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Abstract
Introduction. Many transcription factors initiate transcription only in specific sequence contexts, provid-
ing the means for sequence specificity of transcriptional control. A four-letter DNA alphabet only partially
describes the possible diversity of nucleobases a transcription factor might encounter. For instance, cyto-
sine is often present in a covalently modified form: 5-methylcytosine (5mC). 5mC can be successively ox-
idized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Just
as transcription factors distinguish one unmodified nucleobase from another, some have been shown to
distinguish unmodified bases from these covalently modified bases. Modification-sensitive transcription
factors provide a mechanism by which widespread changes in DNA methylation and hydroxymethylation
can dramatically shift active gene expression programs.

Methods. To understand the effect of modified nucleobases on gene regulation, we developed meth-
ods to discover motifs and identify transcription factor binding sites in DNA with covalent modifications.
Our models expand the standard A/C/G/T alphabet, adding m (5mC) h (5hmC), f (5fC), and ¢ (5caC). We
additionally add symbols to encode guanine complementary to these modified cytosine nucleobases, as
well as symbols to represent states of ambiguous modification. We adapted the well-established position
weight matrix model of transcription factor binding affinity to an expanded alphabet. We developed
a program, Cytomod, to create a modified sequence. We also enhanced the MEME Suite to be able
to handle custom alphabets. These versions permit users to specify new alphabets, anticipating future
alphabet expansions.

Results. We created an expanded-alphabet sequence using whole-genome maps of 5mC and 5hmC
in naive ex vivo mouse T cells. Using this sequence and ChIP-seq data from Mouse ENCODE and others,
we identified modification-sensitive cis-regulatory modules. We elucidated various known methylation
binding preferences, including the preference of ZFP57 and C/EBPf for methylated motifs and the
preference of c-Myc for unmethylated E-box motifs. We demonstrated that our method is robust to
parameter perturbations, with transcription factors’ sensitivities for methylated and hydroxymethylated
DNA broadly conserved across a range of modified base calling thresholds. Hypothesis testing across
different threshold values was used to determine cutoffs most suitable for further analyses. Using these
known binding preferences to tune model parameters enables discovery of novel modified motifs.

Discussion. Hypothesis testing of motif central enrichment provides a natural means of differentially
assessing modified versus unmodified binding affinity, without most of the limitations of a de novo
analysis. This approach can be readily extended to other DNA modifications, provided genome-wide
single-base resolution data is available. As more high-resolution epigenomic data becomes available, we
expect this method to continue to yield insights into altered transcription factor binding affinities across
a variety of modifications.
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Introduction

Different cell types have widely varied gene expression, despite sharing the same genomic sequence. Epige-
nomic factors, including modifications to DNA; RNA; and proteins, modulate gene expression and contribute
to the cellular regulatory program. Covalent cytosine modifications have an important regulatory role across
a number of eukaryotic species, including both mice and humans.! The most well-studied cytosine modifica-
tion involves the addition of a methyl group to the 5’ carbon of cytosine, creating 5-methylcytosine (5mC).
Modified cytosine nucleobases do not substantively disrupt the overall structure of the DNA double helix,
permitting transcription and replication to occur. However, these modifications alter various properties of
the double-helix, including altering the conformation of both the major and minor grooves.> They can also
lead to steric hindrance of transcription factor DNA binding domains, relative to the typical interactions of
specific DNA motifs with their cognate binding sites.>*

The demethylation cascade as functional genomic elements

5mC is the first of four modified cytosine nulceobases, that are involved in the demethylation of 5mC
back to its unmodified form. This demethylation cascade occurs via successive oxidation of 5mC, to 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC; Figure 1).>° These
oxidations are mediated by ten-eleven translocation (TET) enzymes.7
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Figure 1. Stepwise epigenetic modification of cytosine. (a) Cytosine is methylated by DNA methyl-
transferase (DNMT) to create (b) 5-methylcytosine, which is oxidized by the ten-eleven translo-
cation (TET) enzyme to create (c) 5-hydroxymethylcytosine, which is again oxidized by TET
to create (d) 5-formylcytosine. Finally, 5fC can be oxidized to (e) 5-carboxylcytosine, which can
then return to an unmodified cytosine via decarboxylation or thymine DNA glycosylase (TDG)
mediated excision, followed by base excision repair. R indicates deoxyribose and the rest of a
DNA molecule. Purple rectangles indicate functional groups changed in the reaction.

5mC has long been known to be involved in a diverse set of regulatory roles.®° 5hmC is increasingly
being implicated in regulatory processes,' and is now known to be a stable epigenetic modification,'! with
structural rationale for its reduced propensity of TET-mediated oxidation.'? Far less is known about 5fC
and 5caC, largely due to their considerably lesser abundance. They are far less abundant than 5hmC, itself
around an order of magnitude less abundant than 5mC. The abundance of these modifications varies by cell
type, with greater abundance observed in mouse embryonic stem cells (mESCs),*"** in which nearly 3%
of cytosine bases were methylated,®> while 0.055% were hydroxymethylated in a different mESC sample.'®
There have been only a few investigations into the genome-wide distributions and roles of 5fC (such as
poised enhancers) and 5caC.'>!”!® They are often regarded as mere intermediates of the demethylation
cascade, largely due to their generally being two to three orders of magnitude less abundant than 5hmC,
and capable of triggering a strong DNA damage response.>!¢ In mESCs, 5fC was found to account for
0.0014% of cytosine bases,'® while 5caC accounted for a mere 0.000335%.> While it is by no means certain
that they play a distinctive regulatory role across multiple tissue types, converging lines of evidence suggest
that they too can be important modulators of gene expression.'? 5fC alters the conformation of the DNA
double helix'? and is known to be stable in mESCs, not merely a demethylation intermediate.?°
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All of these modifications are (by far) most frequent at CpG dinucleotides, but non-CpG 5mC nucle-
obases are known to exist in non-negligible quantities, particularly within mESCs.?!?> Mapping of these
modifications is complicated by a few additional sources of biochemical complexities: strand biases,'?
concomitant modifications, and hemi-methylation.??

Modified nucleobases can substantially alter transcription factor recognition

Many transcription factors prefer specific motifs, enabling the sequence specificity of transcriptional con-
trol.>* The position weight matrix (PWM) model allows for the computational identification of transcription
factor binding sites, by characterizing a transcription factor’s position-specific preference over the DNA
alphabet. Just as transcription factors distinguish one unmodified nucleobase from another, some tran-
scription factors are known to distinguish between unmodified and modified bases. Despite these covalent
modifications not altering base-pairing, they protrude into the major and minor grooves of DNA, and impact
other aspects of DNA conformation. These changes can result in altered protein recognition.?

In particular, transcription factors often bind to novel motifs that differ from the unmodified core
consensus sequences. MeCP2, one of many non-sequence-specific methyl-CpG binding proteins, has been
shown to bind to 5hmC.?® However, the role of non-sequence-specific modified nucleobase binding is
limited to specific protein families.

It is more informative, but also more challenging, to elucidate and characterize sequence specific
motifs. In 2013, Hu et al.> demonstrated that central CpG-methylated motifs have strong binding activity
for certain transcription factors. Using protein binding microarrays, they showed that these motifs are
often very different from the unmethylated sequences that those transcription factors usually bind. A few
transcription factors have well-characterized modification preferences. These preferences can serve as a
means of verifying a predictive framework; a working model is expected to be able to robustly yield the
known preferences. Therefore an understanding of known modification-sensitivities informs the design of
such a model. Since Hu et al.’s®> work, other transcription factors have been shown to have methylation-
sensitivity?” and an instance of 5caC increasing binding affinity was found.?® Both C/EBPa and C/EBPf3
have increased binding activity when the central CpG of its canonical octamer (consensus: TTGC|GCAA) is
methylated, formylated, or carboxylated, with both strands contributing to increase the effect and hemi-
modification still demonstrating a reduced effect.? 5hmC was found to inhibit binding of C/EBPf, but not
C/EBPa.? c-Myc is a basic helix-loop-helix (bHLH) family transcription factor, which has been demonstrated
to have a strong preference for unmethylated E-box motifs, often preferring the CACGTG hexamer.>*>! It is
one of many bHLH transcription factors that demonstrate such a preference.?-3

Recently, Quenneville et al.>” demonstrated that ZFP57 has a preference for methylated motifs, specif-
ically for the completely centrally-methylated TGCCGC(R) heptamer (red indicates methylation on the
positive strand and blue on the negative strand). This was subsequently confirmed, and extended upon,
by Strogantsev et al.*®, who additionally found that ZFP57 motifs with a final guanine residue as the
core binding site are often concomitantly methylated at that second CpG site. This preference was also
confirmed with crystallography and in solution with fluorescence polarization analyses, by Liu et al.>,
who additionally demonstrated that ZFP57 has successively decreasing affinity for the oxidized forms of
5mC. Xu et al.* recently applied a random forest to predict binding of transcription factors by combining
genomic and methylation data. They did not attempt to predict the preference of factors for methylated
DNA, but rather developed software to use profiles of 5mC or 5hmC bases to improve predictions of in vivo
transcription factor binding events.

Stable modification-induced changes to DNA shape, and the existence of modification-sensitive tran-
scription factors, motivate the development of a computational framework to elucidate and characterize
altered motifs. We describe here methods to analyze covalent DNA modifications and their affects on tran-
scription factor binding sites, by introducing an expanded epigenetic alphabet. We introduce Cytomod,
software to integrate DNA modification information into a single genomic sequence and we detail the use
of extensions to the MEME Suite*! to analyze 5mC and 5hmC transcription factor binding site sensitivities.

2


https://doi.org/10.1101/043794
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/043794; this version posted March 15, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Methods

An expanded epigenetic alphabet

To analyze DNA modifications’ effects upon transcription factor binding, we developed a model of genome
sequence that expands the standard A/C/G/T alphabet. Our model adds the symbols m (5mC), h (5hmC),
f (5fC), and c (5caC). This allows us to more easily adapt existing computational methods, that work on a
discrete alphabet, to work with epigenetic cytosine modification data.

Each symbol represents a base pair in addition to a single nucleotide, implicitly encoding a complemen-
tarity relation. Accordingly, we add four symbols to represent G when paired with modified C: 1 (G:5mC),
2 (G:5hmCQ), 3 (G:5fC), and 4 (G:5caC) (Table 1). This ensures that complementation remains a lossless
operation. It also captures the fact that the properties of the base pairing of a guanine to a modified residue
is altered by the presence of the modification.? We number these symbols in the same order in which the
ten-eleven translocation (TET) enzyme acts on 5-methylcytosine and its oxidized derivatives (Figure 1).°

Many cytosine modification-detection assays only yield incomplete information of a cytosine’s modifica-
tion state. For example, conventional bisulfite sequencing alone determines if cytosine bases are modified to
either 5mC or 5hmC, but cannot resolve between those two modifications.® Even with sufficient sequencing
to disambiguate all modifications, statistical methods are needed to infer each modification from the data,
resulting in additional uncertainty. To capture common instances of modification state uncertainty, we also
introduce ambiguity codes: z/9 for a cytosine of (completely) unknown modification state, y/8 for a cyto-
sine known to be neither hydroxymethylated nor methylated, x/7 for a hydroxymethylated or methylated
base, and w/6 for formylated or carboxylated bases (Table 2). These codes are analogous to those defined
by the Nomenclature Committee of the International Union of Biochemistry already in common usage, such

as for unknown purines or pyrimidines (R or Y, respectively).*>*3
Covalent Cytosine Modification Complement
ﬁl;ll?lreV1a- Name Symbol Name Symbol
5mC 5-Methylcytosine m Guanine:5-Methylcytosine 1
5hmC 5-Hydroxymethylcytosine h Guanine:5-Hydroxymethylcytosine 2
5fC 5-Formylcytosine f Guanine:5-Formylcytosine 3
5caC 5-Carboxylcytosine C Guanine:5-Carboxylcytosine 4

Table 1. The expanded epigenetic alphabet. This includes the known modifications to cytosine
and symbols for each guanine that is complementary to a modified nucleobase.

Ambiguous Nucleobase Complement
Symbol Possible bases Symbol Possible bases
w f,c 6 3,4
X m, h 7 1,2
y C f,c 8 G 3,4
z C,m h, f,c 9 G, 1,2,3,4

2 >

Table 2. Ambiguous bases for uncertain modification states. The MEME Suite recognizes these
ambiguity codes in the same manner as the ambiguous bases already in common usage, such as
R for A or G in the conventional DNA alphabet.
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Figure 2. Differential cytosine modification status in naive mouse T-cells for a 25 kbp region
(within cytoband 17qB1) surrounding Zfp57 and Mog. UCSC Genome Browser®® plot that in-
cludes RepeatMasker*® regions, CpG islands,*> GENCODE?? genes, and calls for bases h (5hmC),
m (5mC), x (5mC/5hmC), z (C with unknown modification state), 1 (G:5mC), 2 (G:5hmC),
7 (G:5mC/5hmC), and 9 (G:C with unknown modification state).

Creation of an expanded-alphabet genome sequence

Like most epigenomic data, the abundance and distribution of cytosine modifications is cell-type specific.
Therefore, modified genomes need to be constructed for a particular cell-type and downstream analyses
cannot necessarily be expected to generalize. Accordingly, we first need to construct a modified genome
that pertains to the organism, assembly, and tissue type we wish to analyze. This modified genome uses the
described expanded alphabet to encode cytosine modification state, using calls from single-base resolution
modification data.

To do this, we created a Python program called Cytomod. It loads an unmodified assembly and then
alters it using provided modification data. It relies upon Genomedata** and NumPy* to load and iterate
over genome sequence data. Cytomod can take the intersection or union of replicates pertaining to a single
modification type. It also allows one to provide a single replicate of each type, and potentially to run it
multiple times to produce multiple independent replicates of modified genomes. It permits flagging of
ambiguous input data, such as when only conventional bisulfite sequencing data is available and therefore
the only modified bases are x/7. Cytomod additionally produces browser extensible data (BED) tracks for
each cytosine modification, for viewing in the UCSC*® (Figure 2) or Ensembl genome browsers.*’

We used conventional and oxidative whole-genome bisulfite sequencing data generated for naive
CD4" T cells, extracted from the spleens of C57BL/6J mice, aged 6-8 weeks. A fraction enriched in
CD4™" T cells was first obtained by depletion of non-CD4* T cells by magnetic labelling and then fluorescence-
activated cell sorting was used to get the CD4*, CD62L", CD44"°%, and CD25~ naive pool of T cells. This
data was generated by the Ferguson-Smith and Adams labs at the University of Cambridge and the Sanger
Institute for the BLUEPRINT project, as a part of Sjoberg et al.>.

We refer to the combination of both conventional and oxidative whole-genome bisulfite sequencing
as (ox)WGBS. We analyzed biological replicates separately, 2 of each sex. Unaligned, paired-end, BAM
files output from the sequencer were subjected to a standardized internal quality check pipeline. We used
MethPipe®? (development version, commit 3655360) to process the data. All random chromosomes were
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excluded, after alignment. We selected Bismark®® for alignment, which has been demonstrated to work
well.>*>> The processing pipeline is as follows: sort the unaligned raw BAM files in name order (using
SamBamba,>® version 0.5.4); convert the files to FASTQ, splitting each paired-end (via version 2.23.0
of BEDTools®” bamtofastq); align the FASTA files to NCBIm37/mm9 using Bismark> (version 0.14.3),
which uses Bowtie®® (version 2.2.4), in the default directional mode for a stranded library; sort the output
aligned files by position (again via SamBamba sort); index sorted, aligned, BAMs (via version 1.2 of
SAMtools® index); convert the processed BAM files into the format required by MethPipe, using to-mr;
merge sequencing lanes (via direct concatenation of to-mr output files) for each specimen (biological
replicate), for each sex, and each of WGBS and oxWGBS; sort the output as described in MethPipe’s
documentation (by position and then by strand); remove duplicates using MethPipe’s duplicate-remover;
run MethPipe’s methcounts program; and finally run MLML,*® which combines the conventional and
oxidative bisulfite sequencing data to yield consistent estimations of cytosine modification state.

We then create modified genomes from the MLML outputs. MLML outputs maximum-likelihood es-
timates of the levels of 5mC, 5hmC, and C, which are between 0 and 1. These estimates are computed
directly or via expectation maximization.®® It outputs an indicator of the number of conflicts, which is an
estimate of methylation or hydroxymethylation levels falling outside of the confidence interval computed
from the input coverage and level. This value is 0, 1, or 2 in our case, since we have two inputs per run
(WGBS and oxWGBS). An abundance of conflicts can indicate the presence of non-random error.’ We
assign z/9 to all loci with any conflicts, regarding those loci as having unknown modification state. Qur
analysis pipeline accounts for cytosine modifications occurring in any genomic context, and additionally
maintains the data’s strandedness, allowing analyses of hemi-modification. We created modified genomes
using a grid search, in increments of 0.01, for a threshold t, for the levels of 5mC (m) and 5hmC (h), as
described in Figure 3.
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Figure 3. Conditions on the MLML®® confidence levels of 5mC (m) and 5hmC (h) in relation to
a threshold t, that lead to the calling of different modified nucleobases. These base assignments
assume that MLML had no conflicts for the locus under consideration. If there were any conflicts,
the base is assigned to z, irrespective of the values of m or h. Inequalities to call modifications
are not strict. For example, m =t/>=> x. The bases are depicted for the positive strand only, and
are complemented when occurring on the negative strand, as outlined in Table 1 and Table 2.
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We use half of the threshold value for assignment to x/7, since we consider that consistent with the use
of the full threshold value to call a specific modification (since if t is sufficient to call 5mC or 5ShmC alone,
m + h > t should be sufficient to call x/7).

We additionally analyzed base frequencies for each modification, both overall (Figure 4) and per ge-
nomic cytosine. These frequencies are computed genome-wide, for putative promoter regions and enhancer
regions. To estimate promoter regions, we used GENCODE Release M1 (the last GENCODE version anno-
tating NCBIm37/mm9), for the primary genome annotation, using a 2 kbp region upstream of the first
transcription start site for each “known” GENCODE transcript. We create enhancer regions from a seven-
state ChromHMM segmentation for ES-Bruce4.°! We used segmentation state 3, “K4m1”, which is highly
enriched for H3K4mel.

Detection of altered transcription factor binding in modified genomic contexts

Next, we performed transcription factor binding site motif discovery, enrichment and modified-unmodified
comparisons. Here, we use mouse assembly NCBIm37/mm9 for all analyses, since we wanted to be able to
make use of all Mouse ENCODE®! ChIP-seq data without re-alignment nor lift-over.! We updated the MEME
Suite*! to work with custom alphabets, such as our expanded epigenomic alphabet. We incorporated these
modifications into MEME Suite version 4.11.0.

We characterize modified transcription factor binding sites using MEME-ChIR®® It allows us to rapidly
assess the main software outputs we are interested in: Multiple EM (Expectation Maximization) for Motif
Elicitation (MEME)®* and Discriminative Regular Expression Motif Elicitation (DREME),® both for de novo
motif elucidation; CentriMo,*®%” for the assessment of motif centrality; SpaMo,®® to assess Spaced Motifs
(which is especially relevant for multi-partite motifs); and Find Individual Motif Occurrences (FIMO).%

CentriMo®® is our main focus for the analysis of our results. It permits inference of the direct DNA
binding affinity of motifs, by assessing a motif’s local enrichment. In our case, we scan peak centres with
PWNMs, for the best match per region. The PWMs used are generated from MEME-ChIE by loading the
JASPAR 20147%71 core vertebrates database, in addition to any elucidated de novo motifs from MEME or
DREME. The number of sequences at each position of the central peaks is counted and normalized to
estimate probabilities of central enrichment. These are smoothed and plotted. A one-tailed binomial test is
used to assess the significance of central enrichment.

If low complexity sequences are not masked out first, MEME-ChIP®® can yield repetitive motifs. Existing
masking algorithms are not designed to work with modified genomes, and we accordingly mask the assem-
bly, prior to modification with Cytomod. This masking is only for downstream motif analyses. The unmasked
modified genome output by Cytomod is always used for base frequency and distribution analyses. We use
Tandem Repeat Finder (TRF)”? (version 4.07b) to mask low complexity sequences and TRF masked genomes
are always used with MEME-ChIP We used the following parameters: 2 7 7 80 10 50 500 -h -m -ngs,
taken from the TRF parameter optimization results of Frith et al.”>.

We ran MEME-ChIR, using the published protocol for the command-line analysis of ChIP-seq data,”*
against Cytomod genome sequences for regions pertaining to chromatin immunoprecipitation-sequencing
(ChIP-seq) peaks from transcription factors of interest. We employ positive controls, in two opposite di-
rections, to assess the validity of our results. We use c-Myc as the positive control for an unmethylated
binding preference.>*! ChIP-seq data for c-Myc was used from both a stringent streptavidin-based genome-
wide approach with biotin-tagged Myc in mESCs from Krepelova et al.”> (GEO: GSM1171648), as well as

!Specifically, we used the Mus musculus Illumina iGenome®? packaging of the UCSC mm9 genome. This genome excludes
all alternative haplotypes as well as all unreliably ordered, but chromosome-associated, sequences (the so-called “random”
chromosomes). This was ideal for downstream analyses, but not sufficient for aligning data ourselves. This is because exclusion
of these additional pseudo-chromosomes might deleteriously impact alignments, by resulting in the inclusion of spuriously
unique reads. Therefore, the full UCSC mm9 build is used when aligning to a reference sequence.
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murine erythroleukemia and CH12.LX Myc Mouse ENCODE samples (ENCFFQ@1YJE and ENCFF@@1YHU). Con-
versely, both ZFP57 and C/EBPf are used as positive controls for methylated binding preferences.?**’- For
C/EBPf, we used Mouse ENCODE ChIP-seq data, conducted upon C2C12 cells (ENCFFQ@1XUT) or myocytes
differentiated from those cells (ENCFF@@1XUR and ENCFF@@1XUS). We used one replicate of ZFP57 peaks
provided by Quenneville et al.>”. We constructed a ZFP57 BED file using BEDTools®” (version 2.17.0) to
subtract the control influenza hemagglutinin (HA) ChIP-seq (GEO: GSM773065) from the target (HA-tagged
ZFP57: GEO: GSM773066). Only target regions with no overlap with any features implicated by the control
file were retained, yielding 11 231 of 22 031 features.

We also used ZFP57 ChIP-seq data from Strogantsev et al.>® (GEO: GSE55382), consisting of 40 bp single-
end reads from reciprocal F1 hybrid Cast/EiJ x C57BL/6J mESCs (BC8: sequenced C57BL/6J mother
x Cast father and CB9: sequenced Cast mother x C57BL/6J father). We are not interested in allele-
specificity and need it to correspond to the assembly we are using. We re-processed the data, aligning
it to NCBIm37/mm9, in a similar manner to some of the Mouse ENCODE datasets, to maximize con-
sistency for future Mouse ENCODE analyses. We obtained raw FASTQs using SRA Toolkit’s fastg-dump;
aligned them via Bowtie®® (version 1.1.0; bowtie -v 2 -k 11 -m 10 -t --best --strata); sorted and
indexed the BAM files (using Sambamba®®); and called peaks, using the input as the negative enrichment
set, via MACS 2,7 with increased stringency (g = 0.00001), with parameters: -q 0.00001 -f BAM -g mm.
This parameter list omits the previously explained target and control information, and parameters to set
the output’s base name and directory. This resulted in 90478 BC8 and 56 142 CB9 peaks.

We used the ChIPQC”” Bioconductor’® package to assess the ChIP-seq data quality. We used the two
control and two target runs for each of BC8 and CB9. We then used ChIPQC(samples, consensus=TRUE,
bCount=TRUE, summits=250, annotation="mm9", blacklist="mm9-blacklist.bed.gz", chromosomes
=chromosomes). We set the chromosomes list to all the fully-aligned mouse chromosomes, excepting chrM.
A blacklist of regions is used to filter out regions that appear uniquely mappable, but have been empirically
found to show artificially elevated signal in short-read functional genomics data. We took the blacklist from
the NCBIm37/mm9 ENCODE blacklist website (https://sites.google.com/site/anshulkundaje/projects/
blacklists).”” The fraction of reads in peaks (FRiP) was 13.7% and 9.12% for the BC8 and CB9 data re-
spectively. We additionally performed peak calling at the default ¢ = 0.05, which resulted in many more
peaks (197 610 BC8 and 360932 CB9 peaks) and respective FRiP values of 27.6% and 19.74%. The CB9
sample had a lesser fraction of reads in (overlapping) blacklisted regions (RiBL). At the default peak calling
stringency, BC8 had 29.7% RiBL, while CB9 had only 8.38%.

We additionally analyzed three ZFP57 ChIP-seq replicates (100 bp paired-end reads) pertaining to
mESCs in pure C57BL/6J mice.®° Each replicate is paired with an identically-conducted ChIP-seq in a
corresponding sample, for which ZFP57 is not expressed (ZFP57-null controls). The same protocol as for
the hybrid ZFP57 data was used, excepting that we used the ZFP57-null ChIP-seq data as the negative
set for peak calling instead of the input and Bowtie was run in paired-end mode (using -1 and -2). We
additionally omitted the Bowtie arguments --best --strata, which do not work in paired-end mode
and added -y --maxbts 800, the latter of which is what is set with --best’s value, instead of the default
threshold of 125. We also set MACS to paired-end mode (via -f BAMPE). However, this resulted in very few
peaks when processed with the same peak-calling stringency as the hybrid data (at most 1812 peaks) and
FRiP values under 2%. Even when we used the default stringency threshold, there were at most 4496 peaks,
with FRiP values of around 4.5%. Nonetheless, we still observed the expected preference for methylated
motifs (Figure S1).

To directly compare various modifications of motifs to their cognate unmodified sequences, we adopted
a hypothesis testing approach. Motifs of interest can be derived from a de novo result that merits further
investigation, but are often formed from prior expectations of motif binding preferences from the literature,
such as for c-Myc, ZFP57, and C/EBPp. For every unmodified motif of interest, we can partially or fully
change the base at a given motif position to some modified base (Table 3).

To directly compare modified hypotheses to their cognate unmodified sequences robustly, we try to
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Modification description Unmodified motif Modified motif
Full CpG modification to 5mC N m1
Partial CpG hemi-modification to N N
5hmC

CT
Full CpT modification to either N xT
5mC or 5hmC

Table 3. lllustrative examples of possible changes made to convert unmodified motifs to specific
modified counterparts, for downstream hypothesis testing. Stacked letters are used like simple
sequence logos. At these positions, N represents any base frequencies other than the base being

C
modified. These are the other positions in the motif’s position weight matrix. NN — m indicates that

a position containing cytosine is modified by replacing all base frequencies at that position with

C h
m, with frequency 1. Conversely, NN — NC indicates that a position containing cytosine is modified

by replacing the frequency apportioned to C with h, leaving the other base frequencies at that
position unmodified. The second base of each dinulceotide is portrayed as having a frequency of
one, however, it too could be composed of different bases of various frequencies, including the
base shown.

minimize as many confounds as possible.

We fix the CentriMo central region width (via --minreg 99 --maxreg 100). We also compensate for
the substantial difference in the background frequencies of modified versus unmodified bases. Otherwise,
vastly lower modified base frequencies can yield higher probability and sharper CentriMo peaks, since when
CentriMo scans with its “log-odds” matrix, it computes scores for nucleobase b with background frequency

f(b) as

log (Pfr((bb)) ) |

To compensate for this, we ensure that any motif pairs being compared have the same length and
similar relative entropies. To do this, we use a larger motif pseudo-count (via --motif-pseudo <count>)
for modified motifs. We compute the appropriate pseudo-count, as described below, and provide it to
iupac2meme. We set CentriMo’s pseudo-count to 0, since we have already applied the appropriate pseudo-
count to the motif.

The relative entropy (or Kullback-Leibler divergence), Dgg, of a motif m of length |m|, with respect to a
background model b over the alphabet A, of size |A], is®!

=1 jA-1 m
Dygg (m, b) = Z Z (mijl‘)gz( blAJ )) (D
j

i=0 j=0

For each position, i, in the motif, the MEME Suite adds the pseudo-count parameter, a, times the background
frequency for a given base, j, at the position: m:j =m;;+ ab;.

Accordingly, to equalize the relative entropies, we need only substitute mgj for each m; ; in Equation 1
and then isolate a. If we proceed in this fashion, however, our pseudo-count would depend upon the motif
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frequency at each position and the background of each base in the motif. Instead, we can make a number
of simplifying assumptions that apply in this particular case. First, the unmodified and modified motifs we
are comparing differ only in the bases being modified, which in this case, are only C or G nucleobases, with
a motif frequency of 1. Additionally, we set the pseudo-count of the unmodified motif to a constant 0.1
(CentriMo’s default). Thus, the pseudo-count to use for a single modified base, is the value a, obtained by
solving, for provided modified base background frequency b,, and unmodified base frequency b,,:

(2)

1+ab 14+0.1b
1+ab,,log, (%) =1+0.1b,log, (—“)

b

However, Equation 2 only accounts for a single modification, on a single strand. For complete modi-
fication, we also need to consider the potentially different background frequency of the modified bases’
complement. Thus for a single complete modification, with modified positions m; and m, and correspond-
ing unmodified positions u; and u,, modified base background frequencies b, , b,,, and unmodified base

u

frequencies b, , b, , we obtain ’
1+ab,, 1+ ab,
1+ abml lng b—ml +1+ abmz logz b—mz
(3)
1+0.1b, 1+0.1b,
=1+0.1b, log, b—l +1+0.1b,, log, b—z :

We numerically solve for a in Equation 3 for each modified hypothesis, using fsolve from SciPy.?
Finally, we may have multiple modified positions. We always either hemi-modify or completely modify all
modified positions, so the pseudocount to use is the product of modified positions and the a value from
Equation 3.

The pseudo-count obtained in this fashion does not exactly equalize the two motif’s relative entropies,
since we do not account for the effect that the altered pseudo-count has upon all the other positions of the
motif.

We then perform hypothesis testing for an unmodified motif and all possible 5mC/5hmC modifications
of all CpGs for known modification-sensitive motifs for c-Myc, ZFP57, and C/EBPf3. These modifications
consist of the six possible combinations for methylation and hydroxymethylation at a CpG, where a CpG is
not permitted to be both hemi-methylated and hemi-hydroxymethylated. These six combinations are: mG,
C1, m1, hG, C2, and h2. For c-Myc, the unmodified motif from which modified hypotheses were constructed is
the standard E-box: CACGTG. For ZFP57, we tested the known binding motif, as both a hexamer (TGCCGC) and
as extended heptamers (TGCCGCR and TGCCGCG).>”-*® We additionally tested motifs that we found to occur
frequently in our de novo analyses, C(C/A)TGm1(C/T) (A). We encoded this motif as the hexamer MTGCGY
and heptamers, with one additional base for each side: CMTGCGY and MTGCGYA. This encoding permitted
direct comparisons to the other known ZFP57-binding motifs of the same length. Finally, for C/EBPS we
tested the modifications of two octamers: its known binding motif (TTGCGCAA) and the chimeric C/EBP|CRE
motif (TTGCGTCA).%’ These motifs were then assessed for their centrality within their respective ChIP-seq
datasets, using CentriMo. We then compute the ratio of CentriMo central enrichment p-values, adjusted for
multiple testing,®® for each modified/unmodified motif pair. For numerical precision, we compute this ratio
as the difference of their log values returned by CentriMo. This determines if the motif prefers a modified
(positive) or unmodified (negative) binding site.

We conducted hypothesis testing across all four replicates of WGBS and oxWGBS data, for a grid
search of modified base calling thresholds. These thresholds are based upon the levels output by MLML.°
We interpret these values as our degree of confidence for a modification occurring at a given locus. We
conducted our grid search from 0.01-0.99 inclusive, at 0.01 increments. Finally, the ratio of CentriMo
p-values are plotted across the different thresholds, using Python libraries Seaborn®® and Pandas.?*%
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Results

We created an expanded-alphabet sequence using oxidative (ox) and conventional whole-genome bisulfite
sequencing (WGBS) maps of 5mC and 5hmC for naive ex vivo mouse CD4" T cells.>! We generated individual
modified genomes across four replicates of (ox) WGBS data and for a variety of modified base calling
thresholds. We used these modified genome sequences as the basis for the extraction of genomic regions
implicated by ChIP-seq data for particular transcription factors.

The modification abundances obtained were as expected, with respect to the absolute abundance of
nucleobases, including their modifications genome-wide, within promoter regions, and within enhancer
regions (Figure 4). Genome-wide, at a 0.7 threshold, for the female 15-16 specimen, we find that 2.5% of
cytosine residues are methylated, and that 5hmC abundance is 3.5-8.0% of 5mC abundance, depending
upon the inclusion of ambiguous bases. These frequencies are consistent with previous results in other cell
types. 51416

Additionally, 5hmC comprises 0.17% of cytosine or guanine bases genome-wide vs. 0.20% within
enhancer regions. If ambiguous 5mC/5hmC (x/7) bases are included, this difference increases to 0.39%
vs. 0.45%. These results are consistent with greater 5hmC abundance within enhancer regions.8-%

Hypothesis testing reveals altered modified transcription factor binding preferences

We conducted hypothesis testing across three transcription factors for which we can predict their expected
methylation or hydroxymethylation sensitivities from the literature. Two of the tested transcription factors
are expected to prefer methylated DNA: ZFP57% and C/EBPf3,% and one is known to prefer unmethylated
DNA: c-Myc.*>3! Additionally, C/EBPf is known to have reduced affinity for hydroxymethylated DNA.>°

We tested known unmodified transcription factor binding motifs against all possible 5mC and 5hmC
modifications thereof, at all CpG dinucleotides. For each modified motif, we assessed its expected DNA
binding affinity using its adjusted CentriMo central enrichment p-value.®® We conducted the same test for
the unmodified version of the motif, comparing their p-values as a ratio, using the difference of their log
transformed values. Positive values for this difference represent a preference for the modified motif, while
negative values represent the converse.

We find that the expected transcription factor binding preferences hold across all four (ox) WGBS repli-
cates and for all investigated modified nucleobase calling thresholds (from 0.01-0.99 inclusive, at 0.01
increments, representing modification confidence; Figure 5). Our observation that all c-Myc log p-value
differences are below zero, implies that modified c-Myc motifs are disfavoured compared with their un-
modified E-box motifs. For the ZFP57 sample shown, all modifications are favoured, compared to their
unmodified counterparts. One of the modified motifs which has the greatest increase in predicted binding
affinity in the modified case is TGCm1m1, a motif that Strogantsev et al.®® often found. Two methylated mo-
tifs had the greatest increase in predicted binding affinity for C/EBPf3: TTGmGCAA and TTGC1TCA. The same
results are obtained for multiple different ChIP-seq replicates for these transcription factors (Figure S1).
These results are robust in the face of perturbations, including peak calling stringency (Figure S2).

In addition to ZFP57 displaying a strong preference for methylated DNA, hydroxymethylated CpGs
had a substantially lesser increase in binding affinity than methylated motifs (Figure 5), but still greater
than the completely unmethylated motif. This recapitulates Liu et al.’s> in vitro finding that ZFP57 has the
greatest binding affinity for motifs containing 5mC, followed by ShmC, and then by unmodified cytosine.

Elucidation of dichotomous binding preferences—C/EBPf3

C/EBPf is of particular interest because of its dichotomous binding preferences for 5mC versus 5ShmC.%
Our method is able to recapitulate this preference, across all replicates of (0ox)WGBS and ChIP-seq data,
with methylated motif pairs generally having positive ratios, whereas hydroxymethylated motif ratios are
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Figure 4. Modified nucleobase counts for a single female replicate (# 2) of naive T-cell mouse
(ox) WGBS data at a modified base calling threshold of 0.7. Counts are shown (A) genome-wide,
(B) within promoter regions, and (C) within enhancer regions.

negative (Figure S3). One exceptional case is for a positive strand, hemi-methylated, motif (TTGmGTCA),
which is often disfavoured compared to the unmodified motif. This motif is not the consensus C/EBPf
motif, but rather the chimeric C/EBP | CRE octamer. While Sayeed et al.? demonstrated that this chimeric
transcription factor had a more modest preference toward its methylated DNA motif, we would still have
expected a weak preference for this motif, over its unmodified counterpart, as opposed to the unmodi-
fied motif preference observed. Additionally, we find hemi-methylation to have greater enrichment than
complete methylation, which contradicts their finding of both strands contributing to increase the effect.?
This may be due to technical issues with hemi-methylation in our modified sequence and requires further
investigation.

Suitable thresholds for de novo and downstream analyses

The grid search for transcription factor binding thresholds at 0.01 increments allowed us to determine
suitable thresholds (0.3 and 0.7) for further investigation (Figure S1). Overall, this grid search demonstrates
the suitability of a wide-range of thresholds, likely useful for assessing future datasets. De novo analyses
of C/EBPf confirmed the preference for methylated DNA, with methylated motifs having much greater
central enrichment than their unmethylated counterparts, at both the 0.3 (Figure 6) and 0.7 thresholds
(Figure 7).

Despite robust findings with hypothesis testing, across almost the entire range of possible thresholds,
we were, however, often unable to detect the expected binding preferences in a de novo context. The c-Myc
and, to a lesser extent, ZFP57 CentriMo runs, in a non-hypothesis testing context, did not demonstrate
substantial enrichment nor depletion with respect to modified vs. unmodified motifs. An example of this is
shown in Figure S4 for c-Myc. We consider potential explanations for this in the Discussion.
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Figure 5. Relationship between unmodified versus modified motif statistical significance of central enrichment (from CentriMo®°)
and modified base calling thresholds across different (ox) WGBS specimens.’! Each unmodified motif, at each threshold, is compared
to its top three most significant modifications for c-Myc and C/EBPf3, but top one most significant modification for ZFP57. Since
at most the top three motif pairs are selected per threshold value, specific thresholds can result in new motif pairs, while previously
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Discussion

We have added expanded alphabet capabilities to the widely-used MEME Suite,*! a set of software tools for
the sequence-based analysis of motifs. This included extending several of its core tools, including: MEME,®*
DREME,®> and CentriMo,® used in a unified pipeline via MEME-ChIR®® We undertook further extension of
all downstream analysis tools and pipelines, and most of the MEME Suite*! can now be used with arbitrary
alphabets. We have processed maps of cytosine modifications in ex vivo mouse T-cells to yield genome
sequences that use the expanded alphabet. We then used the extended software on the modified genome
sequences in regions defined by ChIP-seq data to confirm previously known transcription factor binding
preferences using our expanded-alphabet models.

Hypothesis testing, with equal central region widths and relative entropies, leads to more interpretable
results than the standard CentriMo analyses, in that it permits a direct comparison of centrality p-values. We
often observed the expected pattern in many replicates of conventional CentriMo runs with de novo motifs,
such as with C/EBPS (Figure 6 and Figure 7) and ZFP57 (Figure S5). However, there were instances in
which the expected motif binding preference was not obvious from de novo CentriMo analyses, such as for
c-Myc (Figure S4) and other ZFP57 CentriMo results, despite the hypothesis testing robustly corroborating
its expected preference for unmethylated DNA (Figure S1).

We suspect that the inability of de novo analyses to elucidate modified binding preferences is primarily
due to such analyses not having any means of integrating modified and unmodified motifs. Our de novo
analyses are also unable to compensate for the large differences in modified versus unmodified background
frequencies. De novo elucidation involves some form of optimization or heuristic selection of sites, and
is an inherently variable process. Modified motifs have particular characteristics that differ from most
unmodified motifs. Most notably, they are necessarily different from the overall and likely local sequence
backgrounds, as a result of the low frequency of modifications. Conversely, an unmodified genome sequence
has a comparably uniform nucleobase background, and unmodified motifs are usually found within local
sequence of highly similar properties to the motifs themselves.”® Accordingly, modified motifs can get lost
within a background of irrelevant unmodified motifs or no comparable sets of motifs may be found, without
specifically accounting for these confounds. Also, modified motifs that a de novo analysis finds might not be
comparable to any unmodified counterpart. This could occur due to their being of substantially different
lengths, often being shorter. It is also difficult to compare motifs having sequence properties that often
indicate a poor-quality motif, such as repetitious motifs, or off-target motifs, such as zingers.”! Hypothesis
testing, with relative entropy normalization, can be used to mitigate these concerns.

This method is robust in the face of parameter perturbations. In particular, changes in the modified
base calling threshold, across a broad range, consistently led to the same expected results, across three
transcription factors and a number of ChIP-seq and bisulfite sequencing replicates (Figure S1). Furthermore,
modification of peak calling stringency for a set of ZFP57 datasets, did not negatively impact our detection
of its affinity for methylated DNA (Figure S2). The consistency of our controls provides confidence in the
ability of this method to detect and accurately characterize the effect of modified DNA on transcription
factor binding. This is instrumental in applying this method to a diverse array of ChIP-seq data, towards
the elucidation of novel binding preferences.

There is an inherent trade-off between a lower threshold, yielding more modified loci but potentially
introducing false positives, and a higher one, which may be too stringent to detect modified base binding
preferences. We selected a lower threshold of 0.3, based primarily on the observation of increased variance
and decreased apparent preference for unmethylated DNA for c-Myc below this threshold, across multiple
replicates (Figure S1). We also selected an upper threshold of 0.7, based primarily on the rapid decrease
in relative affinity for methylated over unmethylated motifs in ZFP57 (Figure 5) and, to a lesser extent,
C/EBPJ (Figure S3).

We found that there is often an enrichment for hemi-modified, as opposed to completely-modified
binding sites. Motifs with hemi-(hydroxy)methylation were often more centrally enriched than those with
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complete modification of a central CpG dinucleotide (Figure 6 and Figure 7). This is surprising, because
numerous in vitro experiments have demonstrated that for transcription factors preferring modified DNA,
each modification is often additive, resulting in completely modified motifs having greatest affinity.*>
It is possible that the hemi-(hydroxy)methylation events we detect are the result of asymmetric binding
affinities for 5mC (5hmC). ZFP57, for example, is known to have asymmetric recognition of 5mC, with the
negative strand methylation being more important than the positive strand methylation with respect to the
TGCCGC motif.?° Further work is needed to determine if this is due to technical artifacts (either at the level
of the bisulfite sequencing data or the methods used) or if this reflects an actual biological preference.

There are few high-quality single-base resolution datasets of 5hmC, 5fC, and 5caC. We had previously
attempted analyses using modification data, from assays like MeDIR”? that did not employ single-base
resolution methods.!* We found that without single-base resolution, it was difficult to create a discrete
genome sequence with a reasonable abundance of the modification under consideration without biasing
the sequence, thereby making downstream analyses of transcription factor binding uninformative. It is
essential to have single-base resolution data, for any modifications that one wishes to analyze. Additionally;,
many datasets which do meet this criteria use some form of reduced representation approach, in which
CpGs are enriched, allowing for much cheaper sequencing, while still capturing many DNA modifications.
The use of reduced representation bisulfite sequencing data can lead to confounding factors, due to the non-
uniform distribution of methylated sites surveyed. We accordingly recommend that enrichment approaches
be avoided for use with these methods, at least until these confounds are better addressed.

The ChIP-seq data we used was not from the same cell type as the (0x) WGBS data. While transcription
factor binding models created from one cell type are often assumed to be consistently useful across different
cell types, in some cases, they are not. Nonetheless, we consistently observed the expected preferences
in transcription factor binding for the expected modification affinities, across multiple ChIP-seq replicates,
often in different cell types.

The MEME Suite’s new custom alphabet capability permits further downstream analyses of modified
motifs. For example, one can find individual motif occurrences with FIMO® or conduct pathway analyses
with Gene Ontology for MOtifs (GOMO).”® Alternatively, FIMO results can be used for pathway analyses
via GREAT,”* and downstream pathway analysis tools, such as Enrichment Map,”>°® can be used for further
interpretation of the results. This permits inference of implicated genomic regions and biological pathways,
which can then be subjected to further analysis.

This approach can be readily extended to other DNA modifications, since we designed all of our soft-
ware with this in mind. A number of DNA modifications can now be detected at high resolution, with
many known to occur endogenously across diverse organisms,’ such as 5-hydroxymethyluracil (5hmU),
5-formyluracil (5fU), 8-oxoguanine (8-0x0G), and 6-methyladenine (6mA).”’~*° We provide recommenda-
tions in Appendix A for the nomenclature of these modified nucleobases, among others.

We provide a framework to readily apply motif analyses on sequences containing DNA modifications.
Consistent reproduction of known transcription factor binding affinities suggests that these methods produce
biologically meaningful results and can predict the modification sensitivity of other transcription factors.
We intend to apply these methods to analyze all Mouse ENCODE factors toward the identification of novel
epigenetic binding preferences.
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Figure S1 (preceding page). Relationship between unmodified versus modified motif statistical signif-
icance of central enrichment (from CentriMo®) and modified base calling thresholds across different
(ox)WGBS specimens.’! Each unmodified motif, at each threshold, is compared to its top three most sig-
nificant modifications for c-Myc, C/EBP, and replicate two of the C57BL/6 ZFP57 samples, but top one
most significant modification for all other ZFP57 samples. Since at most the top three motif pairs are se-
lected per threshold value, specific thresholds can result in new motif pairs, while previously enriched pairs
may no longer be present at a given threshold. Each column pertains to a particular (ox) WGBS replicate.
Each row of plots pertains to a particular ChlP-seq dataset: c-Myc (3), ZFP57 (6), or C/EBPf (3). In order
(from top—bottom): Krepelova et al.”>, ENCFF001YHU, ENCFF0Q1YJE, Quenneville et al.3?, Strogantsev et al.38
BC8 cells, Strogantsev et al.33 CB9 cells, Shi et al.80 (3 replicates), ENCFFO01XUR, ENCFF@Q1XUS, ENCFFOQ1XUT.
All ZFP57 peaks, excepting for Quenneville et al.37, were called using a stringent MACS® peak calling
threshold, g = 0.00001. Negative values correspond to a preference for the unmodified motif, while positive
values correspond to a preference for the modified motif. The C/EBPf results are additionally depicted
alone in Figure S3.
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Figure S2. Relationship between unmodified versus modified motif statistical significance of central en-
richment (from CentriMo°®) and modified base calling thresholds across different (ox) WGBS specimens.5!
Each unmodified motif, at each threshold, is compared to its top most significant modification. Since only
the top motif pair is selected per threshold value, specific thresholds can result in new motif pairs, while
previously enriched pairs may no longer be present at a given threshold. Each column pertains to a partic-
ular (ox) WGBS replicate. Each row of plots pertains to a particular ZFP57 ChlP-seq dataset: Strogantsev
et al.3 BC8 cells, Strogantsev et al.33 CB9 cells, Shi et al.80 (3 replicates). All ZFP57 peaks were called
using the default MACS7% peak calling threshold, ¢ = 0.05. Negative values correspond to a preference for
the unmodified motif, while positive values correspond to a preference for the modified motif.
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Figure S3. Relationship between unmodified versus modified C/EBPp statistical significance of central enrichment (from
CentriMo®®) and modified base calling thresholds across different (ox) WGBS specimens.’! Each unmodified motif, at each thresh-
old, is compared to its top three most significant modifications. Since only the top three motif pairs are selected per threshold
value, specific thresholds can result in new motif pairs, while previously enriched pairs may no longer be present at a given threshold.
Each column pertains to a particular (ox) WGBS replicate. Each row of plots pertains to a particular C/EBPf ChIP-seq dataset:
ENCFFQ01XUR, ENCFF@Q1XUS, ENCFF0@1XUT. Negative values correspond to a preference for the unmodified motif, while positive values
correspond to a preference for the modified motif. These results are additionally depicted with all of the other tested transcription
factors in Figure S1.
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Figure S4. c-Myc (ENCFF0Q1YJE; 6297 ChlP-seq peaks) CentriMo analysis upon de novo and JAS-
PAR motifs (see Methods) using female replicate 2 of the (ox) WGBS data®! at a 0.7 modification
threshold. (A) the CentriMo result with the c-Myc JASPAR motif in (logo in (B)), a top
E-box unmodified motif in blue (logo in (C)), and DREME (hydroxy)methylated motifs in red and
cyan (logos in (D) and (E), respectively). We depict the JASPAR sequence logo using MEME's
relative entropy calculation and colouring for consistency.
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Figure S5. Strogantsev et al.3® CB9 ZFP57 (mm9 aligned; 72 592 ChlIP-seq peaks) CentriMo anal-
ysis upon de novo and JASPAR motifs (see Methods) using female replicate 2 of the (ox) WGBS
data®! at a 0.7 modification threshold. (A) the CentriMo result with an expected ZFP57 modified
motif in red (logo in (B), reverse complement shown) and top unmodified motifs in purple (logo
in (C)) and blue (logo in (D)).
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Appendix A Recommendations for modified nucleobase nomenclature

Interest in different covalent DNA modifications and improvements in sequencing technologies are expected to create
a greater need for computational analyses of modified sequence data. In order to encourage standardization, we rec-
ommend symbols for various modified nucleobases (Table S1). We use lower case letters (a—z) for specific nucleobase
forms and numerals (0-9) to specify complements without any information loss. The list is not comprehensive, but
may provide guidance for those who need to select symbols for these bases. This list also reserves specific symbols
in an attempt to reduce contradictory definitions. All upper-case letters of the Latin alphabet are considered to be
reserved for allocation by IUPAC, in addition to those already specified.*> We use lower-case letters, which may have
different meanings in upper-case, since there are insufficient unassigned letters to restrict ourselves to those. Many
applications, including the current implementation of the MEME Suite, only support the Latin letters and numerals.

For any abbreviations of covalently modified nucleobases, we recommend that they be referred to as
<position><modification><base>, where <position> is the position of the modified atom, <modification> is
the modification, and <base> is the nucleobase being modified, such as “5mC”. In particular, we recommend that no
punctuation be used to demarcate the number of the atom from its modification and that the numeral always appear
before the base being modified. For example, others have occasionally abbreviated 6-methyladenine as m6A, but we
recommend the use of 6mA instead when the modification occurs in DNA rather than in RNA. This distinction in the
nomenclature of DNA vs. RNA modifications can be seen in a recent review by Chen et al.!®.

The core symbols for cytosine modifications (Table 1) have been incorporated into Table S1. While we specified
a set of ambiguity codes for our usage in this work (Table 2), we do not recommend general definitions. Instead,
we suggest that the latter portions of the lower-case Latin alphabet and numerals be reserved for this purpose. This
increases the likelihood that sufficient symbols will be available within the alphanumeric alphabet for a variety of
use-cases. As implemented in this work, we recommend that ambiguity codes be assigned starting from the end of
their character set, beginning with the most equivocal ambiguity code.

Nucleobase Complement

A_bbreVla_ Name Symbol Name Symbol
tion

Covalent modifications of cytosine
5mC 5-Methylcytosine m Guanine:5-Methylcytosine 1
5hmC 5-Hydroxymethylcytosine h Guanine:5-Hydroxymethylcytosine 2
5fC 5-Formylcytosine f Guanine:5-Formylcytosine 3
5caC 5-Carboxylcytosine c Guanine:5-Carboxylcytosine 4

Covalent modifications of thymine
5hmU 5-Hydroxymethyluracil g Adenine:5-Hydroxymethyluraci
5fU 5-Formyluracil e Adenine:5-Formyluracil
5caU 5-Carboxyluracil b Adenine:5-Carboxyluracil

Covalent modifications of adenine
6mA 6-Methyladenine a Thymine:6-Methyladenine

Covalent modifications of guanine
80x0G 8-Oxoguanine o} Adenine:8-Oxoguanine (mismatch)

Reserved synthetic bases

Xao Xanthosine n Cytosine:Xanthosine

Table S1. Recommendations for the nomenclature of modified nucleobases, grouped by the unmodified
nucleobase. Numeral symbols for complements are provided for some bases, to ensure they can be differ-
entiated from bases complementary to their unmodified forms. These numerals could be re-assigned for
work with other sets of covalent modifications, if necessary.
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