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Abstract

As an example of topic where biology and physics meet, we present the issue of protein folding

and stability, and the development of thermodynamics-based bioinformatics tools that predict the

stability and thermal resistance of proteins and the change of these quantities upon amino acid

substitutions. These methods are based on knowledge-driven statistical potentials, derived from

experimental protein structures using the inverse Boltzmann law. We also describe an application

of these predictors, which contributed to the understanding of the mechanisms of aggregation of a

particular protein known to cause a neuronal disease.
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I. INTRODUCTION

Molecular and cellular biology were traditionally purely experimental sciences, and it is

only recently that theoretical biology – including bioinformatics, biomodeling and biomath-

ematics – has started to develop. The need for informatics approaches has become essential

with the advent of high-throughput technologies, which generate a huge amount of data

in a single experiment, such as full genome sequences or the ensemble of transcribed RNA

molecules in a cell population. These technologies are at the basis of omics science, defined

as the collective study and characterization of biomolecules: proteomics is the large-scale

study of proteins, genomics of genomes, transcriptomics of transcribed RNA, mutatomics of

all mutations in proteins or DNA, and so on.

In parallel to omics science, (computational) systems biology has started to attract a lot

of attention. It has become clear that the functioning of cells cannot be understood only

through the study of individual macromolecules, such as proteins, RNA, and DNA. Indeed,

the interactions between all biomolecules present inside and outside the cells are of prime

importance, and they are indispensable to understand and model cellular life. In other words,

the division of the cell into independent subsystems is a much too strong approximation.

Obviously, this has the consequence of dramatically increasing the complexity of the systems

to be studied.

An interesting feature of bioinformatics and biomodeling is that application is never

far. Computational approaches are increasingly exploited to rationalize existing data and to

develop knowledge-based predictors. These are unable to give a unique optimal solution – as

the systems are far too complex –, but propose valuable candidate hypotheses, which need to

be further analyzed and validated by experimental means. These targeted conjectures save
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a lot of time as they allow focusing on a few relevant possibilities. In the medical sector,

computational approches are more and more used in rational drug [1], antibody [2] and

vaccine [3] design, or for identifying genome variants that cause human diseases [4, 5]. In the

very near future, therapies will be personalized for each patient on the basis of the variants

that appear in his genome. On the other hand, enzymes are used for their unique catalytic

properties in many biotechnology sectors, and their optimization is an important challenge

for setting up efficient and environment-friendly bioprocesses [6–8]. Finally, synthetic biology

will certainly gain importance in the future, and modified or synthetic cells can be expected

to be used as little factories that produce specific compounds to be used for example as

energy source (e.g. bioethanol, biohydrogen) [9, 10].

We focus in this paper on a specific subdomain of structural bioinformatics, i.e. protein

folding and stability. Proteins are chains of amino acids and a large class of them fold into

a well-defined 3-dimensional (3D) structure in physiological conditions (Fig. 1). Generally,

when correctly folded, they fulfill their biological role (catalysis, molecular transport, sig-

nal transduction, genome regulation, etc). Protein folding is (usually) a reversible process

basically ruled by classical physics, in which the 3D structure is stabilized by interactions

between the different types of amino acids. The problem is thus well defined and can be

tackled with physical methods, specifically through statistical mechanics. However, it is

extremely difficult to actually predict the 3D structure from the amino acid sequence, for

two reasons: the conformational space of a protein is enormous and the energy functions

that describe inter-residue interactions are not perfectly accurate.

(a) (b)

FIG. 1: (a) Part of a protein chain. Proteins are sequences of about 50 to more than 10,000 covalently

bound amino acids. These are of 20 types: the 20 amino acids that are encoded in the genome. They

share a common part (called main chain) and differ by their side chains which carry molecular groups

with different physicochemical properties (charged, aromatic, aliphatic, etc). They are represented

by uppercase letters. (b) Native (folded) structure of triose phosphate isomerase (Protein DataBank

(PDB) [11] code: 7tim). Helices are represented in blue, β-strands in red and loops in magenta.
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We present some bioinformatics tools that were developed in our group in view of esti-

mating the thermodynamic and thermal stability of a protein, and the changes that occur

upon substitution of one amino acid into another [12–16]. Such tools are very helpful in

protein design, when aiming at rationally modifying or optimizing certain protein character-

istics, whether in biopharmaceutical, biomedical or biotechnological applications, or simply

when attempting to elucidate the complex relationships between protein sequence, structure,

stability, interactions and function.

II. PROTEIN FOLDING AND STABILITY

In general, proteins occur in two distinct structural states in their usual environment,

that is the intra- or extracellular medium, or the cellular membrane. These are the folded

and unfolded state, which correspond to two free energy minima. The folded, biologically

active, state has a low entropy but favorable enthalpy, while the unfolded state has a large

entropy but unfavorable enthalpy. The (un)folding transition is an equilibrium process,

where the folded structure is preferred for a range of conditions including the physiological

conditions (e.g. the living temperature and pH of the host organism), and the unfolded

structure is preferred for the other conditions. The transition is usually reversible, at least

if aggregation or post-translational modifications are overlooked and if large multidomain

proteins are not considered. Note that this is true for the class of proteins called structured

proteins. Another class consists of proteins that are intrinsically unstructured or only fold

in the presence of some biomolecular partner; we will not consider such proteins here.

Proteins play crucial roles in and outside the cells – they do most of the actual work

required for cellular life. Mutations in proteins define polymorphisms – which are at the

basis of the phenotypic variability between individuals. However, though the large majority

of mutations have a neutral effect, some significantly affect the protein structure, stability,

interactions or function, and cause diseases.

The stability of a protein structure is defined by its standard folding free energy:

∆G0 = G0(folded state)−G0(unfolded state) , (2.1)

which depends on all environmental parameters such as the solvent, pH, pressure and tem-

perature. If we only consider the dependence on the temperature, the stability curve of

a protein [17] has a inverted bell-shape (Fig. 2) and is described by the Gibbs-Helmholtz

equation, which is valid for proteins that fold according to a two-state transition:

∆G0(T ) = ∆H0
m

(
1− T

Tm

)
−∆C0

P

[
(Tm − T ) + T Log

(
T

Tm

)]
, (2.2)

where Tm is the melting temperature of the protein, i.e. the temperature at which ∆G0

vanishes, ∆H0
m is the standard folding enthalpy measured at Tm and ∆C0

P the folding heat

capacity assumed to be T -independent. Note that Tm is here the denaturation temperature

at high T ; there is also a denaturation temperature at low T which we do not consider here

as water usually freezes before the protein denatures.
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Two complementary descriptions of protein stability are commonly used: the thermo-

dynamic stability is identified by ∆G0(Tr) at room temperature (Tr), whereas the thermal

stability is defined by the melting temperature Tm.

Thermal and thermodynamic stabilities are not always correlated, which is obvious from

the Gibbs-Helmholtz equation (2.2) when T = Tr. The molecular reason of the lack of corre-

lation between the two stabilities is that the 20 amino acids are of different physicochemical

types, and that their energetic contributions have different temperature dependences.

(a) (b)

FIG. 2: Stability curves of proteins belonging to the adenylate kinase family and identified by the

PDB [11] code 1aky (from Saccharomyces cerevisiae), 1s3g (from Sporosarcina globispora), 1ank (from

Escherichia coli) and 1zip (from Geobacillus stearothermophilus). Temperatures are measured in K

and folding free energies in kJ/mol. (a) Experimental stability curves; (b) Stability curves predicted

by SCooP [13].

Upon substitution of one amino acid into another, or of several amino acids, the so-called

wild-type protein is transformed into a mutant protein, and this has an impact on all its

biophysical properties. The folding free energy gets modified as: ∆∆G0 = ∆G0 mutant −
∆G0 wild, the melting temperature as: ∆Tm = Tmutant

m − Twild
m , and similarly for the changes

in folding heat capacity (∆∆C0
P ) and enthalpy (∆∆H0

m). The changes in thermodynamic

and thermal stabilities upon mutations are more – but still imperfectly – correlated than

the stabilities themselves, as can be deduced from the relation:

∆∆G0(Tr) '
∆H0

mTr
(Twild

m )2
∆Tm + ∆∆H0

m

[
1− Tr

Twild
m

+
Tr

(Twild
m )2

∆Tm

]
+∆∆C0

P

[
Tr − Twild

m − Tr log
Tr
Twild
m

]
+O

(
∆T 2

m

Twild 2
m

)
. (2.3)

The linear correlation between ∆∆G0(Tr) and ∆Tm values was found to be equal to -0.7 on

about 450 experimentally characterized mutations [18].
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III. STATISTICAL POTENTIALS

To estimate the energy of a protein, two types of energy functions are commonly used.

The semi-empirical force fields assume an analytic form for the different types of interactions

with parameters that are transferred from experiments on small molecules or from quantum

chemistry calculations [19]. The statistical potentials do not assume any analytical form,

and are based on a coarse-grained representation of protein structure, which is a computa-

tional advantage if they have to be applied on an omics scale or in other time-consuming

calculations. They have moreover the advantage of considering implicitly the effect of the

solvent (i.e. water for soluble proteins). They are obtained by deriving a potential of mean

force (PMF) from frequencies of associations of structure and sequence elements in a dataset

of known 3D protein structures, using the Boltzmann law [20, 21]. The simplest PMF can

be written as:

∆W (s, c) ∼= −kT ln
F (s, c)

F (s)F (c)
, (3.1)

where c and s are structure and sequence elements respectively, F represent the relative

frequencies of c and/or s, and k is the Boltzmann constant. Sequence elements are sin-

gle amino acids, amino acid pairs, triplets, etc, and structure elements are inter-residue

distances, main chain torsion angle domains, solvent accessibility, etc. More complex poten-

tials can be constructed by considering more than two structure elements and/or sequence

elements. Examples of such potentials are given in Fig. 3.

(a) (b)

FIG. 3: Examples of distance potentials obtained from sets of mesostable proteins (blue curves) and

thermostable proteins (red curves). The folding free energy (in kcal/mol) is given as a function of

inter-residue distance d (in Å). (a) ∆W (R, d, T ) potential based on the propensity of the amino acid

of type R (arginine) to be at distance d from any other amino acid. (b) ∆W (V, V, d, T ) potential

based on the propensity of two amino acids of type V (valines) to be separated by a distance d.

The derivation of these potentials is based on several assumptions. All the conformations

accessible to a given protein are known to follow the Boltzmann law, but here it is assumed
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that the sequence-structure elements observed in the lowest free energy conformation of the

whole set of different proteins follow the same law. Another strong assumption is that the

unfolded state may be modeled by conformations that are sequence-independent.

A property of these potentials that can be either inconvenient or interesting – according

to the issue – is that they depend on the dataset from which they are derived. Such a depen-

dence can lead to unduly biased potentials if the dataset is noisy, redundant, or unbalanced.

But it is also possible to take advantage of this dependence. For example, by dividing the

protein structure set into a subset of thermostable proteins (Tm ≥ 65◦C, average T̄m ∼= 80◦C,

labeled by 4) and a subset of mesostable proteins (Tm < 65◦C, T̄m ∼= 50◦C, labeled by 5),

and deriving the potentials separately from both subsets, we obtain T -dependent potentials

[22]:

∆W (s, c, T ) ∼= −kT ln
F (s, c, T )

F (s, T )F (c, T )
, (3.2)

with T ∼= T̄m. The potentials derived from mesostable (thermostable) proteins yield energy

estimations at low (high) T . We would like to emphasize that this is currently the only way

of obtaining T -dependent free energy estimations. These potentials allowed us to get insight

into the T -dependences of specific interactions. For example, as shown in Fig. 3, the relative

propensity of the positively charged residue R (arginine) to be at a distance d from any other

amino acid is strongly T -dependent, whereas the relative weight of the effective interactions

between two hydrophobic residues V (valines) is T -independent. Note also that, in principle,

one could define (overlapping) sets of protein structures with increasing Tm-values, to get

almost continuous T -dependence. However, this is currently impossible due to the limited

number of protein structures of experimental determined Tm, which do not ensure reliable

statistics.

IV. PREDICTION OF THE STABILITY CURVE OF PROTEINS

Using the standard and the T -dependent statistical potentials described above, we de-

veloped a method called SCooP to predict the Gibbs-Helmholtz ∆G0(T ) curve of a target

protein with known 3D structure [12, 13]. SCooP is thus able to predict all the thermody-

namic quantities that characterize the folding transition, namely the melting temperature

Tm as well as the folding heat capacity ∆C0
P , enthalpy ∆H0

m and free energy ∆G0(Tr) at

room temperature.

These thermodynamic descriptors were obtained from specific combinations of the sta-

tistical potentials described in Eqs (3.1,3.2) with other protein characteristics such as their

number of residues N and their total surface area ASA. In particular, the functional form

for the folding heat capacity ∆C0
P was expressed as:

∆C0
P = α0N +

α1N + β1
N

ASA+
5∑

ν=2

ανN + βν
N

(
∆W4

ν −∆W5
ν

)
, (4.1)

where αν and βν are parameters to be optimized and the T -dependent potentials ∆W
4/5
ν
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are defined in Eq.(3.2)1. Analogous expressions with slightly different combinations of fea-

tures were used for Tm and ∆H0
m [13]. These functional forms were chosen on the basis of

biophysical insights and empirical evidence. For example, we considered the first two terms

in the right hand side of expression (4.1) on the basis of the experimental observation that

∆CP , N and ASA are quite well correlated. The last terms in (4.1) come from the ∆CP
definition :

∆C0
P = C0

P (folded)− C0
P (unfolded) =

∂∆H0(T )

∂T
' ∂

∑
ν γν(N)∆Wν(T )

∂T
, (4.2)

and the approximation consisting of expressing the folding entalphy ∆H0(T ) as a specific

combination of the statistical potentials at temperature T weighted with parameters that

depend on the number of residues γν(N) = αν + βν
N

. Since the continuous T -dependence

of the potentials is not known, we replaced the derivative by the finite difference between

thermo- and mesostable potentials:

∂
∑

ν γν(N)∆Wν(T )

∂T
'
∑
ν

γν(N)

∆T

(
∆W4

ν −∆W5
ν

)
, (4.3)

where ∆T is a constant that was integrated in the parameters.

All the parameters that appear in the functional form of ∆C0
P were optimized by minimiz-

ing the mean square error between the predicted and the experimental quantities of ` ≈ 220

proteins with known 3D structure and stability curve: σ2 = 1
`

∑`
k=1

(
∆C0 pred

P k −∆C0 exp
P k

)2
.

The same procedure was used to identify the parameters appearing in the functional forms

of Tm and ∆H0
m (not shown). The predicted values of ∆C0

P , Tm and ∆H0
m were then used to

draw the full stability curve using the Gibbs-Helmholtz equation (2.2). The SCooP predictor

is freely available on the website http://babylone.ulb.ac.be/SCooP.

One of the strengths of the SCooP method is the computation speed of the full T -

dependence of the folding free energy, which allows large-scale analyses of the entire struc-

turome. Another of its strengths is its good performance: the linear correlation coefficients

between the experimental and the predicted values of Tm, ∆C0
P and ∆H0

m for the dataset of

about 220 proteins are all three equal to 0.7, as computed with a leave-one-out cross valida-

tion procedure. The scores increase up to 0.8 after the exclusion of 10% outliers. Examples

of stability curves predicted by SCooP for proteins belonging to the adenylate kinase family

are given in Fig. 2b. As seen from the comparison with Fig. 2a in which the experimentally

determined stability curves are plotted, the SCooP predictions reproduce rather well the full

stability curves.

1 The following combinations of potentials were used: ∆W2(T ) = [∆W (a, t, T ) + ∆W (a, a, t, T )],

∆W3(T ) = [∆W (a,A, T ) + ∆W (a, a,A, T )], ∆W4(T ) = [∆W (a, d, T ) + ∆W (a, a, d, T )], and ∆W5(T ) =

[∆W (a,A, d, T ) + ∆W (a, a,A,A, d, T )], where a stands for amino acid type, d for inter-residue distance,

t for main chain torsion angle domain, and A for solvent accessibility.
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V. PREDICTION OF THE STABILITY CHANGES UPON MUTATIONS

A. Thermodynamic stability

It can be expected to be easier to predict changes in stability upon amino acid substitu-

tions than the actual stability of proteins. Indeed, the large majority of single-site mutations

do not affect the structure of the protein, but simply modify its stability, solubility, affinity

for biomolecular partners or function. The PoPMuSiC program [14, 15] , which is available

on http://www.dezyme.com, predicts changes in the thermodynamic stability of a protein

on the basis of its 3D structure and statistical potentials. The ∆∆G0(Tr) of a point mutation

is expressed as the sum of 16 terms :

∆∆G0(Tr) =
13∑
ν=1

αν(A)∆∆Wν + α+(A)∆V+ + α−(A)∆V− + αI(A) , (5.1)

where the 13 ∆∆Wν terms are changes in folding free energy upon mutation computed with

13 different statistical potentials ∆W defined in Eq.(3.1)2. The coefficients αν are taken as

sigmoid functions of the solvent accessibility of the mutated residue:

αν(A) = ων [1 + exp−rν(A−bν)]−1 + φν , (5.2)

where ων , rν , bν and φν ∈ R are parameters to be optimized. This A-dependence is justified

by the fact that the weight of the interactions vary continuously from the protein core to

the surface. The ∆V± are volume terms defined by ∆V± = θ(±∆V )‖∆V ‖, where θ(V ) is

the Heaviside function. They are associated with the difference in volume of the mutant and

wild-type amino acids and provide a description of the impact of the creation of a cavity or

the accommodation of stress inside the protein structure.

The optimal (ων , rν , bν , φν) parameter values were determined on the basis a dataset

of ` = 2648 single-site mutations in 131 different proteins with experimentally determined

3D structure and ∆∆G0(Tr). For that purpose, an artificial feedforward neural network

(ANN) was used, as shown in Fig. 4.a, with the mean square error between the ex-

perimental and predicted folding free energy changes upon mutation as cost function :

σ2 = 1
`

∑`
k=1

(
∆∆G0 pred

k (Tr)−∆∆G0 exp
k (Tr)

)2
. The parameter identification was particu-

larly complex due to the size and roughness of the parameter space, which makes the search

for the global minimum complicated and yields a high probability of getting stuck in local

minima. Therefore, the initial values of the weights were chosen randomly, the initialization

and training processes were repeated 30 times, and the solution reaching the lowest σ-value

was chosen.

The performance of PoPMuSiC was computed in 5-fold cross validation. The linear

correlation coefficient between experimental and predicted ∆∆G0(Tr) values is equal to

r = 0.6 and increases to 0.8 with 10% outliers suppressed; the mean square error σ is equal

2 These are: ∆W (a, d), ∆W (a, t), ∆W (a,A), ∆W (a, a, d), ∆W (a, a, t), ∆W (a, t, t), ∆W (a,A,A),

∆W (a, t, d), ∆W (a,A, d), ∆W (a, a,A), ∆W (a, t,A), ∆W (a,A, a,A, d), ∆W (a, t, a, t, d).
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(a) (b)

FIG. 4: Schematic representation of the ANNs used for the parameter identifications. (a) PoPMuSiC

and HoTMuSiC: 2-layer ANN (perceptron) with sigmoid activation functions and input neurons en-

coding T -independent potentials, volume terms and an independent term; (b) Tm-HoTMuSiC: 3-layer

ANN, consisting of 3 perceptrons with sigmoid weights; the neurons of the first (second) perceptron

encode the high-T (low-T ) potentials, and those of the third perceptron the volume and independent

terms. The outputs of these three perceptrons are the inputs of another perceptron with polynomial

weight functions.

to 1.1 kcal/mol and decreases to 0.9 kcal/mol without 10% outliers. This score is comparable

or better than that of other approaches. It must be emphasized that PoPMuSiC is extremely

fast, and predicts the ∆∆G0(Tr) of all possible point mutations in a medium-size protein in

a few minutes. It can thus be applied on a large, structuromics, scale. Of course this high

speed comes at the expense of some accuracy.

The distribution of ∆∆G0(Tr) values computed by PoPMuSiC for all possible amino acid

substitutions (about 105 mutations in total) in a set of 15 protein structures is shown in

Fig. 5 [23]. The large majority of the mutations have positive ∆∆G0(Tr) values and are

thus destabilizing with our conventions. This is of course expected, as protein sequences

are relatively well optimized for the stability of the native fold. Note, however, that natural

proteins are never perfectly optimal, because some residues are optimized for function rather

than for stability, but also, probably, because natural evolution has not had the time to reach

optimality.

B. Thermal stability

As thermodynamic and thermal stabilities are far from perfectly correlated, as clear from

Eq.(2.3), it is necessary to develop methods that predict directly ∆Tm values, instead of ap-

proximating them on the basis of ∆∆G0(Tr) predictions. This is the goal of HoTMuSiC [16],

which is available on http://www.dezyme.com. The first version of this program uses the
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FIG. 5: Distribution of the ∆∆G0(Tr) values for all possible amino acid substitutions in a set of 15

protein structures predicted by PoPMuSIC [14, 15].

relation:

∆THoT
m =

1

aN + c

(
9∑

ν=1

αν(A)∆∆Wν + α+(A)∆V+ + α−(A)∆V− + αI(A)

)
, (5.3)

where N is the number of residues in the protein, a, c ∈ R, and the coefficients αν(A)

are sigmoid functions of A. This equation is inspired by Eq.(2.3) with all but the first

term on the right hand side overlooked, and is thus very similar to Eq.(5.1) for ∆∆G0(Tr).

The 9 ∆∆Wν terms are computed from the first 9 of the 13 statistical potentials used in

Eq.(5.1). The optimal parameter values appearing in this equation were identified on the

basis of ` = 1531 single-site mutations with known 3D structure and ∆Tm, the cost function

σ2 = 1
`

∑`
k=1

(
∆T pred

m −∆T exp
m

)2
, and a feedforward ANN (Fig. 4a).

The second HoTMuSiC version is inspired by the full Eq.(2.3), and uses the T -dependent

statistical potentials of Eq.(3.2); it requires as input, in addition to the protein structure,

the melting temperature Twild
m of the wild-type protein:

∆TTmHoT
m = β4(Twild

m , N)
5∑

ν=1

α4ν (A)∆∆W4
ν + β5(Twild

m , N)
5∑

ν=1

α5ν (A)∆∆W5
ν

+βV (Twild
m , N) [α+(A)∆V+ + α−(A)∆V− + αI(A)] . (5.4)

The 5 ∆∆W4
ν (∆∆W5

ν ) terms are folding free energy changes computed from the dataset of

thermostable (mesostable) proteins using Eq.(3.2)3. β4, β5 and βV are polynomial functions

3 The following combinations were used: ∆W (a, t, d, T ), [∆W (a, d, T ) + ∆W (a, d, a, T )], [∆W (a,A, d, T ) +

∆W (a,A, d, s,A, T )], [∆W (a,A, T )+ 1
2∆W (a,A,A, T )+ 1

2∆W (a, a,A, T )], [∆W (a, t, T )+ 1
2W (a, t, t, T )+

1
2W (a, a, t, T )]
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of Twild
m and the number of residues N . Their functional form guessed from Eq.(2.3) is:

βI(Twild
m , N) =

γI(Twild
m )2 + δITwild

m + ξI

aIN + cI
, (5.5)

with I=4, 5 or V . The dependence on the number of residues N comes from the enthalpy

factor ∆Hm in Eq.(2.3), as these two quantities show a good correlation.

To identify the parameters of this second method, a 3-layer ANN is used which is shown

schematically in Fig. 4b. The input layer consists of three sets of neurons that encode

the mesostable potentials, the thermostable potentials, and the volume and independent

terms, respectively. These three sets of neurons are the inputs of three perceptrons, whose

outputs are the three neurons of the hidden layer. These are the input neurons of yet another

perceptron, which yields a ∆Tm-prediction as output. This predicted ∆Tm is finally averaged

with the ∆Tm predicted by the first HoTMuSiC method (Eq.(5.3)). The initialization and

identification procedures of all parameters and the cross validation procedure are the same

as for the first method.

The root mean square error between experimental and predicted ∆Tm-values is equal

to σ = 4.6◦C for HoTMuSiC and σ = 4.5◦C for Tm-HoTMuSiC; the associated Pearson

correlation coefficients r are both equal to 0.6. When 10% outliers are excluded, σ decreases

to 3.3 and 3.2◦C and r rises to 0.7.

Finally note that, because of the two volume terms and the energy-independent term in

Eqs (5.1,5.3,5.4), the symmetry:

∆Tm(wild→ mutant) = −∆Tm(mutant→ wild) (5.6)

is explicitly broken, and similarly for ∆∆G0(Tr) [23]. Due to these symmetry-breaking

terms and the fact that the large majority of experimentally characterized mutations in

the training dataset are destabilizing, the predictions of ∆∆G0(Tr) and ∆Tm are on the

average more accurate for destabilizing mutations, at the price of a decrease in the prediction

performance of stabilizing mutations. But actually, the stabilizing mutations are the most

interesting ones in most protein design and optimization applications. To solve this problem

and achieve higher prediction scores for stabilizing mutations, we are currently developing

new PoPMuSiC and HoTMuSiC versions that preserve the symmetry of Eq.(5.6).

VI. APPLICATION TO A CONFORMATIONAL DISEASE PROTEIN

To illustrate the power of the above described approaches, we describe one of their suc-

cessful applications in the context of conformational diseases [24]. Such disorders are caused

by the misfolding of specific proteins, which become inactive or toxic [25, 26]. Often these

proteins form soluble or insoluble aggregates. Creutzfeldt-Jakob and Alzheimer are well

known examples of this class of diseases. Misfolded conformations correspond to free energy

minima that differ from those of the folded and unfolded states. They may be thermody-

namically or kinetically favored under certain conditions or for certain protein variants. The

precise mechanism by which misfolding is initiated and propagates to other proteins is only

partially known.
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Spinocerebellar ataxia type 3 is a less known example of conformational disease [27, 28]. It

is characterized by progressive neuronal dysfunction and the presence of neuronal inclusions

containing fibrillar aggregates of ataxin-3 proteins. Ataxin-3 contains a globular, structured

domain, called Josephin, and a flexible polyglutamine (polyQ) domain whose repeat-length

modulates pathogenicity. It has been suggested that the fibrillogenesis pathway of ataxin-3

starts with a polyQ-independent step mediated by Josephin domain interactions, followed

by a polyQ-dependent step. To test the involvement of the Josephin domain in ataxin-3

fibrillogenesis, the isolated Josephin domain was in turn stabilized and destabilized, and the

consequences on the aggregation tendencies of this domain taken individually and of the full

ataxin-3 protein were analyzed. Two ataxin-3 variants were considered, a non-pathological

variant with a 15-residue-long polyQ tract (ataxin-3(Q15)), and a pathological variant with

a 64-glutamine tract (ataxin-3(Q64)) [24].

Mutants Prediction Experiment

Josephin Ataxin-3(Q15) Ataxin-3(Q64)

Tm (◦C) Agg (h) Tm (◦C) Agg (h) Tm (◦C) Agg (h)

wild-type - 51.3 79.4 49.2 24.0 51.0 11.7

R103G 55.9 147.5 52.9 48.9 52.1 25.3

S81A stabilizing 54.1 115.2 50.6 32.2 50.8 26.3

R103G/S81A 55.4 >150 53.4 50.0 52.4 40.6

L169H destabilizing 47.5 4.0 - - - -

TABLE I: Predicted stabilizing and destabilizing mutations in the Josephin domain and experimental

characterization of the thermal denaturation and aggregation midpoints (Tm and Agg) of the Josephin

domain and two ataxin-3 variants of different polyQ length (Q15 and Q64). No results are shown for

the L169H mutant in the two ataxin-3 variants because soluble expression was not achieved.

To modify the stability of the Josephin domain, the PoPMuSiC software was used. Two

mutations were selected, which were predicted as the most stabilizing and are located suffi-

ciently far from the active site to avoid affecting the protein’s function: R103G and S81A4.

Furthermore, four destabilizing mutations were chosen in silico, but only one resulted in

soluble protein expression: L169H. The Tm and aggregation propensities of the wild-type

and of these 3 protein mutants, as well as of the double mutant R103G/S81A, were experi-

mentally measured. As shown in Table I, the mutations predicted to stabilize the Josephin

domain actually do so. They also tend to stabilize the complete ataxin-3 protein. Moreover,

these mutants significantly decrease the aggregation propensities: the aggregation midpoint

is increased both for the Josephin domain and the two ataxin-3 variants Q15 and Q64.

Moreover, the mutation predicted to destabilize the Josephin domain actually does so and

moreover drastically decreases the aggregation midpoint.

4 The first letter denotes the wild-type amino acid and the second the mutant; the number indicates the

position in the sequence
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These results show that changing the thermodynamic stability of the Josephin domain

modulates ataxin-3 fibrillogenesis, and support the hypothesis that the first stage of ataxin-3

fibrillogenesis is caused by interactions involving the non-polyQ containing Josephin domain.

They also show that the use of in silico predictors such as PoPMuSiC is very helpful to detect

very rapidly relevant candidate mutations, which can be exploited to optimize a protein

system or to get insights into biological or biomedical issues.
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