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Abstract 

Quantifying differences or similarities in connectomes has been a challenge due to the immense 

complexity of global brain networks. Here we introduce a noninvasive method that uses 

diffusion MRI to characterize whole-brain white matter architecture as a single local connectome 

fingerprint that allows for a direct comparison between structural connectomes. In four 

independently acquired data sets with repeated scans (total N=213), we show that the local 

connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-

others classification that achieved 100% accuracy across 17,398 identification tests. The 

estimated classification error was approximately one thousand times smaller than fingerprints 

derived from diffusivity-based measures or region-to-region connectivity patterns. The local 

connectome fingerprint also revealed neuroplasticity within an individual reflected as a 

decreasing trend in self-similarity across time, whereas this change was not observed in the 

diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic 

marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic 

twins, and 4.51% between none-twin siblings. This novel approach opens a new door for probing 

the influence of pathological, genetic, social, or environmental factors on the unique 

configuration of the human connectome. 

*Keywords: Connectome, Connectomics, Connectome fingerprint, Diffusion MRI 

 

Author Summary 

The local organization of white matter architecture is highly unique to individuals, making it a 

tangible metric of connectomic differences. The variability in local white matter architecture is 

found to be partially determined by genetic factors, but largely plastic across time. This approach 

opens a new door for probing the influence of pathological, genetic, social, or environmental 

factors on the unique configuration of the human connectome. 
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Introduction 

The specific brain characteristics that define an individual are encoded by the unique pattern of 

connections between the billions of neurons in the brain [1]. This complex wiring system, termed 

the connectome [2, 3], reflects the specific architecture of region-to-region connectivity [4] that 

supports nearly all complex brain functions. Yet to date, quantifying the difference between 

connectomes of two or more individuals remains a major challenge, as it requires a reliable 

characterization of white matter architecture that is also sensitive to microscopic variability.  

To this end, studies have used diffusion MRI (dMRI) to measure the architecture of white matter 

pathways using the diffusion properties of water molecules[5, 6]. This allows for the mapping of 

white matter trajectories in the human brain and defining the graph structure of region-to-region 

connectivity [7, 8]; however, while the reliability of  diffusion MRI scans has improved 

substantially by new acquisition approaches [9, 10], the efficiency and accuracy of tractography 

approaches have recently come into question [11, 12]. Thus, instead of mapping region-to-region 

connectivity, the concept of the local connectome was proposed as an alternative measure to 

overcome the limitations of diffusion MRI fiber tracking [11-13]. The local connectome is 

defined as the degree of connectivity between adjacent voxels within a white matter fascicle 

measured by the density of the diffusing water. A collection of these density measurements 

provides a high dimensional feature vector that can describe the unique configuration of the 

structural connectome within an individual, providing a novel approach for comparing 

differences and similarities between individuals as pairwise distances. 

In this study, we used this local connectome feature vector as a fingerprint to quantify 

similarities and difference between two white matter architectures. To evaluate the performance 

of our approach, we used four independently collected dMRI datasets (n=11, 25, 60, 118, see 

Methods) with repeat scans at different time intervals (ranging from the same day to a year) to 

examine whether local connectome fingerprints can reliably distinguish the difference between 

within-subject and between-subject scans. We then examined whether the local connectome 

fingerprint is a unique identifier of an individual person by testing whether the fingerprint could 

determine if two samples came from the same person or different individuals. This uniqueness 

was compared with fingerprints derived from fractional anisotropy (FA)[14], diffusivities, and 

conventional region-to-region connectivity methods. Follow-up analysis revealed how local 
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connectome fingerprints can quantify the similarity between genetically related individuals as 

well as measure longitudinal changes within an individual.  

Results 

Characterization of white matter architecture 

We first illustrate how the local connectome fingerprint uses the density of diffusing spins to 

characterize white matter architecture within an individual. Figure 1A shows the spin distribution 

functions (SDFs) [15] estimated from dMRI scans at the mid-sagittal section of the corpus 

callosum. SDF measures the density of water diffusing at any orientation within a voxel and the 

SDF magnitude at the fiber directions can quantify the connectivity of local connectome (see 

Methods). An example of the local connectome quantified at the corpus callosum is illustrated 

for three subjects in Fig. 1B. Here the anterior and posterior portion of corpus callosum exhibit 

substantial diversity between these three subjects. A repeat scan several months later reveals a 

qualitative within-subject consistency. This high individuality appears to be specific to diffusion 

density estimates. Conventional FA measures calculated from diffusivity do not yield this 

qualitative between-subject diversity (Fig. 1C).  

To sample the local density measurements across all major white matter pathways, dMRI data 

was reconstructed into a standard space, and the fiber directions of a common atlas were used to 

sample an SDF value for each fiber direction (see Methods and Fig. 2A). This approach yielded, 

for each dMRI scan, a local connectome fingerprint consisting of a high-dimensional feature 

vector with a total of 513,316 density estimates (Fig. 2B). Fig. 2C shows the fingerprints of the 

same three subjects in Fig. 1B and the fingerprints from their repeat scans. Consistent with the 

qualitative measurements in Fig. 1B, each local connectome fingerprint in Fig. 2C shows, at a 

coarse level, a highly similar pattern for within-subject scans and also high variability across 

subjects, suggesting that the local connectome fingerprint may exhibit the unique features of the 

white matter architecture. 
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Fig 1. The uniqueness of local connectome structure revealed by the density of diffusing water.  

(A) The spin distribution function (SDF) calculated from diffusion MRI quantifies the density of diffusing water 

along axonal fiber bundles. The magnitudes of the SDF at axonal directions provide density-based measurements to 

characterize axonal fiber bundles. (B) The density measurements obtained from the SDFs show individuality 

between-subjects #1, #2, and #3 (intensity scaled between [0 0.8]). The density of diffusing water varies 

substantially across different portions of the corpus callosum. The repeat measurements after 238 (subject #1), 191 

(subject #2), and 198 (subject #3) days present a consistent pattern that captures individual variability. (C) In 

contrast to the SDF shown in (B), the fractional anisotropy derived from diffusivity shows no obvious individuality 

between the same subjects #1, #2, and #3 (intensity also scaled between [0 0.8]). This is due to the fact that 

diffusivity, which quantifies how fast water diffuses, does not vary a lot in normal axonal bundles. 
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Fig 2. Local connectome fingerprinting.  

(A) Local connectome fingerprinting is conducted by first reconstructing diffusion MRI data into a standard space to 

calculate the spin distribution functions (SDFs). A common fiber direction atlas is then used to sample the density of 

diffusing water along the fiber directions in the cerebral white matter. The sampled measurements are compiled in a 

left-posterior-superior order to form a sequence of characteristic values as the local connectome fingerprint. (B) One 

local connectome fingerprint is shown in different zoom-in resolutions. A local connectome fingerprint has a total of 

513,316 entries of scalar values. (C) The local connectome fingerprint of subject #1, #2, and #3 and their repeat 

measurements (lower row) after 238, 191, and 198 days, respectively. At a coarse level, the local connectome 

fingerprint differs substantially between three subjects, whereas those from the repeat scans show a remarkably 

identical pattern, indicating the uniqueness and reproducibility of the local connectome fingerprint. 

 

 

Between-subject versus within-subject difference 

To quantify how well the local connectome fingerprint captures between-subject difference, we 

used four independently collected dMRI datasets (n=11, 24, 60, 118) with repeat scans for a 

subset of the subjects (n=11×3, 24×2, 14×2, 44×2, respectively). The Euclidian difference (i.e., 

root-mean-squared error) was used as a single difference estimate between any two fingerprints. 

For each dataset, we computed within-subject differences (n=33, 24, 14, 44, respectively) and 

between-subject differences (n=495, 1104, 2687, 12997, respectively). Figure 3 shows the 

within-subject and between-subject differences of the four datasets. All four datasets show a 

clear separation between the within-subject and between-subject difference distributions, with no 

single within-subject pair as large as any of the between-subject pairs. We used d-prime [16] to 

quantify the separation of between-subject and within-subject differences. The results showed d-

prime values of 14.84, 12.80, 7.21, and 8.12, for dataset I, II, III, and IV respectively, suggesting 

a very high degree of separation between the two distributions.  

In order to understand what regions of the local connectome may be driving this within-subject 

uniqueness, we looked at the spatial distribution of both between-subject and within-subject 

differences (Fig. 4). The absolute difference was averaged for each fingerprint entry to map its 

spatial distribution. Each voxel can have multiple local connectome fingerprint measurements. 

For visualization purposes we only calculated the difference of the first resolved fiber (defined 

by the atlas). The first row of Fig. 4 shows between-subject differences for datasets I, II, III, and 
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IV. The largest between-subject differences are found in core white matter structures such as the 

corpus callosum and central semiovale. The corpus callosum is known to have commissural 

fibers connecting the cortical hemisphere, whereas the central semiovale has association 

pathways connecting frontal, parietal, and occipital regions as well as projection pathways 

connecting cerebral cortex and brainstem. The large differences found in these two regions 

suggest that the between-subject differences could be driven by a variety of different brain 

connections. The second row of Fig. 4 shows within-subject differences for datasets I, II, III, and 

IV. Dataset I was acquired with the shortest time interval between repeat scans (less than 16 

days), whereas dataset II (1~3 months), dataset III (6 months) and dataset IV (a year) were 

acquired with longer time intervals. As shown in Fig. 4, the within-subject differences are 

substantially lower than the between-subject differences, suggesting high uniqueness of the local 

connectome fingerprint to an individual. Substantial increase of within-subject differences could 

be observed in the corpus callosum at datasets with a longer time interval, suggesting the 

possibility of neuroplasticity over time. 
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Fig 3. Within versus between-subject differences in the local connectome fingerprints.  

(A) The first row shows the matrix of pair-wise distances between any two local connectome fingerprints for 

datasets I, II, III, and IV (column 1, 2, 3, and 4, respectively). The second row shows the location of the within-

subject (blue) and between-subject differences (red). (B) The histograms of within-subject (blue) and between-

subject (red) differences in the connectome fingerprints calculated from datasets I, II, III, and IV (column 1, 2, 3, 

and 4, respectively). The first row shows the histograms, and the second row shows the box plot of their quartiles. In 

these four datasets, within-subject (blue) and between-subject (red) differences have perfect separation. In the last 

row, the histograms are fitted with generalized extreme value distribution (also shown by solid curves in the second 

row) to estimate the classification error of the connectome fingerprint. The estimated classification error was 

4.25×10-6, 9.97×10-7, 5.3×10-3, and 5.5×10-3 for dataset I, II, III, and IV, respectively. The larger error in dataset III 
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and IV could be due to their longer scanning interval (6 months and one year).

 
Fig.4 The spatial mapping of between-subject (first row) and within-subject (second row). Dataset I was 

acquired within 16 days, whereas dataset II (1~3 months), dataset III (6 months) and dataset IV (a year) were 

acquired at longer time intervals. High between-subject differences can be observed in white matter tissue, 

especially the corpus callosum and central semiovale. The within-subject differences are much smaller, and repeat 

scans with longer time intervals show higher within-subject differences. 

This within-subject consistency suggests that the local connectome fingerprint could be used as a 

unique subject identifier. To assess this, we used a linear discriminant analysis (LDA) classifier 

[17] to determine whether two fingerprints were from the same individual using only the 

Euclidian distance between fingerprints as a single classification feature. For each dataset, the 

classification error was estimated using leave-one-out cross-validation. We did not observe a 

single misclassification out of the 17,398 cross-validation rounds from four datasets (17,283 

different-subject and 115 same-subject pairings). To approximate the classification error, we 

modeled the distributions of within-subject and between-subject differences by the generalized 

extreme value distribution [18], a continuous probabilistic function often used to assess the 

probability of extreme values (smallest or largest) appearing in independent identically 

distributed random samples (last row of Fig. 3B). The classification error was quantified by the 

probability of a within-subject difference greater than a between-subject difference. Our analysis 

showed that the classification error was 4.25×10-6 for dataset I, 9.97×10-7 for dataset II, 5.3×10-3 

for dataset III, and 5.5×10-3 for dataset IV. The larger error in dataset III and IV could be due to 

their longer scan interval (6 months and one year). For repeat scans acquired within 3 months, 

the probability of mistaking two samples of the same subject’s local connectome fingerprint as 
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coming from two different individuals was low enough to consider the local connectome 

fingerprint a highly reliable measure of individual subject uniqueness. 

Corpus callosum fingerprint 

Since gross anatomical patterns such as gyral and sulcal folding can be highly specific to an 

individual,  it is possible that the unique features we observed in the local connectome fingerprint 

reflected an artifact of the spatial normalization process. To evaluate this, we retested our 

uniqueness within a restricted white matter mask that only covered the median sagittal sections 

of the corpus callosum defined by the  Johns Hopkins University white matter atlas [19]. This 

“corpus callosum fingerprint” should be free from all possible contributions of anatomical 

geometry such as gyral and sulcal folding. We applied the same analysis procedures to the 

corpus callosum fingerprint to examine whether it can reveal unique patterns specific to 

individuals within this area.  The result showed d-prime values of 5.97, 5.85, 3.78, and 4.08, for 

dataset I, II, III, and IV, respectively. The leave-one-out cross-validation analysis showed that 

classification error was 0%, 0.089%, 1.26%, and 0.63%, for dataset I, II, III, and IV, 

respectively. The classification error modeled by the generalized extreme value distribution was 

9.13×10-4, 5.6×10-3, 6.9×10-3, and 7.2×10-3, for dataset I, II, III, and IV, respectively. The corpus 

callosum fingerprint itself already achieved more than 99% accuracy in subject identification. 

This suggests that the high individuality of the local connectome fingerprint is due to the 

microscopic characteristics of the white matter architecture. 

 

Comparison with diffusivity-based fingerprints 

Diffusivity-based metrics, such as FA, axial diffusivity (AD), and radial diffusivity (RD), also 

reveal microscopic structure of white matter systems. To compare these measures against SDF, 

we used the same analysis and replaced the SDF-based measures with FA, AD, and RD values of 

the corresponding voxels. Our analysis showed that the d-prime values of the FA-based 

fingerprint were 4.84, 4.70, 4.56, and 3.60, for dataset I, II, III, and IV, respectively. All values 

were substantially smaller than the local connectome fingerprint. The leave-one-out cross-

validation analysis showed that classification error of the FA-based fingerprint was 0%, 0.18%, 

0.22%, and 0.87%. While FA-based fingerprints also have high uniqueness with classification 
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error less than 1%, the performance is not superior to the 0% leave-one-out cross-validation error 

achieved by the local connectome fingerprint  

We also analyzed the performance of AD-based fingerprints, producing d-prime values of 4.20, 

4.07, 4.33, and 3.68, for datasets I, II, III, and IV, respectively. The performance was similar to 

FA-based fingerprints and substantially lower than those of the local connectome fingerprint. 

The leave-one-out cross-validation analysis showed a classification error of 0.15% in dataset IV. 

While no misclassification was found in dataset I, II, III, the generalized extreme value 

distribution showed a classification error of 0.18%, 0.29%, and 0.18%, respectively. The AD-

based fingerprint was also inferior to the local connectome fingerprint.  

The analysis on RD showed a slightly different result. The d-prime values for RD were 7.87, 

9.10, 8.79, and 5.80, which were substantially better than FA-based and AD-based fingerprints. 

Compared with the local connectome fingerprint, it is noteworthy that the local connectome 

fingerprint substantially outperformed RD for repeat scans within 3 months (14.84 and 12.80 

versus 7.87 and 9.10), but not for repeat scans with a longer time interval (7.21, and 8.12 versus 

8.79, and 5.80). The classification error also showed a similar pattern. In dataset I, which had the 

shortest time interval (less than 16 days), the classification errors were 4.25×10-6 for the local 

connectome fingerprint and 0.28% for the RD-based fingerprint. By contrast, in dataset IV, 

which had the longest time interval (around a year), the classification errors were 5.5×10-3 for the 

local connectome fingerprint and 3.1×10-3 for the RD-based fingerprint. The uniqueness of the 

local connectome fingerprint dropped substantially over time. These time-dependent differences 

were further investigated in the Neuroplasticity revealed by the local connectome fingerprint 

section below. To summarize, compared with diffusivity-based fingerprints, the local 

connectome fingerprints exhibited the greatest reliability for repeat scans acquired within 3 

months. 

Comparison with global connectivity-based fingerprints 

We further compared the local connectome fingerprint with region-to-region connectivity 

estimates from diffusion MRI fiber tracking. The same analysis pipeline used for the local 

connectome fingerprint was used to calculate leave-one-out cross-validation error for the 

traditional connectivity matrix. The d-prime values for the region-to-region connectivity matrices 
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in dataset I, II, III, and IV were at 3.44, 2.06, 2.41, and 2.25, respectively. The classification 

error for datasets I, II, III, and IV were 3.6%, 13.65%, 11.81%, and 9.48%, respectively 

(estimated by leave-one-out cross validation). While the classification accuracy for the 

traditional connectivity matrices is still quite high and similar to what has previously been 

observed in resting state functional connectivity estimates [20], it is clear from these results that 

the greatest reliability at characterizing connectomic uniqueness comes from local connectome 

measures. 

Neuroplasticity revealed by the local connectome fingerprint 

Our analysis of within-subject differences hinted at the possibility of changes in the local 

connectome over time, and thus we further examined how time impacts the uniqueness of local 

connectome fingerprints. If the local connectome fingerprint is sensitive to neuroplasticity, a 

longer interval should result in decreased similarity between repeat scans of the same individual. 

To test this, we calculated the similarity of within- subject local connectome fingerprints as a 

percentage of the mean between-subject difference (see Methods). A similarity of 100% 

indicates that two fingerprints are identical, whereas a similarity of 0% indicates the magnitude 

of the differences between two fingerprints is the same as those between unrelated subjects. 

For this analysis, we calculated the similarity between repeat scans in dataset II (n=24), which 

was acquired with the widest range of time interval between repeat scans (1~3 months). Fig. 5A 

shows the scatter plot of the similarity against the time. A nonparametric, rank-based test (the 

Mann-Kendall test) showed a significant decreasing trend in the similarity over time (p = 

0.0023). To further quantify the change of similarity in the local connectome fingerprint, we 

used linear regression to calculate the coefficient (slope) between the time interval and similarity. 

The results showed that the similarity dropped at a rate of 12.79% per 100 days. It is noteworthy 

that the identical analysis was applied to FA-based, AD-based, and RD-based fingerprints but 

none showed a significant trend (p = 0.3092, 0.4130, and 0.0702, respectively). 

To further illustrate how the local connectome fingerprint revealed neuroplasticity within 

individuals, we selected one subject in dataset IV that exhibited the greatest difference across 

time and visualized the spatial mapping of the local connectome fingerprints between repeat 

scans. This spatial mapping is shown in Fig. 5B, whereas the FA map calculated from the same 
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data are shown in Fig. 5C. The upper row shows the midsagittal view at the corpus callosum, 

whereas the lower row shows an axial view at the splenium and genu of the corpus callosum. 

Each voxel may have multiple local connectome fingerprint measurements (e.g. at the crossing 

fiber region), and for visualization purposes, only the one associated with the first resolved fiber 

(defined by the atlas) was calculated. All images are scaled by their maximum values to provide 

a fair comparison. Fig. 5B shows substantial differences in several core white matter bundles 

between the repeat scan (annotated), whereas Fig. 5C shows no obvious difference. Since 

artifacts such as signal drift, coil degradation, and motion affect large regions of tissue spanning 

several centimeters, the fact that the differences in the local connectome fingerprint were 

observed in specific white matter bundles suggests that the finding is unlikely due to an artifact. 

Fig 5. Neuroplasticity revealed by the local connectome fingerprint. (A) A scatter plot showing a decreasing 

trend in similarity against time in dataset II. (B) The local connectome fingerprint from one subject in dataset IV 

shows substantial differences between repeat scans. The changes include both increased and decreased connectivity 

at different locations, leading to a drop in the self-similarity. The fact that these changes are located at specific white 

matter bundles suggests that they are unlikely due to an image artifact. (C) The FA map calculated from the same 

data shows no obvious difference between repeat scans. There is no visible trait of signal drift, motion artifact or coil 

degradation, confirming the quality of the image acquisition. 

 

Similarity among genetically-related individuals 

The local connectome fingerprint opens the possibility for comparing not only differences but 

also the similarities between individuals. To further illustrate how the local connectome 

fingerprint can be used to quantify white matter architecture as a phenotypic  marker, we used a 

publicly available dMRI dataset of 486 subjects from Human Connectome Project (2014, Q3 

release), including 49 pairs of monozygotic (MZ) twins, 43 pairs of dizygotic twins (DZ) twins, 
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and 96 pairs of non-twin siblings. While the local connectome fingerprints of MZ twins show 

generally similar patterns at the coarse level (Fig. 6), there are also substantial individual 

differences between the twins that can be observed along the fingerprints. Consistent with these 

qualitative comparisons, we found that MZ twins have smaller differences between fingerprints, 

followed by DZ twins, siblings, and unrelated subjects (Fig. 7A). It is noteworthy that all 

difference distributions have large overlapping regions (Fig. 7B), indicating that the difference 

between twins or siblings may often fall within the distribution of differences from genetically-

unrelated subjects. We further compared the similarity between twins and siblings. On average, 

MZ twins have a similarity index of 12.51±1.09%, whereas similarity for DZ twins and siblings 

is 5.14±1.34% and 4.47±0.59%, respectively (Fig. 7C). The difference in similarity index was 

significant across MZ twins, DZ twins, non-twin siblings, and other genetically-unrelated 

subjects (Kruskal-Wallis test, χ2[3,22895] = 165.43, p < 0.001). Post-hoc comparisons using 

Scheffé's S procedure showed (1) significantly higher similarity in MZ twins compared with all 

other groups (all p < 0.001), (2) significantly higher similarity in DZ twins compared with 

unrelated subjects (p = 0.001), and (3) significantly higher similarity in non-twin siblings 

compared with unrelated subjects (p = 0.0146) . There was no significant difference between DZ 

twins and non-twin siblings (p = 0.9989). This result is consistent with MZ twin sharing a higher 

genetic similarity, whereas DZ twins exhibit a similar genetic similarity on par with non-twin 

siblings. 

 

Fig 6. The local connectome fingerprints of monozygotic (MZ) twins, dizygotic (DZ) twins, and non-twin 

siblings.  

Three pairs of connectome fingerprints are shown for each group, Pairs are annotated by a connecting line. The 

connectome fingerprints between MZ twins show the grossly similar patterns though some between-subject 
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difference can still be observed. DZ twins and siblings also have a similar pattern, but the between-subject 

difference becomes more prominent. 

Fig 7. The differences and similarities between twins and siblings.  

(A) The histograms show the distribution of the root-mean-square-error (r.m.s.e) between MZ twins, DZ twins, non-

twin siblings, and genetically unrelated subjects calculated from their local connectome fingerprints. On average, 

MZ twins have the lowest difference between each twin pair, followed by DZ twins and siblings. (B) The upper 

figure shows the differences fitted with generalized extreme value distribution. The lower figure shows the box plot 

of the distribution to facilitate comparison. The four distributions are mostly overlapping, indicating that twins and 

siblings still have high individuality similar to genetically-unrelated subjects. (C) The similarity between MZ twins 

is significantly higher than that between DZ twins or non-twin siblings, whereas the similarity between DZ twins is 

not statistically different from the similarity between non-twin siblings.  

 

 

Discussion 

Local white matter architecture is so unique and highly conserved within an individual that it can 

be considered a unique neural phenotype. Here we show that this phenotype can be quantified by 

measuring the density of microscopic water diffusion along major white matter fascicles and 

producing a high dimensional vector that can be used to compute the distance between two 

structural connectomes, i.e., a local connectome fingerprint. The distance between two local 

connectome fingerprints reflects a low dimensional representation of both similarities and 
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differences in whole-brain white matter pathways. Our analysis showed how the local 

connectome fingerprint exhibited unprecedentedly high between-subject distance, while 

generally low within-subject distances, allowing for it to be used as a reliable measure of the 

specific connective architecture of individual brains. This property paves the way for using the 

local connectome as a phenotypic marker of the structural connectome.  

The concept of local connectome is both conceptually and methodologically different from 

conventional connectomic measures. While most studies have emphasized on region-to-region 

connectivity [3] and ignored the rich information in the local white matter architecture, the local 

connectome reveals the connectivity at the voxel level and characterizes local white matter 

architecture to provide high dimensional data that may complement the region-to-region 

connectivity [13]. This local connectome mindset considers the fact that the difference between 

brain structures may be localized and thus may not be readily identified in the global 

connectomic pattern. We have previously shown that the local connectome can be used to 

localize the change of white matter structure due to physiological difference such as body mass 

index [13].  

While any high dimensional representation of the human brain in a standard space has the 

potential to be used as fingerprint, we showed that the uniqueness of fingerprints generated from 

the local connectome was substantially higher than what was observed in diffusivity-based 

fingerprints as well as fingerprints derived from region-to-region connectivity reported by either 

dMRI or fMRI, as typically done in human connectomic studies [2, 20, 21]. For example, the 

region-to-region structural connectivity achieved a classification accuracy around 90~97%. This 

is very close to the accuracy of its functional counterpart [20], that was recently reported to have 

an accuracy of 92-94% in whole brain identification and 98-99% in frontoparietal network. 

Although both region-to-region connectivity approaches have accuracy greater than 90%, the 

performance remains substantially lower than the perfect classification in 17,398 leave-one-out 

rounds and an estimated error of 10-6 achieved by local connectome fingerprint.   

At first glance, it may seem possible that the high degree of uniqueness exhibited by the local 

connectome fingerprint could be due to variability in the spatial normalization process between 

individuals driven by the unique gyral or sulcal folding patterns in gray matter. While we still 
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cannot rule out the effect of misalignment, our comparison with the FA-based fingerprints 

showed that the spatial normalization process does not fully contribute to the uniqueness 

observed in the local connectome fingerprint. Both FA-based fingerprints and the local 

connectome fingerprints used an identical spatial normalization mapping process, but the FA-

based fingerprints had a much higher error rate in leave-one-out cross-validation (e.g. 0.87% for 

dataset IV) than the zero cross-validation error achieved by the local connectome fingerprint. 

Obviously, a substantial portion of the uniqueness was due to the microstructural white matter 

characteristics quantified in the SDF. Moreover, we observed favorable characterization of white 

matter uniqueness even when our analysis was restricted to a small portion of white matter with 

minimal influence of sulcal and gyral folding (i.e., the mid corpus callosum). These two findings 

support our claim that the local connectome fingerprint can reveal the unique characteristics of 

the white matter architecture. Finally, the between-subject differences are mostly located within 

the deep white matter at the central semiovale and the corpus callosum. This spatial specificity 

suggests that the uniqueness of the local connectome fingerprint is mostly driven by mesoscopic 

or microscopic architectural properties, not due to an artifact of unique folding geometry or the 

spatial normalization process.     

It is important to point out that the local connectome fingerprint is based on a physical 

measurement that is different from diffusivity-based metrics such as FA, AD, and RD. To further 

compare their physical meanings, diffusivity quantifies how fast water diffuses in tissue [22] and 

is sensitive to the structural integrity of the underlying fiber bundles [14], such as axonal loss and 

demyelination [23-26]. This may explain why the FA map appears similar across the normal 

population in which the axons have normal structure. By contrast, SDF quantifies how much 

water diffuses along the fiber pathways [15, 27] and is sensitive to density characteristics of 

white matter such as the compactness of the fiber bundles [15, 28, 29]. As illustrated in our 

qualitative analysis (Fig. 1C), while the density characteristics vary substantially among normal 

populations, the FA measurements do not show obvious differences between subjects. This 

highlights how the local connectome fingerprint achieved a higher uniqueness profile than 

diffusivity-based metrics when they were used to characterize microstructural white matter 

patterns that reflect individuality. The results led us to hypothesize that the local connectome 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/043778doi: bioRxiv preprint 

https://doi.org/10.1101/043778
http://creativecommons.org/licenses/by/4.0/


fingerprints may be more sensitive to axonal density or different levels of myelination that are 

unique to individuals. Future histology studies are needed to confirm this hypothesis.   

The high degree of uniqueness in the local connectome within an individual can be used to 

reflect a quantifiable phenotype of neural organization. As illustrated in our analysis of twins, the 

similarity in monozygotic twins was around twice as much of the dizygotic twins, whereas our 

post-hoc analysis did not find significant similarity difference between dizygotic twins and non-

twins siblings. These results are highly suggestive that genetics contribute a substantial portion to 

the overall construction of the local connectome, which is consistent with previous studies 

showing high heritability in cortical connections [30, 31] and white matter integrity [32-35]. 

Nevertheless, our results also showed that the monozygotic twins shared only 12.51% similarity 

in local white matter architecture. This indicates that a high heritability may not necessarily 

imply that most of the differences or similarity observed in phenotypes are due to genetic factors 

[36]. A considerable portion of the individuality in local connectome is likely driven by 

environmental factors such as life experience and learning. Thus monozygotic twins still 

exhibited high individuality in their connectome. In fact, our findings showed that the local 

connectome fingerprint is highly plastic over time, presented by a significant decreasing trend in 

the self-similarity caused by either an increase or decrease in the local connectome fingerprint 

measurements. This decreasing trend in the self-similarity raises many questions about which 

factors (genomic, social, environmental, or pathological) sculpt the local white matter systems. 

Of course, white matter integrity also varies with normative development [37-39], a portion of 

which may be determined genetically. This warrants more longitudinal and genetic analysis to 

identify specific contributions of genetic and environmental factors on the uniqueness of 

connectomic structure, with an aim to understand how those factors interact with abnormal brain 

circuits in neurological and psychiatric disorders.  

It is important to point out that the highest similarity between repeat scans was around 70~80% 

in our study. This indicates that 20-30% of variability in the local connectome may arise from 

artifacts that decrease signal-to-noise ratio, such as cardiovascular and respiratory artifacts or 

computation error. This number reflects the limit of the local connectome fingerprint in detecting 

an anomaly in the individuals as well as finding differences in a group study. For example, we 

could not accurately identify whether two scans were from a twin pair because the similarity 
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between twins was only around 12.51%. However, if a disease causes a white matter change with 

more than 30% difference in similarity, the local connectome fingerprint may be able to detect it. 

In a group study, increasing the number of subjects can average out the effect of noise and error 

on the similarity, allowing us to find a group difference that is substantially small. The similarity 

index from repeat scans allows us to gauge the strength and limitation of the local connectome 

fingerprint and prospectively, to develop a strategy to improve its performance. 

Methods 

Five independently collected dMRI datasets 

The first dataset included a total of 11 subjects (9 males and 2 females, age 20~42). Each subject 

had three diffusion MRI scans within 16 days on a Siemens Trio 3T system at the University of 

California, Santa Barbara. All methods were approved by the local institutional review board at 

the University of California, Santa Barbara. The diffusion MRI was acquired using a twice-

refocused spin-echo EPI sequence. A 257-direction full-sphere grid sampling scheme was used. 

The maximum b-value was 5000 s/mm2. TR = 9916 ms, TE = 157 ms, voxel size = 2.4×2.4×2.4 

mm, FoV = 231×231 mm.  

The second set of data included a total of 24 subjects (8 males and 16 females, age 22 ~ 74). All 

participants were scanned on a Siemens Tim Trio 3T system at National Taiwan University, and 

all subjects had their second scan at 1~3 months. All methods were approved by the local 

institutional review board at National Taiwan University. The diffusion MRI was also acquired 

using a twice-refocused spin-echo EPI sequence. The diffusion scheme is a 101-direction half-

sphere grid sampling scheme with b-max = 4000 s/mm2 (b-table available at http://dsi-

studio.labsolver.org). TR = 9600 ms, TE = 130 ms, voxel size = 2.5×2.5×2.5 mm.  

The third set of data included a total of 60 subjects (30 males and 30 females, age 18 ~ 46). All 

participants were scanned on a Siemens Verio 3T system at Carnegie Mellon University, and 14 

of the 60 subjects had their second scan at 6 months. All methods were approved by the local 

institutional review board at Carnegie Mellon University. The diffusion MRI was also acquired 

using a twice-refocused spin-echo EPI sequence. A 257-direction full-sphere grid sampling 
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scheme was used. The maximum b-value was 5000 s/mm2. TR = 9916 ms, TE = 157 ms, voxel 

size = 2.4×2.4×2.4 mm, FoV = 231×231 mm.  

The fourth set of diffusion data included a total of 118 subjects (91 males and 27 females, age 22 

~ 55) that were also scanned on a Siemens Verio 3T system at the Carnegie Mellon University. 

All methods were approved by the local institutional review board at the University of Pittsburgh 

and Carnegie Mellon University. 44 of them had another scan after one year. The diffusion 

images were acquired on a Siemens Verio scanner using a 2D EPI diffusion sequence. TE=96 

ms, and TR=11100 ms. A total of 50 diffusion sampling directions were acquired. The b-value 

was 2000 s/mm2. The in-plane resolution was 2.4 mm. The slice thickness was 2.4 mm. 

The fifth dataset was from the Human Connectome Projects (Q3, 2014) acquired by Washington 

University in Saint Louis and University of Minnesota. The diffusion MRI data were acquired on 

a Siemens 3T Skyra scanner using a 2D spin-echo single-shot multiband EPI sequence with a 

multi-band factor of 3 and monopolar gradient pulse. A total of 486 subjects (195 males and 291 

females, age 22 ~ 36) received diffusion scans. The spatial resolution was 1.25 mm isotropic. 

TR=5500 ms, TE=89.50 ms. The b-values were 1000, 2000, and 3000 s/mm2. The total number 

of diffusion sampling directions was 90, 90, and 90 for each of the shells in addition to 6 b0 

images. The total scanning time was approximately 55 minutes. The scan data included 49 pairs 

of monozygotic twin, 43 pairs of dizygotic twins, and 96 pairs of siblings. We used the pre-

processed data provided by the consortium in our analysis.Carnegie Mellon University 

Institutional Review Board (IRB) reviewed the research protocol for the data analysis in 

accordance with 45 CFR 46 and CMU’s Federal-wide Assurance. The research protocol has been 

given approval as Exempt by the IRB on March 12, 2014, in accordance with 45 CFR 

46.101(b)(4) (IRB Protocol Number: HS14-139). 

Local connectome fingerprinting 

All five datasets were processed using an identical processing pipeline implemented in DSI 

Studio (http://dsi-studio.labslover.org), an open-source diffusion MRI analysis tool for 

connectome analysis. The source code is publicly available on the same website. As shown in 

Fig. 2A, the diffusion MRI data of each subject were reconstructed in a common stereotaxic 
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space using q-space diffeomorphic reconstruction (QSDR)[40], a white matter based nonlinear 

registration approach that directly reconstructed diffusion information in a standard space: 
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( )ûψ  is a spin distribution function (SDF)[15] in the standard space, defined as the density of 

diffusing spins that have displacement oriented at direction û . φ is a function that maps a 

coordinate r from the standard space to the subject’s space, whereas 
φ

J  is the Jacobian matrix of 

φ, and 
φ

J  is the Jacobian determinant. iW  is the diffusion signals acquired by a b-value of bi 

with diffusion sensitization gradient oriented at iĝ . σ  is the diffusion sampling ratio controlling 

the displacement range of the diffusing spins sampled by the SDFs. Lower values allow for 

quantifying more from restricted diffusion. D is the diffusivity of free water diffusion, and Z0 is 

the constant estimated by the diffusion signals of free water diffusion in the brain ventricle [40]. 

A σ  of 1.25 was used to calculate the SDFs, and 1 mm resolution was assigned to the output 

resolution of the QSDR reconstruction. 

 

A common axonal directions atlas, derived from the HCP dataset (this HCP-488 atlas is freely 

available at http://dsi-studio.labsolver.org), was used as a common SDF sampling framework to 

provide a consistent set of sampling directions û  to sample the magnitude of SDFs along axonal 

directions in the cerebral white matter. Gray matter was excluded using the ICBM-152 white 

matter mask (MacConnel Brain Imaging Centre, McGill University, Canada). The cerebellum 

was also excluded due to different slice coverage in cerebellum across subjects. Since each voxel 

in the cerebral white matter may have more than one axonal direction, multiple measurements 

can be extracted from the SDF of the same voxel. The density measurements were sampled by 

the left-posterior-superior voxel order and compiled into a sequence of scalar values (Fig. 2B). 

Since the density measurement has arbitrary units, the local connectome fingerprint was scaled to 

make the variance equal to 1.  

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/043778doi: bioRxiv preprint 

https://doi.org/10.1101/043778
http://creativecommons.org/licenses/by/4.0/


Estimation of classification error 

For each dMRI dataset, the root-mean-squared error between any two connectome fingerprints 

was calculated to obtain a matrix of paired-wise difference. The calculated difference was used 

as the feature to classify whether two connectome fingerprints are from the same or different 

person. The default linear discriminant analysis (LDA) classifier provided in MATLAB 

(MathWorks, Natick, MA) was used, and for each dataset, the classification error was estimated 

using leave-one-out cross-validation. We also used a modeling method to calculate the 

classification error if the leave-one-out cross-validation did not yield any classification error. The 

histograms of the within-subject and between-subject differences were fitted by the generalized 

extreme value distribution using the maximum likelihood estimator (gevfit) provided in 

MATLAB. To consider the non-negativity of the distribution, the estimated k parameter of the 

generalized extreme value distribution was set to be greater than 0. The classification error was 

estimated by the probability of a within-subject difference greater than a between-subject 

difference estimated using the generalized extreme value distribution. 

Comparison with traditional connectivity matrix 

To compare local connectome fingerprint with region-to-region connectivity matrix, 

deterministic fiber tracking[28] was applied using a 100,000 uniform white matter seeding 

points, a maximum turning angle of 60 degrees, and a default anisotropy threshold determined 

using Otsu’s threshold [41]. The cortical regions were defined through a nonlinear registration 

between the subject anisotropy map and the HCP-488 anisotropy map in DSI Studio and 

parcellated using the Automated Anatomical Labeling (AAL) atlas. The matrix entries were 

quantified by the number of tracks ending in each of the region pairs. The root-mean-squared 

error can also be calculated from any two connectivity matrices. The classification error was also 

estimated and compared with local connectome fingerprint. 

Similarity index 

The similarity index between two local connectome fingerprints was calculated by 100%×(1-

d1/d0), where d1 was the difference between two fingerprints, and d0 was the expected value of 

the differences between unrelated subjects scanned by the same imaging protocol. The similarity 

between MZ twins, DZ twins, non-twin siblings, and repeated scans was calculated and 

compared. The Kruskal-Wallis test was applied to four groups (MZ and DZ twins, siblings, and 
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unrelated subjects) with independent samples. To further study the similarity between repeat 

scans, the similarity indices were tested against their scanning time intervals by the Mann-

Kendall test to study the effect of time interval on the local connectome fingerprints. 
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