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Abstract 

Quantifying differences or similarities in connectomes between individuals has been a challenge 

due to the immense complexity of global brain networks. Here we introduce a noninvasive 

method that uses diffusion MRI to characterize whole-brain white matter architecture as a single 

local connectome fingerprint that allows for a direct quantification of differences or similarities 

between two structural connectomes. In four independently acquired data sets with repeated 

scans (total N=213), we show that the local connectome fingerprint is highly specific to an 

individual, allowing for an accurate self-versus-others classification that achieves 100% accuracy 

in across 17,398 identification tests.  The estimated classification error was approximately one 

thousand times smaller than fingerprints derived from fractional anisotropy or region-to-region 

connectivity patterns. We further illustrate that the local connectome fingerprint can be used as a 

phenotype, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic 

twins, and 4.51% between none-twin siblings. Finally, we show that the local connectome 

fingerprint can quantify neuroplasticity over time as reflected by a decrease in self-similarity at 

an average rate of 7.26% per year. This novel quantification approach opens a new door for 

probing the influence of pathological, genetic, social, or environmental factors on the unique 

configuration of the human connectome. 

*Keywords: Connectome, Connectomics, Connectome fingerprint, Diffusion MRI 

 

Author Summary 

We show that the local organization of white matter architecture is highly unique to individuals 

and reliable enough to the use of as a metric of brain difference. The difference in white matter 

architecture is found to be partially determined by genetic factors, but largely plastic across time. 

This approach opens a new door for probing the influence of pathological, genetic, social, or 

environmental factors on the unique configuration of the human connectome. 
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Introduction 

The specific brain characteristics that define an individual are encoded by the unique pattern of 

connections between the billions of neurons in the brain [1]. This complex wiring system, termed 

the connectome [2, 3], reflects the architecture of the region-to-region connectivity [4] that may 

advance the understanding of what influences the white matter architecture. Yet to date, 

quantifying the difference between two brain structures is still a major challenge as it requires a 

reliable characterization of white matter architecture that reveals the microscopic features. To 

this end, studies have used diffusion MRI (dMRI) to measure the microscopic diffusion patterns 

of white matter structure and characterize its connectivity pattern [5, 6]. This also allowed for the 

mapping of the whiter matter trajectories in the human brain and defining the graph structure of 

region-to-region connectivity [7, 8]; however the efficiency and reliability of tractography 

approaches have recently come into question [9, 10]. Instead of mapping region-to-region 

connectivity, the concept of the local connectome has recently been proposed as an alternative 

measure of macroscopic white matter pathways that overcomes the limitations of diffusion MRI 

fiber tracking [9-11]. The local connectome is defined as the degree of connectivity between 

adjacent voxels within a white matter fascicle defined by the density of the diffusing water. A 

collection of these density measurements provides a high dimensional feature vector that can 

describe the unique configuration of the structural connectome within an individual, providing a 

novel approach for comparing differences and similarities between individuals as pairwise 

distances. 

Here we use this local connectome feature vector as a fingerprint to quantify the similarity and 

difference between two white matter architectures. To evaluate the performance of our approach, 

we used four independently collected dMRI datasets (n=11, 25, 60, 118, see Methods) with 

repeat scans at different time intervals (ranging from the same day to a year) to examine whether 

local connectome fingerprint can reliably distinguish the difference between within subject and 

between subject scans. We examined whether this local connectome fingerprint is a unique 

identifier of an individual person by testing how reliable the fingerprint could determine whether 

two samples came from the same person or different individuals. This uniqueness was compared 

with fingerprints derived from fractional anisotropy (FA)[12] and conventional region-to-region 

connectivity methods. Follow-up analysis reveals on how local connectome fingerprints can 
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quantify the similarity between genetically-related individuals as well measure longitudinal 

changes in within an individual across time.  

Results 

Characterization of white matter architecture 

We first illustrate the characterization of white matter architecture within an individual. Figure 

1A shows the spin distribution functions (SDFs) [13] estimated from dMRI scans at the mid-

sagittal section of the corpus callosum. SDF represents the density of water diffusing at any 

orientation, and its magnitudes at the axonal directions can be used as the density-based 

measurements to quantify the local connectome (see Methods). An example of the local 

connectome quantified at the corpus callosum is illustrated for three subjects in Fig. 1B. Here the 

anterior and posterior portion of corpus callosum exhibit substantial diversity between these 

three subjects. A repeat scan several months later reveals a qualitative within-subject 

consistency. This high individuality appears to be specific to diffusion density estimates, as 

conventional FA measures calculated from diffusivity do not yield this qualitative between-

subject diversity (Fig. 1C). To sample the local density measurements across all major white 

matter pathways, dMRI data was reconstructed into a standard space, and the fiber directions of a 

common atlas were used to sample an SDF value for each fiber direction (see Methods and Fig. 

2A). This approach yields, for each dMRI scan, a local connectome fingerprint consisting of a 

high-dimensional feature vector with a total of 513,316 density estimates (Fig. 2B). Fig. 2C 

shows the fingerprints of the same three subjects in Fig. 1B and the fingerprints from their repeat 

scans. Consistent with the qualitative measurements in Fig. 1B, each local connectome 

fingerprint in Fig. 2C shows, at a coarse level, a highly similar pattern for within-subject scans 

and also high variability across subjects, suggesting that the local connectome fingerprint may 

exhibit the unique features of the white matter architecture. 
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Fig 1. The uniqueness of local connectome structure revealed by the density of diffusing 

water.  

(A) The spin distribution function (SDF) calculated from diffusion MRI quantifies the density of 

diffusing water along axonal fiber bundles. The magnitudes of SDF at axonal directions provide 

density-based measurements to characterize axonal fiber bundles. (B) The density measurements 

obtained from SDF show individuality between-subjects #1, #2, and #3 (intensity scaled between 

[0 0.8]). The density of diffusing water varies substantially across different portions of the corpus 

callosum. The repeat measurements after 238 (subject #1), 191 (subject #2), and 198 (subject #3) 

days still present a consistent pattern that captures individual variability. (C) In contrast to the 

SDF shown in (B), the fractional anisotropy derived from diffusivity shows no obvious 

individuality between the same subjects #1, #2, and #3 (intensity also scaled between [0 0.8]). 

This is due to the fact that diffusivity, which quantifies how fast water diffuses, does not vary a 

lot in normal axonal bundles. 
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Fig 2. Local connectome fingerprinting.  

(A) Local connectome fingerprinting is conducted by first reconstructing diffusion MRI data into 

a standard space to calculate the spin distribution functions (SDFs). A common fiber direction 

atlas is then used to sample the density of diffusing water along the principle directions in the 

cerebral white matter. The sampled measurements are compiled in a left-posterior-superior order 

to form a sequence of characteristic values as the local connectome fingerprint. (B) One local 

connectome fingerprint is shown in different zoom-in resolutions. A local connectome 

fingerprint has a total of 513,316 entries of scalar values presenting a unique pattern that can 

characterize the individuality of the human brain connections. (C) The local connectome 

fingerprint of subject #1, #2, and #3 and their repeat measurements (lower row) after 238, 191, 

and 198 days, respectively. At a coarse level, the local connectome fingerprint differs 

substantially between three subjects, whereas those from the repeat scans show a remarkably 

identical pattern, indicating the uniqueness and reproducibility of the local connectome 

fingerprint. 
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Between-subject versus within-subject difference 

To quantify how well the local connectome fingerprint captures between-subject difference, we 

used four independently collected dMRI datasets (n=11, 24, 60, 118) with repeat scans for a 

subset of the subjects (n=11×3, 24×2, 14×2, 44×2, respectively). The Euclidian difference (i.e., 

root-mean-squared error) was used as a single difference estimate between any two fingerprints. 

For each dataset, we computed within-subject differences (n=33, 24, 14, 44, respectively) and 

between-subject differences (n=495, 1104, 2687, and 12,997, respectively). Figure 3 shows the 

within- and between-subject differences of the four datasets. All four datasets show a clear 

separation between the within-subject and between-subject difference distributions, with no 

single within-subject difference pairing being as large as any of the between-subject differences. 

The d-prime sensitivity index also shows high separability between the two difference 

distributions, with d-prime values of 14.84, 12.80, 7.21, and 8.12, for dataset I, II, III, and IV 

respectively.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2016. ; https://doi.org/10.1101/043778doi: bioRxiv preprint 

https://doi.org/10.1101/043778
http://creativecommons.org/licenses/by/4.0/


Fig 3. Within-subject versus between-subject difference in the local connectome 

fingerprints calculated from four datasets.  

(A) The first row shows the matrix of pair-wise difference between any two local connectome 

fingerprints is calculated for dataset I, II, III, and IV (column 1, 2, 3, and 4). The second row 

shows the location of the within-subject (blue) and between-subject difference (red). The 

difference matrix shows substantially high between-subject difference and low within-subject 

difference. (B) The histograms of within-subject (blue) and between-subject (red) difference in 

the connectome fingerprints calculated from the dataset I, II, III, and IV (column 1, 2, 3, and 4). 

The first row shows the histograms, and the second row shows the box plot of their quartiles. In 

these four datasets, within-subject (blue) and between-subject (red) differences have perfect 

separation. In the last row, the histograms are fitted with generalized extreme value distribution 
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(also shown by solid curves in the second row) to estimate the classification error of the 

connectome fingerprint. The estimated classification error was 4.25×10-6, 9.97×10-7, 5.3×10-3, 

and 5.5×10-3 for dataset I, II, III, and IV, respectively. The larger error in dataset III and IV could 

be due to their longer scanning interval (6 months and one year). 

 

This consistency suggests that the local connectome fingerprint could be used as a unique 

characterization feature vector of an individual subject. To assess this, we used a linear 

discriminant analysis (LDA) classifier [14] to classify whether two fingerprints came from the 

same individual using only the difference between fingerprints as the classification feature. For 

each dataset, the classification error was estimated using leave-one-out cross-validation. Out of a 

total of 17,398 cross-validation rounds from four datasets (17,283 different-subject and 115 

same-subject pairings), there was not a single misclassification. To estimate the true 

classification error, we modeled the distributions of within-subject and between-subject 

differences by the generalized extreme value distribution [15], a continuous probabilistic 

function often used to assess the probability of extreme values (smallest or largest) appearing in 

independent identically distributed random samples (last row of Fig. 3B). The classification error 

can be quantified by the probability of a within-subject difference greater than a between-subject 

difference. Our analysis shows that the classification error was 4.25×10-6 for dataset I, 9.97×10-7 

for dataset II, 5.3×10-3 for dataset III, and 5.5×10-3 for dataset IV. The larger error in dataset III 

and IV could be due to their longer scan interval (6 months and one year). Thus, the probability 

of mistaking two samples of the same subject’s local connectome fingerprint as coming from two 

different individuals is low enough so as to consider the local connectome fingerprint a highly 

reliable measure of individual subject uniqueness. 

Corpus callosum fingerprint 

Since the macroscopic patterns such as gyral and sulcal folding could also contribute to the 

characteristic features of the local connectome fingerprint, it is possible that the unique features 

we observed reflect only an artifact of the normalization process, not truly the microscopic 

characteristics of the white matter architecture. Therefore, we retested our measure within a 

restricted white matter mask that only covers the median sagittal sections of corpus callosum 

defined by the JHU white matter atlas. This “corpus callosum fingerprint” should be free from all 
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possible contribution of macroscopic pattern such as gyral and sulcal foldings. The same analysis 

procedures applied to the local connectome fingerprint were applied to the corpus callosum 

fingerprint to examine whether it reveal unique patterns specific to individuals.  The result 

showed that the d-prime values were 5.97, 5.85, 3.78, and 4.08, for dataset I, II, III, and IV, 

respectively. The leave-one-out cross-validation analysis showed that classification error was 

0%, 0.089%, 1.26%, and 0.63%, for dataset I, II, III, and IV, respectively. The classification 

error modeled by the generalized extreme value distribution was 9.13×10-4, 5.6×10-3, 6.9×10-3, 

and 7.2×10-3, for dataset I, II, III, and IV, respectively. The corpus callosum fingerprint itself 

already can achieve more than 99% accuracy in subject identification. This suggests that the high 

individuality of the local connectome fingerprint is not due macroscopic patterns such as gyral 

and sulcal folding but owing to the microscopic characteristics of the white matter architecture. 

 

Comparison with FA-based fingerprints 

FA has also been shown to reveal microscopic integrity of the axonal structure, and whether the 

density measure used in local connectome fingerprint can provide better characterization of 

white matter architecture requires a comparison. To this end, we used the identical analysis 

pipeline as was used for the local connectome fingerprint and only replaced the SDF-based 

measures with FA values of the corresponding voxels. Our analysis showed that the d-prime 

values of the FA-based fingerprint were 4.84, 4.70, 4.56, and 3.60, for dataset I, II, III, and IV, 

respectively. All values are substantially smaller than those of the local connectome fingerprint. 

The leave-one-out cross-validation analysis showed that classification error of the FA-based 

fingerprint was 0%, 0.18%, 0.22%, and 0.87%. While FA-based fingerprints also have high 

uniqueness with classification error less than 1%, it is clear from these results that the greatest 

reliability at characterizing connectomic uniqueness comes from the local connectome measures. 

This also indicates that SDF can provide better characterization of white matter architecture. 

Comparison with global connectivity-based fingerprints 

We further compared the local connectome fingerprint with region-to-region connectivity 

estimates from diffusion MRI fiber tracking. The same analysis pipeline as was used for the local 

connectome fingerprint was used to calculate leave-one-out cross-validation error for the 

traditional connectivity matrix. The d-prime values for the region-to-region connectivity matrices 
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in dataset I, II, III, and IV were at 3.44, 2.06, 2.41, and 2.25, respectively. The classification 

error for datasets I, II, III, and IV were 3.6%, 13.65%, 11.81%, and 9.48%, respectively 

(estimated by leave-one-out cross validation). While the classification accuracy for the 

traditional connectivity matrices is still quite high and similar to what has previously been 

observed in resting state functional connectivity estimates [16], it is clear from these results that 

the greatest reliability at characterizing connectomic uniqueness comes from local connectome 

measures. 

Similarity among genetically-related individuals 

The local connectome fingerprint opens the possibility for comparing not only differences but 

also the similarities between individuals, but it is crucial to examine whether it can reliably 

quantify white matter architecture as phenotypes. To this end, we used a publicly available dMRI 

dataset of 486 subjects from Human Connectome Project (2014, Q3 release), including 49 pairs 

of monozygotic (MZ) twins, 43 pairs of dizygotic twins (DZ) twins, and 96 pairs of non-twin 

siblings. While the local connectome fingerprints of MZ twins show generally similar patterns at 

the coarse level (Fig. 4), there are also substantial individual differences between the twins that 

can still be observed along the fingerprints. Consistent with these qualitative comparisons, we 

found that MZ twins have smaller differences between fingerprints, followed by DZ twins, 

siblings, and unrelated subjects (Fig. 5A). It is noteworthy that all difference distributions have 

large overlapping regions (Fig. 5B), indicating that the difference between twins or siblings may 

often fall within the distribution of differences from genetically-unrelated subjects. We further 

compared the similarity between twins and siblings. The similarity index of two local 

connectome fingerprints was calculated as a percentage of the mean difference between 

unrelated subjects (see Methods). On average, MZ twins have a similarity index of 12.51±1.09%, 

whereas similarity for DZ twins and siblings is 5.14±1.34% and 4.47±0.59%, respectively (Fig. 

5C). The difference in similarity index was significant across MZ twins, DZ twins, non-twin 

siblings, and genetically-unrelated subjects (F[3,51224] = 93.64, p < 0.001). Post-hoc 

comparisons using Tukey-Kramer tests showed significant differences between any two groups 

(all p < 0.001), except between DZ twins and non-twin siblings (p = 0.9348). This result is 

consistent with our understanding that MZ twin shares higher genetic similarity, whereas DZ 
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twins share a similar genetic similarity as non-twin siblings. This suggests that local connectome 

fingerprint can be used as a reliable phenotype of white matter architecture. 

 

Fig 4. The local connectome fingerprints of monozygotic (MZ) twins, dizygotic (DZ) twins, 

and non-twin siblings.  

Three pairs of connectome fingerprints are shown for each population group, and each pair is 

annotated by a connecting line. The connectome fingerprints between MZ twins show the grossly 

similar patterns though between-subject difference can still be observed. DZ twins and siblings 

also have a similar pattern, but the between-subject difference becomes more prominent. 
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Fig 5. The similarity between genetically related subjects versus similarity between repeat 

scans.  

(A) The histograms show the distribution of the difference between monozygotic (MZ) twins, 

dizygotic (DZ) twins, non-twin siblings, and genetically unrelated subjects calculated from their 

local connectome fingerprints. In average, MZ twins have the lowest difference between each 

twin pair, followed by DZ twins and siblings. (B) The upper figure shows the histograms of the 

difference fitted with generalized extreme value distribution, whereas lower figure shows the box 

plot of the distribution to facilitate comparison. The four distributions are mostly overlapped, 

indicating that twins and siblings still have high individuality similar to genetically-unrelated 

subjects. (C) The local connectome fingerprint can use as a phenotype to quantify the genetic 

contribution to the white matter architecture. The similarity between MZ twins is significantly 

higher than that between DZ twins or non-twin siblings, whereas the similarity between DZ 

twins is not statistically different from the similarity between non-twin siblings.  

 

Neuroplasticity revealed by the repeated scans 

Finally, we examined how time impacts the uniqueness of local connectome fingerprints. The 

timeframe between repeat scans varied across the four datasets. The subjects in dataset I (n=11) 

were scanned three times, with all sessions occurring within 16 days. The subjects in dataset II 

(n=24) were scanned twice with 1-3 months apart. In dataset III (n=60), 14 of the subjects were 

scanned twice about six months apart, and 44 of the subjects in dataset IV (n=118) were scanned 
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a second time one year later. Consistent with our hypothesis, the similarity in repeat scans of the 

same individual was strongest within 16 days (72.43% similarity in dataset I), whereas the 

similarity was lower at 1~3 months (69.82% dataset II), six months (67.02% dataset III) and one 

year (65.85% for dataset IV)(Fig. 6A). The similarity index was significantly different across all 

four datasets (F[3,111] = 5.26, p = 0.002). Using linear regression, we next modeled the 

influence of time on connectomic uniqueness (Fig. 6B). As expected, the impact of the interval 

on similarity index was negative (-0.01989, p < 0.001) meaning that within-subject similarity 

dropped at a rate of 0.02% per day or 7.26% per year. The longer intervals between repeat scans 

led to reduced similarity index of the same subject, suggesting that local connectome fingerprint 

may capture structural changes due to life experience. 

 

 

Fig 6. The similarity between repeated scans decreases at longer time intervals. 

(A) In four independently acquired datasets, the similarity between repeat scan shows a 

decreasing trend with respect to the time interval, suggesting that local connectome fingerprint 

may capture neuroplasticity in the white matter architecture due to life experience. (B) The 

scatter plot shows the similarity of repeated scans with respect to the scan interval for each 

participating subjects. The longer intervals between repeat scans result in lower similarity index. 

 

Discussion 

Local white matter architecture is so unique and highly conserved within an individual that it can 

be considered a unique neural phenotype. Here we show that this phenotype can be quantified by 

measuring the density of microscopic water diffusion along major white matter fascicles and 

producing a high dimensional vector that can be used to compute the distance between two 
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structural connectomes, i.e., a local connectome fingerprint. The distance between two local 

connectome fingerprints reflects a low dimensional representation of both similarities and 

differences in whole-brain white matter pathways, Our analysis showed how the local 

connectome fingerprint exhibits unprecedentedly high between-subject distance, while generally 

low within-subject distance, allowing for it to be used as a reliable measure of the specific 

connective architecture of individual brains. This property paves the way for using the local 

connectome as a phenotypic marker of the structural connectome.  

The concept of local connectome is both conceptually and methodologically different from 

conventional connectomic measures. While most studies have emphasized on region-to-region 

connectivity [3] and ignored the rich information in the local white matter architecture, the local 

connectome reveals the connectivity at the voxel level and characterizes local white matter 

architecture to provide a high dimensional data that may complement the region-to-region 

connectivity [11]. This local connectome mindset considers the fact that the difference between 

brain structures may be localized and thus may not be readily identified in the global 

connectomic pattern. We have previously shown that the local connectome can be used to 

localize the change of white matter structure due to physiological difference such as body mass 

index [11]. In fact, the uniqueness of fingerprints generated from the local connectome is 

substantially higher than what is observed in region-to-region connectivity reported by either 

dMRI or fMRI, as typically done in human connectomic studies [2, 16, 17]. For example, the 

region-to-region structural connectivity achieved a classification accuracy around 90~97%. This 

is very close to the accuracy of its functional counterpart [16], that was recently reported to have 

an accuracy of 92-94% in whole brain identification and 98-99% in frontoparietal network. 

Although both region-to-region connectivity approaches have accuracy greater than 90%, the 

performance remains substantially lower than the perfect classification in 17,398 leave-one-out 

rounds and an estimated error of 10-6 achieved by local connectome fingerprint.   

At first glance, it may seem possible that the high degree of uniqueness exhibited by the local 

connectome fingerprint may be due to variability in the spatial normalization process between 

individuals driven by the unique gyral or sulcal folding patterns in gray matter. However, our 

comparison with the FA-based fingerprints reveals that the spatial normalization process does 

not fully contribute to the uniqueness observed in the local connectome fingerprint. Both FA-
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based fingerprints and the local connectome fingerprints used identical spatial normalization 

mapping, but the FA-based fingerprints have a much higher error rate in leave-one-out cross-

validation (e.g. 0.87% for dataset IV) than the zero cross-validation error achieved by the local 

connectome fingerprint, suggesting that a substantial portion of the uniqueness is owing to the 

microstructural white matter characteristics quantified in the SDF. Moreover, we get nearly as 

good characterization of white matter uniqueness when our analysis is restricted to a small 

portion of white matter with minimal influence of sulcal and gyral folding (i.e., the mid corpus 

callosum). In this case, the corpus callosum fingerprint itself also exhibited good uniqueness as 

the FA-based fingerprints sampled from the whole white matter structure. These two analyses 

support our claim that the local connectome fingerprint can reveal the unique characteristics of 

the white matter architecture. 

It is important to point out that the local connectome fingerprint is sensitive to individual 

differences in underlying white matter architecture than more popular diffusivity-based metrics 

such as FA, axial diffusivity, and radial diffusivity. Diffusivity quantifies how fast water diffuses 

in tissue [18] and is sensitive to the structural integrity of the underlying fiber bundles [12], such 

as axonal loss and demyelination [19-22]. By contrast, SDF quantifies how much water diffuses 

along the fiber pathways [13, 23] and is sensitive to density characteristics of white matter such 

as the compactness of the fiber bundles [13, 24, 25]. As illustrated in our qualitative analysis 

(Fig. 1C), while the density characteristics vary substantially among normal populations, the 

diffusivity measurements do not show obvious differences between subjects. This highlights how 

diffusion density-based measures may be more sensitive to microstructural white matter patterns 

that reflect within-individual uniqueness than diffusivity-based metrics.  

The high degree of uniqueness in the local connectome within an individual means that it reflects 

a quantifiable phenotype of neural organization. As illustrated in our analysis of twins, the 

similarity in monozygotic twins was around twice as much of the dizygotic twins, whereas our 

posthoc analysis did not find significant similarity difference between dizygotic twins and non-

twins siblings. These results are highly suggestive that genetics contribute a substantial portion to 

the overall construction of the local connectome, which is consistent with previous studies 

showing high heritability in cortical connections [26, 27] and white matter integrity [28-31]. 

Nevertheless, our results also showed that high heritability may not necessarily imply that most 
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of the differences or similarity observed in phenotypes are due to genetic factors [32]. 

Monozygotic twins share only 12.51% similarity in local white matter architecture while repeat 

scans for the same subject have a much high similarity hovering around 60-70%. Thus, a 

considerable portion of the individuality in local connectome is likely driven by environmental 

factors such as life experience and learning, and monozygotic twins still exhibit high 

individuality in their connectome. In fact, our findings show that the local connectome 

fingerprint is highly plastic over time. The uniqueness of the local connectome fingerprint 

decreases at a rate of 0.02% per day, or 7.26% per year, raising many questions about which 

factors (genomic, social, environmental, or pathological) sculpt local white matter systems. Of 

course, white matter integrity also varies with normative development [33-35], a portion of 

which may be determined genetically. This warrants more longitudinal and genetic analysis to 

identify specific contributions of genetic and environmental factors on the uniqueness of 

connectomic structure, with an aim to understand how those factors interact with abnormal brain 

circuits in neurological and psychiatric disorders. Future work can more carefully look at how 

individual genetic markers contribute to the similarity in the local white matter architecture.  

Methods 

Five independently collected dMRI datasets 

The first dataset included a total of 11 subjects (9 males and 2 females, age 20~42). Each subject 

had three diffusion MRI scans within 16 days on a Siemens Trio 3T system at the University of 

California, Santa Barbara. All methods were approved by the local institutional review board at 

the University of California, Santa Barbara. The diffusion MRI was acquired using a twice-

refocused spin-echo EPI sequence. A 257-direction full-sphere grid sampling scheme was used. 

The maximum b-value was 5000 s/mm2. TR = 9916 ms, TE = 157 ms, voxel size = 2.4×2.4×2.4 

mm, FoV = 231×231 mm.  

The second set of data included a total of 24 subjects (8 males and 16 females, age 22 ~ 74). All 

participants were scanned on a Siemens Tim Trio 3T system at National Taiwan University, and 

all subjects had their second scan at 1~3 months. All methods were approved by the local 

institutional review board at National Taiwan University. The diffusion MRI was also acquired 

using a twice-refocused spin-echo EPI sequence. The diffusion scheme is a 101-direction half-
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sphere grid sampling scheme with b-max = 4000 s/mm2 (b-table available at http://dsi-

studio.labsolver.org). TR = 9600 ms, TE = 130 ms, voxel size = 2.5×2.5×2.5 mm.  

The third set of data included a total of 60 subjects (30 males and 30 females, age 18 ~ 46). All 

participants were scanned on a Siemens Verio 3T system at Carnegie Mellon University, and 14 

of the 60 subjects had their second scan at 6 months. All methods were approved by the local 

institutional review board at Carnegie Mellon University. The diffusion MRI was also acquired 

using a twice-refocused spin-echo EPI sequence. A 257-direction full-sphere grid sampling 

scheme was used. The maximum b-value was 5000 s/mm2. TR = 9916 ms, TE = 157 ms, voxel 

size = 2.4×2.4×2.4 mm, FoV = 231×231 mm.  

The fourth set of diffusion data included a total of 118 subjects (91 males and 27 females, age 22 

~ 55) that were also scanned on a Siemens Verio 3T system at the Carnegie Mellon University. 

All methods were approved by the local institutional review board at the University of Pittsburgh 

and Carnegie Mellon University.  44 of them had another scan after one year. The diffusion 

images were acquired on a Siemens Verio scanner using a 2D EPI diffusion sequence. TE=96 

ms, and TR=11100 ms. A total of 50 diffusion sampling directions were acquired. The b-value 

was 2000 s/mm2. The in-plane resolution was 2.4 mm. The slice thickness was 2.4 mm. 

The fifth dataset was from the Human Connectome Projects (Q3, 2014) acquired by Washington 

University in Saint Louis and University of Minnesota. The diffusion MRI data were acquired on 

a Siemens 3T Skyra scanner using a 2D spin-echo single-shot multiband EPI sequence with a 

multi-band factor of 3 and monopolar gradient pulse. A total of 486 subjects (195 males and 291 

females, age 22 ~ 36) received diffusion scans. The spatial resolution was 1.25 mm isotropic. 

TR=5500 ms, TE=89.50 ms. The b-values were 1000, 2000, and 3000 s/mm2. The total number 

of diffusion sampling directions was 90, 90, and 90 for each of the shells in addition to 6 b0 

images. The total scanning time was approximately 55 minutes. The scan data included 49 pairs 

of monozygotic twin, 43 pairs of dizygotic twins, and 96 pairs of siblings.  

Carnegie Mellon University Institutional Review Board (IRB) reviewed the research protocol for 

the data analysis in accordance with 45 CFR 46 and CMU’s Federal-wide Assurance. The 
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research protocol has been given approval as Exempt by the IRB on March 12, 2014, in 

accordance with 45 CFR 46.101(b)(4) (IRB Protocol Number: HS14-139). 

Local connectome fingerprinting 

As shown in Fig. 2A, the diffusion MRI data of each subject were reconstructed in a common 

stereotaxic space using q-space diffeomorphic reconstruction (QSDR)[36], a white matter based 

nonlinear registration approach that directly reconstructed diffusion information in a standard 

space: 
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 ûψ  is a spin distribution function (SDF)[13] in the standard space, defined as the density of 

diffusing spins that have displacement oriented at direction û . φ is a function that maps a 

coordinate r from the standard space to the subject’s space, whereas φJ  is the Jacobian matrix of 

φ, and φJ  is the Jacobian determinant. iW  is the diffusion signals acquired by a b-value of bi 

with diffusion sensitization gradient oriented at iĝ .   is the diffusion sampling ratio controlling 

the displacement range of the diffusing spins sampled by the SDFs. Lower values allow for 

quantifying more from restricted diffusion. D is the diffusivity of free water diffusion, and Z0 is 

the constant estimated by the diffusion signals of free water diffusion in the brain ventricle[36]. 

A   of 1.25 was used to calculate the SDFs, and 1 mm resolution was assigned to the output 

resolution of the QSDR reconstruction. 

 

A common axonal directions atlas, derived from the HCP dataset (this HCP-488 atlas is freely 

available at http://dsi-studio.labsolver.org), was used as a common SDF sampling framework to 

provide a consistent set of sampling directions û  to sample the magnitude of SDFs along axonal 

directions in the cerebral white matter. Gray matter was excluded using the ICBM-152 white 

matter mask (MacConnel Brain Imaging Centre, McGill University, Canada). The cerebellum 

was also excluded due to different slice coverage in cerebellum across subjects. Since each voxel 

in the cerebral white matter may have more than one axonal direction, multiple measurements 
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can be extracted from the SDF of the same voxel. The density measurements were sampled by 

the left-posterior-superior voxel order and compiled into a sequence of scalar values (Fig. 2B). 

Since the density measurement has arbitrary units, the local connectome fingerprint was scaled to 

make the variance equal to 1. The computation was conducted using DSI Studio (http://dsi-

studio.labslover.org), an open-source diffusion MRI analysis tool for connectome analysis. The 

source code and the local connectome fingerprint data are publicly available on the same 

website. 

 

Estimation of classification error 

For each dMRI dataset, the root-mean-squared error between any two connectome fingerprints 

was calculated to obtain a matrix of paired-wise difference. The calculated difference was used 

as the feature to classify whether two connectome fingerprints are from the same or different 

person. The default linear discriminant analysis (LDA) classifier provided in MATLAB 

(MathWorks, Natick, MA) was used, and for each dataset, the classification error was estimated 

using leave-one-out cross-validation. We also used a modeling method to calculate the 

classification error if the leave-one-out cross- validation did not yield any classification error. 

The histograms of the within-subject and between-subject differences were fitted by the 

generalized extreme value distribution using the maximum likelihood estimator (gevfit) provided 

in MATLAB. To consider the non-negativity of the distribution, the estimated k parameter of the 

generalized extreme value distribution was set to be greater than 0. The classification error was 

estimated by the probability of a within-subject difference greater than a between-subject 

difference estimated using the generalized extreme value distribution. 

Comparison with traditional connectivity matrix 

To compare local connectome fingerprint with region-to-region connectivity matrix, 

deterministic fiber tracking[24] was applied using a 100,000 uniform white matter seeding 

points, a maximum turning angle of 60 degrees, and a default anisotropy threshold determined 

using Otsu’s threshold [37]. The cortical regions were defined through a nonlinear registration 

between the subject anisotropy map and the HCP-488 anisotropy map in DSI Studio and 

parcellated using the Automated Anatomical Labeling (AAL) atlas. The matrix entries were 

quantified by the number of tracks ending in each of the region pairs. The root-mean-squared 
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error can also be calculated from any two connectivity matrices. The classification error was also 

estimated and compared with local connectome fingerprint. 

Similarity index 

The similarity index between two local connectome fingerprints was calculated by 100%×(1-

d1/d0), where d1 was the difference between two fingerprints, and d0 was the expected value of 

the differences between unrelated subjects scanned by the same imaging protocol. The similarity 

between MZ twins, DZ twins, non-twin siblings, and repeated scans was calculated and 

compared. To further study the similarity between repeat scans, the similarity indices were 

regressed against their scanning time intervals to study the effect of time interval on the local 

connectome fingerprints. 
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