristic composition13 and biotic interactions14. However, because disturbances vary both spatially39

and temporally, most have focused on mature plant responses in relatively undisturbed vegetation7.40

As such, few field climate experiments have been conducted on seedlings or vegetation in post-41

disturbance conditions (but see15–17). Consequently, little is known about how climate change in-42

fluences seedling demographic rates7 and thus, vegetation recovery in post-disturbance conditions.43

We consider these issues in Australian alpine heathland.44

In alpine and arctic ecosystems, warming experiments and long-term monitoring have doc-45

umented significant increases in the growth and cover of woody species18–20. The frequency and46

extent of wildfires have also increased in these environments over recent decades, a trend expected47

to continue21–24. In alpine and tundra ecosystems, current evidence from long-term and experimen-48

tal studies indicate that shrub recruitment and encroachment is highest in disturbed areas25–27, that49

climatic warming is likely to increase woody species growth rates20, 28, 29, and that shrubs are the50

most flammable component of these ecosystems30–32. The combination of this evidence indicates51

that more frequent or severe fire may increase recruitment opportunities for woody species, which52

when coupled with higher growth and survival rates caused by rising temperatures, will exacerbate53

shrub expansion33, 34 and ultimately increase the likelihood of fire20, 31, 32. In effect, warming could54
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strengthen an existing feedback loop that not only has the potential to cause rapid changes in the55

composition and structure of alpine and arctic vegetation, but also has serious social, biodiversity56

and carbon sequestration consequences35.57

While paleoecological studies have indicated that such a feedback may exist31, 32, there is a58

paucity of information on multiple mechanisms that may strengthen, mitigate or break this feed-59

back loop (Fig. 1a). For example, we have little information on whether fire will stimulate shrub60

seedling recruitment in alpine or tundra ecosystems, nor do we know how rates of seedling growth61

and survival will be affected under warmer, more exposed, post-fire conditions. Furthermore, we62

do not know how tussock grasslands (the other dominant community in these ecosystems) will63

respond to warmer post-fire conditions, whether grasses have competitive, facilitative or no effect64

on shrub seedling vital rates, or whether such effects are altered by warmer post-fire conditions.65

We examine these unknowns and their impacts on the feedback between climatic warming,66

shrubs and fire in Australian alpine vegetation. As with tundra ecosystems, the Australian Alps67

have experienced rapid changes in climate. Since 1979, mean growing season temperatures have68

risen by approximately 0.4°C and annual precipitation has fallen by 6%36, with a consequent de-69

cline in snow pack depth37. These climatic changes have been correlated with a 10 to 20% increase70

in shrub cover and a 25% decline in graminoids cover36. Much of the Australian Alps has also been71

burnt by recent wildfires, the frequency and severity of which are expected to increase24, 38.72

We took advantage of recent fires in alpine open heathland, a plant community that occupies73

ca. 25% of the Australian alpine landscape38. Under global warming, this plant community is likely74
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to encroach upon grasslands and is itself susceptible to shrub thickening39. To determine drivers75

of shrub establishment and how warmer post-fire conditions affect shrub cover, we combined field76

observations with a warming experiment that used seedlings of four Australian evergreen obligate77

seeding shrubs: Grevillea australis (Proteaceae; a tall shrub), Asterolasia trymalioides (Rutaceae;78

a prostrate shrub), Phebalium squamulosum (Rutaceae; a tall shrub) and Prostanthera cuneata79

(Lamiaceae; a tall shrub). This combination of data sources allowed us to examine: 1) landscape80

scale drivers of shrub seedling establishment; 2) how warmer post-fire conditions influence rates81

of grass recovery and shrub seedling recruitment, growth and mortality; 3) how proximity to grass82

affect shrub seedling demographic rates; and 4) whether such grass effects change under warmer83

post-fire conditions.84

Drivers of shrub seedling establishment. We first investigated how altitude, Topographic Wet-85

ness Index (TWI), adult density, fire and fire severity (as measured by post-fire twig diameters—see86

Supplementary Methods) influenced the density of Grevillea and Asterolasia seedlings (the two87

dominant shrubs of alpine open heathland). In 2011-12, we estimated seedling density for both88

species across 40 alpine sites and found that the abundances of Grevillea (Fig. 2) and Asterola-89

sia (Supplementary Fig. S1) seedlings were strongly influenced by the occurrence of fire. Sites90

burnt in 2003 had seedling densities between 14 and 32 times higher than unburnt sites. The mean91

seedling density of Grevillea, was 1.3/m2 at burnt sites and 0.04/m2 at unburnt sites. Asterolasia92

had similar mean densities: 1.63 and 0.12 seedlings/m2 at burnt and unburnt sites, respectively. For93

both species, seedling density was also higher in severely burnt sites (i.e. sites with larger post-94

fire twig diameters). As expected, pre-fire adult density positively influenced Grevillea seedling95
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density. For both shrub species, we detected no change in seedling density along a 190 m altitu-96

dinal range (equivalent to a 1.5°C change in mean temperature40). The field warming experiment97

(see below) indicates that this lack of elevation response in Grevillea is due to rates of recruitment98

(Supplementary Fig. S2) and mortality (see below) largely being insensitive to a 1°C change in99

temperature. We detected no strong effect of Topographic Wetness Index for either species.100

Experimental warming effects on shrub seedling growth. As shrub seedlings were more abun-101

dant in burnt vegetation, we investigated how warmer post-fire conditions affected seedling growth102

and mortality rates. Seedlings of Grevillea, Asterolasia, Phebalium and Prostanthera emerging103

after a wildfire were transplanted into experimentally burnt plots. These plots were either enclosed104

in Open Top Chambers (OTCs) whose temperature was 1°C warmer than control plots subjected to105

current ambient conditions. After 1813 days (1087 growing season days) or 5 years’ growth, mean106

seedling heights of the tall shrubs (Grevillea, Phebalium and Prostanthera) growing in post-fire107

bare ground were greater in warmed plots relative to controls by 9.7, 3.8 and 13.8 cm, respectively108

(Fig. 3a). Warming increased heights of both Grevillea and Prostanthera seedlings in all years,109

while Phebalium did not respond to the warming treatment until the second growing season. By110

contrast, seedlings of the prostrate shrub, Asterolasia, showed no difference in growth rate between111

warmed and control plots in any year. For each species, we also observed similar treatment trends112

with stem diameter growth (Supplementary Fig. S3). Accounting for initial height and assuming113

logistic growth, the rates of change in mean annual predicted height of Grevillea, Phebalium and114

Prostanthera were 2.4, 1.4 and 1.9 times that observed in control plots, respectively. According to115

this model, a 6 cm seedling (the mean initial height of seedlings used in this experiment) attains116
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maximum height 39 years sooner 38 (Grevillea) or 17 years sooner (Phebalium and Prostanthera)117

when warmed by 1°C (Fig. 3b). Asterolasia was predicted to reach its maximum height in approx-118

imately 22 to 24 years, irrespective of warming treatment.119

We validated the Grevillea and Asterolasia growth responses observed in experimentally120

warmed plots by examining the effect of elevation on maximum heights of post-fire recruits across121

30 open heathland sites burnt in 2003. Here, a 190 m altitudinal range is equivalent to a mean122

ambient temperature difference of approximately 1.5°C40, which is comparable to that observed123

between experimentally warmed and control plots (1°C). In response to shifts in temperature, the124

maximum height of Grevillea post-fire recruits was expected to decrease with elevation, whereas125

Asterolasia seedlings were not expected to show this pattern. Our experimental predictions were126

verified (Supplementary Fig. S4). Mean maximum height of Grevillea seedlings in burnt open127

heathland were 8 cm taller at 1670 m a.s.l compared to seedlings at 1860 m a.s.l. (22 cm vs 14128

cm; a difference comparable to our experimental findings). In contrast, mean maximum height of129

Asterolasia seedlings did not vary significantly with elevation. Topographic Wetness Index and130

fire severity had no detectable influence on maximum seedling heights in either species.131

Experimental warming on shrub seedling mortality. After five years and across all plots, 34%132

(172 out of 511) of all seedlings growing in burnt bare ground patches had died. Most deaths133

occurred in Asterolasia (65) followed by Phebalium (63), Grevillea (31) and Prostanthera (13).134

Prostanthera showed the largest treatment effect (Fig. 4), with annual mortality rates estimated to135

be near 0% in warmed plots and 4% in control plots. This significant decrease in mortality may136
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be a consequence of OTCs reducing the severity of spring frosts by rising minimum ambient and137

soil temperatures by 0.9°C and 1.6°C, respectively (see Supplementary Fig S5-7). Warming also138

reduced mean seedling mortality in Grevillea and Phebalium (Fig. 4); however, for both species,139

the effect was highly uncertain (i.e. credible intervals overlap). By contrast, annual mortality rates140

in the prostrate shrub, Asterolasia, were marginally higher in warmed plots, but again this effect141

was highly uncertain (Fig. 4).142

Effects of tussock grass proximity on shrub seedling growth and mortality rates. Climate143

change is expected to alter biotic interactions because their strength and direction depend strongly144

on climatic conditions, particularly in alpine and arctic ecosystems14, 41. Here, we assess the inter-145

active effects of warming and grass proximity on the growth and survival of Grevillea seedlings146

transplanted into various sized inter-tussock gaps (Fig. 5). We detected a strong positive effect147

of warming treatment on growth rates and a marginal, yet not significant, decrease in mortality.148

However, we did not detect significant inter-tussock gap size effects or an interaction between gap149

size and warming treatment on either growth or mortality rates (i.e. coefficient credible intervals150

overlap zero).151

Experimental warming and rates of gap infilling by tussock grass. Despite having little impact152

on shrub seedling growth and mortality rates, tussock grass may still limit shrub recruitment, and153

thus, shrub expansion, by infilling post-fire bare ground gaps (whether by vegetative growth or154

seedlings) faster under warmer conditions. Using five years of post-fire inter-tussock gap size155

changes in warmed and unwarmed plots we found that gaps were being infilled by tussock grasses156
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(Fig. 6). However, the rate at which this occurred was very slow, with a 10 cm radius gap predicted157

to decrease by approximately 2 cm over a ten year period. We also detected no significant effect158

of a 1°C temperature rise on the rate of infilling.159

Strengthening of the warming-shrub-fire feedback. Here we quantified several unknown inter-160

actions between fire, shrub-grass relationships and climate to extend a conceptual model of alpine161

shrub dynamics under climate change (Fig. 1b). We showed how these interactions strengthen a162

hypothesized feedback loop that can rapidly increase shrub cover in alpine and tundra ecosystems31.163

The combination of rising temperatures and more frequent or severe fire creates conditions that164

allow shrub seedlings to establish in greater densities, and for tall shrubs, double their growth165

rates and potentially increase their survival. These demographic effects will ultimately result166

in shrub thickening and expansion into grasslands. Coupled with field30, experimental42 and167

paleoecological31 evidence, which indicate that shrubs are the most flammable component of alpine168

and tundra ecosystems, our results suggest that flammable fuel loads will accumulate faster and169

cover a larger proportion of the alpine and arctic landscapes under a warmer environment. This170

further strengthens the feedback31, 32 by potentially increasing the frequency or severity of fires,171

which then creates further recruitment opportunities for shrubs with little demographic impact of172

neighbouring tussock grass.173

While we have addressed several unknowns associated with this feedback between climatic174

warming, shrubs and fire, there are others we have not addressed that may also strengthen, weaken175

or break this feedback. The most obvious mechanism that will break this cycle involves shorter176
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fire intervals that prevent obligate seeding shrubs reaching reproductive age and thereby exhausting177

the seedbank. However, this scenario is unlikely for the majority of alpine (or tundra) landscapes,178

including in Australia, where current fire intervals of 50 to 100 years would need to decrease to less179

than 20 years—the time estimated for the species in this study to reach reproductive maturity43.180

Furthermore, if reproductive output is related to plant size44, then climatic warming may allow181

obligate seeding species to reach reproductive maturity sooner, and consequently, may increase182

species resilience to short fire intervals. Nevertheless, these factors and others such as changes in183

snow pack45, soil moisture46 or herbivory47 require further research because they are likely to be184

altered by the interactive effects of climate and disturbance in unpredictable ways20.185

Our findings provide mechanistic understanding as to why shrub cover has increased, of-186

ten at the expense of grasslands, in many alpine and arctic ecosystems20, 27, 33, 34. But more im-187

portantly, our results provide evidence for underlying processes that could result in a warming-188

fire-shrub feedback that has been hypothesized in paleoecological studies31, 32. Based on current189

observations and predictions, average global temperature has already increased by 0.85°C since190

1880 and is expected to rise by as much as 4.8°C by 210048. In alpine and tundra environments,191

temperatures49, shrub cover20 and the frequency and severity of fire21–24 have all increased in the192

last few decades. These changes mean that the warming-shrub-fire feedback loop identified here193

has already strengthened, which could cause grasslands and other non-woody communities to tran-194

sition to an alternative state with more shrubs and more fire, both of which are likely to have195

consequences for carbon sequestration, water supply and biodiversity.196
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Methods197

We investigated shrub dynamics in open heathland because it is a common and highly flammable198

plant community in the Australian Alps above 1600 m a.s.l30. It is also an ecotone between closed199

heathland (>70% shrub cover) and tussock grassland consisting of Grevillea australis shrubs in-200

terspersed among a Poa hiemata sward. Aerial photography has revealed that the plant community201

has acted as an invasion front of shrub expansion into grassland and has itself experienced shrub202

thickening by closed heathland dominants such as Prostanthera cuneata39.203

Open Top Chamber Experiment. In March 2010, at 1750 m a.s.l, we burnt 32 randomly selected204

mature (60 cm tall and 1.5 m2) Grevillea australis shrubs in open heathland to create patches of205

bare ground approximately 0.7 m2 surrounded by burnt tussock grass, simulating disturbance in206

open heathland burnt by wildfire. After creating the bare ground patches we collected seedlings of207

dominant alpine shrub species from a nearby (<2 km) site of similar altitude burnt by a late 2006208

wildfire. We collected shrub seedlings of two dominant open heathland species Grevillea australis209

(Proteaceae; a tall shrub) and Asterolasia trymalioides (Rutaceae; a prostrate shrub), a dominant210

closed heathland species Prostanthera cuneata (Lamiaceae; a tall shrub) that typically grows on211

warmer aspects and a species common to both open and closed heathland Phebalium squamulosum212

(Rutaceae; a tall shrub). All four species are killed by fire50.213

A total of 640 seedlings, 256 Grevillea (half used in Poa inter-tussock experiment—see214

below) and 128 for each of Asterolasia, Prostanthera and Phebalium were used. Four seedlings215

per species were randomly selected and transplanted into a 4×4 square grid in the center of each216
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burnt patch, with 14 cm between individuals and the edge of the patch dominated by resprouting217

tussock grass Poa hiemata. To examine interactions between tussock grass and shrub seedlings we218

also randomly transplanted four additional Grevillea australis into various sized inter-tussock gaps219

between burnt Poa hiemata immediately surrounding the bare ground (Supplementary Fig. S8).220

The experimental site was fenced to prevent grazing by deer and horses. We detected no obvious221

signs of rabbit or invertebrate herbivory within our plots.222

To simulate near-term warmer conditions indicated by the IPCC48, we randomly assigned223

Open Top Chambers (OTCs) to half (16) the plots, with the remainder treated as unwarmed con-224

trols. OTCs were placed over plots, ensuring all seedlings (including inter-tussock shrub seedlings)225

occurred within the 1.1 m2 open top to minimise edge effects. OTCs were placed out at the start226

of the growing season (October) where they remained until snowfall (early June). This procedure227

was repeated for five growing seasons from May 2010 to May 2015.228

Microclimatic conditions were measured hourly using Onset Micro Stations (Onset Com-229

puter Corporation, Bourne, MA, USA) at four control and four OTC plots. Across 5 growing230

seasons (1087 growing season days), OTCs simulated warmer conditions at the lower end of IPCC231

projections48 (Supplementary Fig. S5-7). OTCs passively increased average ambient and soil tem-232

peratures by 1°C, and 0.9°C, respectively. Minimum and maximum temperatures were also raised233

in both ambient air (min: 0.9°C; max: 2.4°C) and soil (min: 1.6°C; max: 1°C). Chambers only234

marginally decreased soil moisture by 0.2% and relative humidity by 1.2%.235

Seedling survival, maximum height and stem diameter (nearest mm measured with Vernier236
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calipers) were initially recorded in May 2010 and then subsequently re-measured at the end of each237

growing season (May-June). At the same time, we recorded the distance to the nearest tussock or238

grass seedling in each of four cardinal directions for shrub seedlings growing in inter-tussock239

gaps. Thus, changes in inter-tussock gap size could be due to either vegetative growth or seedling240

establishment. We did not measure individual characteristics (e.g. height and basal diameter) of241

surrounding tussock grass because we could not distinguish individuals, and because height varied242

throughout the season. Numbers of natural Grevillea australis recruits establishing within the plots243

were also recorded for the first two seasons.244

Seedling gradient study. We used 40 long-term open heathland sites established after the 2003245

fires50 consisting of 30 burnt sites and 10 sites thought to be unburnt for over 70 years. In the246

summer of 2011-12, at each site, seedling density/m2 was estimated using 40 quadrats, each 1 m2,247

that were evenly distributed in groups of 10 along four 50 m transects, with 10 m between transect248

lines, subsampling an area of 2000 m2. Within plots we recorded the number and maximum249

height of Grevillea and Asterolasia seedlings. For unburnt sites we counted the number of mature250

Grevillea plants (>0.5 m2) within 5 m of each transect. In burnt sites, this required counting the251

number of skeletons (there were no living adults at any burnt site) that still persisted post-fire. We252

were unable to estimate numbers of adult Asterolasia because this species does not have a persistent253

woody skeleton post-fire. Site level data, elevation and Topographic Wetness Index (TWI) were254

obtained from a 30 m resolution digital elevation model. Lastly, for burnt sites, fire severity was255

estimated by twig diameters, collected immediately after the 2003 fires50.256

Data analysis. In total we built 11 hierarchical models to examine factors influencing post-fire257
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recovery of tussock grass and shrub seedling establishment, growth and mortality. For each model258

we used Bayesian inference and fitted models in R 3.2.2 using package rstan 2.8.1. Data and259

source code for reproducing analysis and figures are available at: https://github.com/260

jscamac/Alpine_Shrub_Experiment. Additional information about experimental design261

and analysis can be found in Supplementary Methods.262
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Figure 1 Conceptual diagram illustrating positive warming-shrub-fire feedback loop. (a)
Hypothesised positive feedback loop between fire, climatic warming and landscape flammability.
Solid blue lines = known mechansims; Dashed black lines = mechansims that may exacerbate
or diminish this feedback loop but which we have a paucity of information on. (b) Feedback loop
based on new evidence obtained from experimental and field surveys conducted in this study.
Also includes an example of a potential, but unlikely, effect (red dotted line) that could break this
feedback.
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Figure 2 Mean Grevillea australis seedling density along gradients of burning, fire severity
(twig diameter), altitude, Topographic Wetness Index (TWI) and adult density. (a) Centered
and standardized model coefficients (on the log scale); and effects of: (b) burning, (c) fire severity,
(d) altitude, (e) topographic wetness and (f) adult density, in areas burnt by the 2003 fires. All bars
and shaded areas indicate 95% Bayesian Credible Intervals.
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Figure 3 Observed and projected growth trajectories of four dominant Australian alpine
shrubs. (a) Observed height growth: Thick lines with error bars represent mean (± 95% con-
fidence intervals) observed heights at each May census. Thin lines represent individual growth
trajectories. (b) Mean (± 95% Bayesian Credible Interval) projected growth trajectories. In all
cases, red and orange lines = seedlings growing in warmed (OTC) conditions and blue and light
blue lines = seedlings growing in control conditions. Projections were based on an logistic growth
model using initial seedling size of 6 cm (the mean initial height observed in the OTC experiment)
and mean maximum heights observed in long-unburnt sites (i.e. 34, 67, 66 & 70 cm for Asterola-
sia, Grevillea, Phebalium, & Prostanthera, respectively).
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Figure 4 Mean (± 95% Bayesian Credible Interval) annual probability of death for each
species growing in control (blue) and warmed (red) conditions.
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Figure 5 Experimental warming and inter-tussock gap size effects on Grevillea australis
seedlings. Top rows = Growth rate effects, Second row = Mortality effects. (a & c) Centered
and standardized model coefficients; (b & d) growth and mortality rate response curves along an
inter-tussock gap size gradient in warmed (red) and control (blue) conditions. All error bars and
shading are 95% Bayesian Credible Intervals.
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Figure 6 Effects of warming on rates of gap infilling by tussock grass. (a) Model coefficients
and (b) projected temporal change in size for an average 10 cm inter-tussock gap in warmed (red)
and unwarmed (blue) conditions. All error bars and shading are 95% Bayesian Credible Intervals.
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