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Abstract

The identification of kinase substrates and the specific phosphorylation sites they

regulate is an important factor in understanding protein function regulation and sig-

nalling pathways. Computational prediction of kinase targets – assigning kinases to

putative substrates, and selecting from protein sequence the sites that kinases can

phosphorylate – requires the consideration of both the cellular context that kinases
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operate in, as well as their binding affinity. This consideration enables investigation of

how phosphorylation influences a range of biological processes.

We report here a novel probabilistic model for the classification of kinase-specific

phosphorylation sites from sequence across three model organisms: human, mouse and

yeast. The model incorporates position-specific amino acid frequencies, and counts of

co-occurring amino acids from kinase binding sites in a kinase- and family-specific man-

ner. We show how this model can be seamlessly integrated with protein interactions and

cell-cycle abundance profiles. When evaluating the prediction accuracy of our method,

PhosphoPICK, on an independent hold-out set of kinase-specific phosphorylation sites,

we found it achieved an average specificity of 97% while correctly predicting 32% of

true positives. We also compared PhosphoPICK’s ability, through cross-validation, to

predict kinase-specific phosphorylation sites with alternative methods, and found that

at high levels of specificity PhosphoPICK outperforms alternative methods for most

comparisons made.

We investigated the relationship between experimentally confirmed phosphorylation

sites and predicted nuclear localisation signals by predicting the most likely kinases

to be regulating the phosphorylated residues immediately upstream or downstream

from the localisation signal. We show that kinases PKA, Akt1 and AurB have an

over-representation of predicted binding sites at particular positions downstream from

predicted nuclear localisation signals, demonstrating an important role for these kinases

in regulating the nuclear import of proteins.

PhosphoPICK is freely available online as a web-service at http://bioinf.scmb.

uq.edu.au/phosphopick.

Introduction

Kinases regulate a wide variety of essential biological processes through protein phosphoryla-

tion, including transcription factor activity,1 the control of DNA damage repair pathways,2

the progression of cells through mitosis,3 and protein import into the nucleus.4 Knowledge
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of the kinases that regulate phosphorylation substrates is therefore a significant factor in un-

derstanding the functional consequences of protein phosphorylation events. While hundreds

of thousands of phosphorylation sites have been identified across thousands of proteins,5 the

kinases that regulate these sites in most cases remain unknown. Computational methods

that predict kinase-specific phosphorylation sites are therefore an important contributor to

understanding the role of phosphorylation events in biological processes.6 Such methods con-

tribute to the guidance of phosphorylation experiments7 and provide information about the

likely signalling pathways that phosphorylation sites may be involved in.8

Kinase-mediated phosphorylation is regulated by several important factors that can be

leveraged to build predictive models. One is the sequence-level motifs surrounding phospho-

rylation sites that interact with kinase binding domains. The protein sequence determines

whether a kinase can bind to the protein; previous studies have shown that local motifs

surrounding a phosphorylation site interact with the binding domain of kinases to allow

phosphorylation.9,10 There are numerous kinase-specific phosphorylation site predictors that

take advantage of the sequence specificity of kinases to predict kinase-specific phosphoryla-

tion sites11–13 as well as phosphorylation sites in a non-kinase specific manner.14,15

The presence of valid kinase-binding motifs on a protein is no guarantee that a kinase

will phosphorylate a substrate however.16 The targeting of phosphorylation substrates by

kinases is subject to, and controlled by, a wide variety of processes within the cell – what

may be called the “context factors” that ensure kinase-substrate fidelity. Context factors

can include proteins that mediate the interaction between kinases and their substrates,17

activating proteins such as cyclins,18 sub-cellular compartmentalisation19 and the various

stages within the mitotic cell cycle.20

We have shown previously that context information (in the form of protein-protein in-

teraction and association data, as well as protein abundance levels across the cell cycle) can

be incorporated into a probabilistic model that maps kinases to putative substrates.21 This

model not only provides an accurate predictor of kinase substrates, but importantly, the

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2016. ; https://doi.org/10.1101/043679doi: bioRxiv preprint 

https://doi.org/10.1101/043679


sequence-level prediction of kinase-specific phosphorylation sites can be greatly enhanced by

the model’s additional predictive power. While this model was able to use context alone

to predict kinase substrates, we hypothesised that the incorporation of sequence and con-

text into a single model would provide better explanatory power of the factors that describe

kinase targets.

In this paper, we present a novel probabilistic method for predicting kinase-specific phos-

phorylation sites that incorporates position-specific amino acid frequencies and counts of

co-occurring neighbouring amino acids in a family-specific manner across three model or-

ganisms: human, mouse and yeast. We demonstrate that this sequence model can be used

as a module within a larger Bayesian network that describes the context factors that influ-

ence how a kinase targets a protein substrate. The seamless integration of these two domains

of information – context and sequence – allows for a comprehensive model of kinase-protein

phosphorylation. We compare the ability of our method, PhosphoPICK, to predict kinase-

specific phosphorylation sites against alternative phosphorylation predictors, and show that

PhosphoPICK has a superior ability to predict kinase-specific phosphorylation sites for most

comparisons made.

As we now have a predictor that ably integrates the context and sequence conditions

that regulate phosphorylation, we are in a position to investigate phosphorylation-dependent

functions and probe the kinases that are involved in regulating these functions. The nuclear

import of proteins is a highly-specific process, involving the binding of importin proteins

to cargo proteins that contain a nuclear localisation signal (NLS).22,23 It has been shown

that the binding of importin proteins to their cargo can be promoted or inhibited by the

presence of phosphorylation adjacent to the NLS.24 We therefore investigated the relationship

between nuclear localisation signals and phosphorylation by cross-referencing experimentally

identified phosphorylation sites with predicted NLSs. We used PhosphoPICK to identify

the most likely candidate kinases for NLS-adjacent phosphorylation sites, and performed

a statistical analysis to identify sites relative to NLSs that have an over-representation of
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kinase binding sites. We identify several kinases as candidates to regulate phosphorylation

sites at sites downstream from the NLSs, most notably protein kinase A (PKA), Akt1 and

Aurora kinase B (AurB). We also identify kinases that regulate sites upstream from the NLS,

including cyclin dependent kinase 2 (CDK2). Gene ontology (GO) term enrichment analyses

indicate that the phosphorylation of specific sites close to the NLS by these kinases regulate

distinct biological functions.

Experimental procedures

Data resources

We obtained kinase-specific phosphorylation data for human and mouse from PhosphoSitePlusr,

www.phosphosite.org5 and for yeast (Saccaromyces cerevisiae) from PhosphoGRID,25 which

is a database of in vivo phosphorylation sites. For data collected from PhosphoSitePlusr, we

ensured that phosphorylation sites used were known to occur in vivo, but for both databases,

the kinase annotations are often informed by in vitro or in vivo experiments. We chose phos-

phorylation site data for kinases where there were greater than 5 unique kinase substrates,

resulting in 5,209 kinase-specific phosphorylation sites across 1,826 proteins for human, 956

kinases-specific phosphorylation sites across 417 proteins for mouse, and 2,219 kinase-specific

phosphorylation sites across 722 substrates for yeast. In order to have a more extensive

background of phosphorylation events for training a sequence model, we also used phospho-

rylation sites that did not have a kinase assigned to them. We used phosphorylation sites

from PhosphoSitePlusr that were generated using low-throughput methods; similarly for

PhosphoGRID, sites were included if they were identified using more than one method, or if

the single detection method was not mass spectrometry. This resulted in an additional 5,939

phosphorylation sites for human, 2,865 additional phosphorylation sites for mouse and 674

additional phosphorylation sites for yeast.

Protein-protein interaction (PPI) data were sourced from BioGRID,26 protein-protein
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association data from STRING,27 and protein abundance data across the cell cycle from the

work by Olsen and colleagues.28 As the cell-cycle information was only available for human,

cell-cycle data were not incorporated into the mouse or yeast kinase models. A detailed

description of how this data were curated and processed is available in.21

In order to evaluate the prediction accuracy of our method on completely novel data, we

created a hold-out set for kinases for which there were more than 100 known substrates –

there were nine such human kinases. For each of the nine kinases, we selected a random

set of substrates equal to 10% of that kinase’s substrates that were not in the original

set of substrates used for developing the model.21 These substrates were excluded from all

analyses and simulations, and were used only for a final evaluation of model accuracy. This

resulted in a hold-out set of 145 proteins – containing 416 phosphorylation sites specific to

the nine kinases. After removing the hold-out set, a set of 1,671 human proteins and 4,907

kinase-specific human phosphorylation sites remained for training and testing.

In addition, we built similarity-reduced sets of the phospho-peptide sequences obtained

from PhosphoSitePlus and PhosphoGRID in order to determine whether sequence similarity

could be inflating prediction accuracy. The BLASTP program29 was used to perform a

pairwise sequence similarity comparison of each of the phospho-peptides, using 15-residue

sequences centred on the phosphorylation site. All 15-residue pairs obtaining a BLASTP E-

value under 0.05, with sequence identity of at least 30%, were retained. Similar pairs within

the same kinase category were reduced through the arbitrary removal of one of the phospho-

peptides; phospho-peptides that were similar, but phosphorylated by different kinases, were

not reduced. The similarity reduction was also applied to the background set of peptides.

PhosphoPICK method and workflow

Building on our existing context model, we developed a model for predicting kinase-specific

phosphorylation sites from sequence, as well as a model that incorporates this sequence

model into the context model described in our previous work. The data used for training
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the models are available in Data S1.

Sequence model: We present a Bayesian network model for modelling various sequence

features of a kinase binding motif (Fig. 1(a)). We represent potential amino acid residues in

an n length sequence motif surrounding a phosphorylation site as discrete variables condi-

tioned on two Boolean variables. The first represents the event that some kinase of interest,

K, binds to the site, the second represents the event that a family member (i.e. any family

member of K) binds to the site. Each variable – R−m to R+m, where R0 represents the site

for which phosphorylation is predicted – contains three distributions of amino acid frequen-

cies. These represent (1) the probability of each amino acid occurring at the position where

K is seen to be phosphorylating, (2) the amino acid frequencies for binding sites from the

family members of K, and (3) the amino acid frequency background as seen across all other

phosphorylation sites in the training set.

In addition to position-specific amino acid frequencies, we included k-mers of k=2 (dimers)

and k=3 (trimers) to encode the frequency of co-occurring neighbouring amino acids. This

should allow the model to capture some paired dependencies that may exist between amino

acids. In order to avoid over-parameterising the sequence model with all possible com-

binations of dimers and trimers, we only added the k-mers that were observed in some θ

percentage of kinase binding motifs from a training set. During cross-validation, the training

set of kinase-binding motifs was taken, and k-mers observed within the motifs were counted.

If a k-mer occurred in more than the θ percentage threshold of substrates, the k-mer was

added to the model. We tested three cut-offs of θ: 5, 10 and 20, and found that 5 gave

the best prediction accuracy across the full set of kinases (Table S-1, Table S-2 & Table

S-3). As shown in Fig. 1(a), the k-mers are represented as a series of n Boolean variables,

Kmer1 to Kmern, where a k-mer is considered to be true if it is observed in the amino

acid motif surrounding the phosphorylation site. The k-mer nodes were trained to capture

the probability of each k-mer occurring within a kinase’s binding motif, that of its family
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members and the background set of phosphorylation sites.

It has been shown previously that varying the motif length in predicting kinase binding

sites improves prediction accuracy.13 Therefore, for each kinase we tested five different win-

dow sizes centred around the phosphorylated residue: 7, 9, 11, 13 and 15. For each kinase

we selected the window size that gave the best prediction accuracy as measured within a

cross-validation test (Table S-4, Table S-5 & Table S-6).

Combined model: The combined model retains the structure of the “context” Bayesian

network described previously,21 but with the sequence model incorporated into it. This model

represents observations about kinase-substrate phosphorylation events, protein-protein in-

teraction/association events believed to be relevant to kinases encoded in the model, and

cell-cycle profiles of substrates as Boolean variables. A connection between a kinase and a

PPI event is defined if the protein is interacting with at least 5 of the kinase’s substrates.

Up to 25 connections between a kinase and a PPI event can be defined.

The sequence model was incorporated into the larger context model in a kinase-specific

manner, such that for each kinase the kinase target variable in the sequence model is con-

ditioned on the variable in the context model representing the kinase phosphorylating a

substrate (Fig. 1(b)). We created models based on sets of kinases as they are classified into

family similarity.30 For human, we created eight family-specific models comprising kinases

from the CMGC (cyclin-dependent, mitogen-activated, glycogen synthase and Cdc2-like),

AGC (protein kinase A, G and C families), CAMK (Ca2+/calmodulin-dependent kinase),

TK (tyrosine kinase), “other”, STE, CK1 (cell kinase 1) and atypical kinase families. For

mouse, we created three models with kinases from the CMGC, AGC and TK families; and

for yeast we created four models from the CMGC, AGC, CAMK and other kinase families.

Setting non-query kinase nodes: The model relies partly on the expected activity of

alternative kinases that are encoded in the Bayesian network. However, there is no ex-

perimental information on kinase binding events for the majority of proteins, and negative
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evidence (a protein not being phosphorylated by a particular kinase) is non-existent. There-

fore we employ the amino acid sequence of a query protein to estimate what kinases in the

model will not bind to the protein, and can therefore be set to false. In order to decide

when kinase variables in the model should be set to false, the following steps were followed

for each non-query kinase. Within a training fold, the positive training samples for that

kinase were set aside. 75% of the substrates within the negative set were selected randomly,

and each phosphorylation site within this set was added to the training data, while the

remaining substrates were set aside as a test set.

The sequence model was then trained using the selected training samples, and used to scan

over each of the substrates within the test set. The highest score for each of the substrates

was recorded. The median value of these scores was then taken as a threshold representing

the highest expected score for a protein that is not phosphorylated by the kinase. When

evaluating the model on a test substrate, for each non-query kinase node its sequence model

is used to scan the substrate and the highest score is recorded. If the score falls below the

calculated threshold value, that kinase node is set to false, otherwise it remains unspecified.

Prediction workflow: A diagram illustrating the PhosphoPICK workflow for generating

a prediction is shown in Fig. 1(c). To determine the probability of a query kinase phosphory-

lating a given substrate, the relevant context data are queried and the corresponding nodes

in the Bayesian network are instantiated. Non-query kinase nodes are either set to false

or left unspecified based on the predicted probability that the kinase can bind the substrate

sequence.

The model is then scanned over the substrate’s amino acid sequence, and for every poten-

tial phosphorylation site, the n length motif corresponding to the query kinase surrounding

the phosphorylation site is used to set the sequence nodes in the network. For every po-

tential phosphorylation site, the node representing the kinase phosphorylating a substrate

is queried, and the highest probability for the scan is taken as the score for that substrate.
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Separately, the potential phosphorylation sites within the substrate are scored using the se-

quence model. The final score for a kinase-specific phosphorylation site prediction is equal

to the average of the substrate score from the combined model, and the site score from the

sequence model.

Model training

Sequence model: The nodes in the sequence Bayesian network are defined using condi-

tional probability tables (CPTs), which learn from training data all possible values that a

variable can take given the set of parents it is conditioned on. If a variable does not have

parents, the CPT will represent the observed frequency from the training data of it being

true. As there may be amino acids or k-mers that do not occur in some of the training data,

we added a uniform pseudo-count of 0.05 to all the amino acid and k-mer nodes, ensuring

that the model does not consider some amino acids or k-mers impossible to occur.

Combined model: The nodes in the combined model are defined using CPTs and our

variation on the NoisyOR node,21 which allows for an approximation of a CPT. The protein

interaction nodes were defined using NoisyOR variables, allowing parameters to be inferred

even in the case of data sparsity. All other variables in the combined model were defined as

CPTs.

As the combined model incorporates data representing different problems – that of pre-

dicting kinase substrates, and predicting kinase binding sites, the model was trained in two

stages. First, the set of unique substrates was presented for expectation maximisation train-

ing31 in order to set the parameters for the protein-interaction, cell-cycle and kinase nodes

in the network. The parameters for these variables were then locked in place. Next, the

sequence module within the network was trained using the set of phosphorylation sites con-

tained in the training fold, with the position-specific amino acid nodes and k-mer nodes

being set as for the sequence model. There will be some cases in the phosphorylation site
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data where a kinase will be phosphorylating a substrate, but not the site. In these cases,

the node representing the kinase binding the substrate was set to false.

Evaluating model prediction accuracy

The prediction accuracy of the models was evaluated across the 107 human kinases, 24 mouse

kinases and 26 yeast kinases using ten-fold cross-validation across ten randomised data-set

splits. The prediction accuracy of the sequence model was evaluated by its ability to correctly

classify kinase-specific phosphorylation sites out of the set of known kinase-binding sites, and

the combined model was evaluated by its ability to correctly classify kinase substrates out

of the set of substrates.

To ascertain the effect that our sequence model features have on prediction accuracy,

we evaluated the accuracy of a simple baseline sequence model that only contained the

position-specific amino acid nodes conditioned on the kinase variable (the family variable

was excluded). We also evaluated the prediction accuracy of the context model (the combined

model excluding the sequence information) and compared its accuracy with the combined

model to ascertain what improvement may be gained from incorporating sequence and con-

text information into a single model. Prediction accuracy was determined using receiver

operating characteristic (ROC) and calculation of area under the ROC curve (AUC) as a

measure of overall model performance.32 We also calculated area under the ROC curve up to

the fiftieth false positive (AUC50) as a measure of performance at low false-positive levels.

Comparisons to alternative methods: We compared the ability of the complete Phos-

phoPICK work-flow to predict kinase-specific phosphorylation sites out of all potential phos-

phorylation sites in the substrate sequences. The comparison was performed firstly against

the sequence model only, and secondly against three alternative methods that have a larger

number of kinases available for making predictions: GPS 2.1,13 NetPhorest 2.033 and Net-

worKIN 3.0.33 We downloaded the standalone prediction software for each of the three meth-
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ods and ran the set of 1,671 proteins through them. For NetworKIN and NetPhorest, we

did not specify the sites we wanted predictions for. We used GPS’s batch prediction system

to run GPS on the protein set, selecting the “no threshold” option.

In order to compare PhosphoPICK predictions to the alternative methods, we again did a

10x ten-fold cross-validation run of the combined model as well as of the sequence model. As

most of the potential phosphorylation sites in the substrates were not in the set of peptides

used for training the sequence model (and therefore not part of the cross-validation run),

the fully trained sequence model was used to score potential phosphorylation sites outside

of the training set.

Due to the large number of potential phosphorylation sites being scored (∼170,000 S/T

sites and ∼30,000 Y sites), we calculated sensitivity for two stringent levels of specificity –

99.9% and 99%. The difference in sensitivity between PhosphoPICK and each alternative

was calculated across all ten cross-validation runs.

Calculating significance of predictions

Users of the PhosphoPICK web-server are provided with an option to include empirical P-

value calculations alongside their predictions, allowing for a measure of the significance of the

predictions. To obtain empirical P-values, we first calculated proteome-wide distributions of

predictions; i.e. for all kinases, substrate predictions were obtained for every protein in the

relevant proteome (human, mouse or yeast), and site predictions were made for all potential

phosphorylation sites in the proteome. To calculate a combined P-value for a prediction,

Fisher’s method for combining probabilities was applied such that:

X = −2(ln(Pcontext) + ln(Psite)) (1)

where Pcontext and Psite represent the P-value value calculated for a context score given to

a substrate and a motif score given to a site respectively, and X follows a Chi squared
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distribution with 4 degrees of freedom.

Evaluation using the hold-out set: When evaluating the performance of the model on

the hold-out set, the full sets of training data were used to train the model. We predicted

each potential phosphorylation site (all S/T residues for serine/threonine kinases and all Y

residues for the tyrosine kinase Src) in the hold-out sequences, and evaluated the performance

of the model for each kinase by its ability to predict the kinases’ phosphorylation sites out of

all potential sites. In order to evaluate how well the method would be expected to perform

using the P-value based thresholding system on the web-server, P-values were calculated

for the predictions, and if a P-value for a prediction fell below 0.005 the prediction was

considered to be true, and false otherwise.

We calculated sensitivity, specificity, balanced accuracy (BAC) and Matthews’ correla-

tion coefficient (MCC). The metrics are defined as follows, where TP is the number of true

positives, FP the number of false positives, TN the number of true negatives, and FN the

number of false negatives.

Sensitivity:

sens. =
TP

TP + FN
(2)

Specificity:

spec. =
TN

TN + FP
(3)

Balanced accuracy:

BAC =
sens.

spec.
(4)

Matthews’ correlation coefficient:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)
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Results and discussion

The sequence model was evaluated by its ability to correctly classify, on a per-kinase basis,

kinase-specific phosphorylation sites out of the set of known kinase binding sites. Table 1

shows the averaged prediction accuracy for each of the kinase families; the full set of values

are available in Table S-7 for human kinases, Table S-8 for mouse kinases, and Table S-9 for

yeast kinases. The sequence model has good prediction accuracy over the kinases tested, with

an average AUC of 0.79 across all human kinases. We found that 66% of kinases obtained

an AUC of greater than 0.75, demonstrating that the model works well for the majority of

kinases. We noticed particularly high accuracy for the CMGC kinases, where 17/20 of the

kinases in this family obtained an AUC of greater than 0.8 (Table S-7); and also the atypical

kinases, where all of those kinases obtained an AUC greater than 0.8, and 3/4 greater than

0.85 (Table S-7). The worst performing family appeared to be the tyrosine kinase family,

where we found an average AUC of 0.62 – substantially lower than the overall average (of

0.79), and much lower than the accuracy from the various serine/threonine kinase families.

We compared the sequence model against a baseline model that only considered the

position-specific amino acid frequencies. While the sequence model outperforms the baseline

in general, we noticed that there was substantially higher accuracy at low false-positive levels

as measured by the AUC50. In the “other” family of kinases, there was a greater than 3-fold

increase in the AUC50, and in the CMGC and CK1 families we found a greater than 2-fold

increase in AUC50.

On the mouse kinases, the model achieved a more moderate average AUC of 0.71, re-

flecting the diminished availability of positive training data when compared to human or

yeast kinases. Similar to the results seen in the human kinases, however, the CMGC kinases

performed the best, with an average AUC of 0.79, and the tyrosine kinases were again the

worst performing, with an average AUC of 0.63.

The yeast kinase models performed quite well, achieving an average AUC of 0.81. In

yeast, the best performing kinases were from the AGC family, with an average AUC of 0.85,
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and an AUC50 exceeding any other kinase family from mouse or human. We noticed that

the sequence model had a substantial increase in accuracy when compared to the baseline

– particularly at the low false-positive rates as measured by AUC50. The CAMK kinases

recorded the sharpest increase, with an average AUC50 of over 6-fold greater than the

baseline model. In general, we found that the use of k-mers offered a great advantage over

the simpler representation of position-specific amino acid frequencies, and that this was

particularly noticeable at low false-positive levels. Our results indicate that our combination

of features offers a highly accurate model for predicting kinase phosphorylation sites across

diverse kinase families and species.

In order to test whether sequence similarity within the phospho-peptides could be inflat-

ing prediction accuracy, we re-trained the sequence model on the similarity reduced data-set.

Table S-10, Table S-11 and Table S-12 contain a comparison of the fully trained sequence

model and the model trained on the reduced data-set. For the majority of kinases, the

similarity reduction did not result in a decrease in AUC. On average, there was a negligible

difference in AUC, with an average decrease across all kinases of 0.004 seen with the reduced

data set. Similarly, differences in the average AUC50 were slight, and within the margin of

error. This demonstrates that the prediction accuracy of the sequence model is not due to

homologous phospho-peptides in the training data, and can be applied to unseen samples.

Kinase substrate prediction

We compared the ability of the context model to predict kinase substrates against the com-

bined (context plus sequence) model. The results summarised in Table 2 (see Table S-13,

Table S-14 and Table S-15 for the complete set of kinases) demonstrate that across the ki-

nase families, the incorporation of sequence data improved the ability of the model to predict

kinase substrates. We noticed larger increases in prediction accuracy for the human CMGC,

AGC and CAMK kinase families: the average AUC50 for CMGC increased from 0.31 to

0.43, AGC saw a similar increase from 0.21 to 0.34 and CAMK the largest – from 0.25 to
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0.40.

While the context information accounts for the bulk of the accuracy, there were several

examples of kinases where including the protein sequence in the model greatly improved

prediction accuracy. In a few instances, prediction accuracy was increased from low or even

random to a much higher value; for example the PKCI kinase improved from an AUC of

0.50 to an AUC of 0.77, and DYRK2 obtained a huge increase from an AUC of 0.63 to

0.91. There were also several examples of substantial accuracy gains, even when the kinase

already had moderate to high accuracy in the context model; we observed that the prediction

accuracy of GSK3A increased from 0.81 to 0.91, tyrosine kinase Syk increased from 0.81 to

0.90 and CAMK kinase Pim1 increased from 0.8 to 0.94. While there were examples of

prediction accuracy decreasing when sequence information was added, these decreases were

slight, indicating that the accuracy gains for incorporating sequence and context information

far outweigh any potential losses.

In general, the accuracy for mouse kinases was more enhanced by the incorporation of

sequence when compared to the accuracy for human kinases. We noticed that the accuracy

for mouse AGC kinases was no greater than random for context alone, with a low AUC

of 0.48. However, after the incorporation of sequence data, the AUC increased to a much

higher value of 0.63. This is likely due to the size of the mouse protein-interactome, which

is much smaller than the human version. The most substantial gains were made for the

tyrosine kinases, where the average AUC for the family increase from 0.61 to 0.78 – a near

30% increase in prediction accuracy. There was a similar increase in the AUC50, from 0.25

to 0.46, indicating that the incorporation of the sequence model also made an important

contribution at low false-positive levels.

The yeast kinases benefitted even more than the mouse kinases from the incorporation

of sequence, with substantial increases to prediction accuracy observed across the four yeast

kinase families. Prediction accuracy for yeast AGC and “other” kinases increased in AUC

value by an average of 0.14 and 0.15 respectively, while CMGC kinases increased by an
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average of 0.09. We also found that the AUC50 increased by approximately two-fold for

each of the four yeast kinase families. The results for mouse and yeast kinases indicate that

the model is able to offset the reduced availability of the context information through the

sequence data.

Comparisons to alternative methods

We tested the ability of PhosphoPICK (i.e. the full PhosphoPICK workflow described in

section “Prediction workflow”) to correctly classify the known kinase phosphorylation sites

out of all potential sites within our set of phosphorylation substrates. Due to the number of

potential phosphorylation sites (∼170,000 S/T sites and ∼30,000 Y sites), we tested prediction

accuracy at more stringent levels of specificity – 99.9% and 99%. We compared the prediction

sensitivity of PhosphoPICK with using sequence alone. We found that by combining the

substrate score from the combined model with the site score from the sequence model, we

were consistently able to improve prediction accuracy when compared to using the sequence

model alone (Fig. 2).

On average, the use of the combined model offered the greatest level of accuracy increase

to kinases from the CMGC family, with an average sensitivity difference of 0.12 at 99.9%

specificity and 0.27 at 99% specificity. This is consistent from our previous findings that the

use of context offers greater support to phosphorylation site prediction from CMGC kinases.

The CAMK kinases gained a similar level of sensitivity at the higher specificity threshold,

though there was a smaller average sensitivity difference of 0.22 at the 99% specificity level.

The AGC and TK kinases appeared to benefit the least, with a sensitivity difference at 99.9%

specificity of 0.045 and 0.042, respectively.

We also compared the ability of PhosphoPICK to predict kinase-specific phosphoryla-

tion sites to three alternative methods: GPS 2.1,13 NetPhorest 2.0 and NetworKIN 3.0.33

We compared the prediction sensitivity of the different methods at the specificity levels

described above. Fig. 2 shows the sensitivity difference between PhosphoPICK and the com-
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pared methods at two levels of specificity: 99.9% and 99%. The full set of comparisons for

individual kinases are available in Table S-13 (comparisons at 99.9% specificity) and Table

S-14 (comparisons at 99% specificity). We found that at the stricter level of specificity,

PhosphoPICK obtained an increased level of sensitivity over the alternatives for most com-

parisons made. At the 99.9% specificity level, PhosphoPICK gained an average sensitivity

increase of 9% when compared to NetworKIN, 10% compared to GPS and 22% compared to

NetPhorest. At the 99% specificity level, PhosphoPICK gained average sensitivity increases

of 6%, 18% and 35% when compared against NetworKIN, GPS and NetPhorest, respectively.

There were some cases where PhosphoPICK performed worse than the alternatives – for ex-

ample the tyrosine kinases, where we observed an average sensitivity difference against GPS

of -0.014 at the 99.9% specificity level. We also noticed that PhosphoPICK performed worse

on the atypical kinases when compared to NetworKIN, with a small difference in sensitivity

at 99.9% specificity of -0.004, and a larger difference of -0.076 at 99% specificity.

Evaluation using the hold-out set

PhosphoPICK contains the option to calculate P-values for predictions, representing the

likelihood of obtaining a given prediction by chance, given how predictions are distributed

over the proteome. To estimate the level of accuracy that is to be expected from using the

fully trained model underlying the web-server, we evaluated prediction accuracy using our

hold-out set of 145 substrates (of the kinases listed in Table 3) by calculating P-values of

the predictions and considering predictions that fell below a P-value threshold of 0.005.

We found that PhosphoPICK was generally able to maintain a high level of specificity,

with an average specificity of 97% across the 9 kinases represented in the hold-out set (Ta-

ble 3). There was a diverse range of sensitivity levels (from 3% for Src to 62% for CK2A1),

with an average of 32% – well above what would be expected by chance given the percentage

of false-positive predictions. This confident prediction accuracy on completely novel data

indicates that PhosphoPICK is a reliable method for uncovering new kinase substrates and
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kinase-specific phosphorylation sites.

Multiple kinases regulate nuclear localisation

We predicted NLSs using the NucImport predictor,34 a tool for predicting nuclear proteins

and the location of their NLSs on the basis of protein interaction and sequence data (NucIm-

port does not explicitly incorporate protein phosphorylation into its predictions). The com-

plete human proteome (including isoforms) was run through NucImport and all proteins that

were predicted to contain a type-1 classical NLS were retained – there were 4134 such pro-

teins. The type-1 classical NLS contains an optimal four residue amino acid configuration of

KR(K/R)R or K(K/R)RK.35 In order to investigate phosphorylation within a window sur-

rounding the NLS, we defined a centre position, P0, as the third residue within the predicted

NLS (in the literature, this position is usually designated “P4” 22), and cross-referenced the

location of the signals with known phosphorylation sites from PhosphoSitePlusr. We iden-

tified 1,830 phosphorylation sites that were within a 20 residue window around P0. These

phosphorylation sites were submitted to PhosphoPICK for analysis (predicting all human

kinases), and a P-value threshold of 0.005 was used to return results with a high level of

stringency.

In order to test for kinases that were regulating specific positions in relation to the

NLS, we counted the number of predicted binding events for kinases at each position within

the 20 residue window surrounding P0. To determine whether the number of predicted

kinase binding sites near an NLS was greater than would be expected by chance, we tested

for over-representation against all known phosphorylation sites within the set of predicted

nuclear proteins. Over-representation was tested for using Fisher’s exact test with Bonferroni

correction to obtain E-values (the P-values for the Fisher’s exact test were corrected by the

total number of tests performed; i.e. the number of kinases multiplied by the number of sites

– 2,247).

Fig. 3 shows the distribution of predicted binding sites for several kinases around the P0
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position of the NLS. We found that there was higher phosphorylation activity downstream

from the NLS, where protein kinase A (PKA), aurora kinase B (AurB), and Akt1 in particular

were found to have the most significantly over-represented binding locations. At position

3 (P3), the most significant kinase was PKA (E = 2.03e−38), which was predicted to be

phosphorylating 55/144 of the phosphorylation sites at that position. AurB had a pair of

highly significant binding sites at positions 2 (E = 7.32e−30) and 3 (E = 2.4e−21).

There were fewer observations of kinases over-represented at phosphorylation sites up-

stream from the NLS, though we found that cyclic dependent kinase 2 (CDK2) and protein

kinase C alpha (PKCa) were significantly over-represented at several upstream positions. At

positions -4, -5 -6 and -7, CDK2 was found to have the most significant over-representation

of sites compared to any other kinase. CDK2 was predicted to target 28/50 (E = 9.42e−13)

of the phosphorylation sites at position -4, 31/61 (E = 2.1e−13) at position -5, 27/89 (E =

6.4e−10) at position -6 and 23/88 (E = 6.0e−07) at position -7.

To investigate whether the proteins being phosphorylated at these specific sites were

involved in similar biological processes, we performed gene ontology (GO) term enrichment

analyses. We performed the tests by taking a foreground set of proteins and testing for

over-representation (Fisher’s exact test, with Bonferroni multiple correction) of terms in the

foreground set against a background comprised of our set of phosphorylated nuclear proteins.

Significant terms should therefore not simply represent general phosphorylation or nuclear

functions, but functions specifically related to the kinase being tested.

We performed GO term enrichment tests on a kinase-specific basis, identifying substrates

that were predicted to be phosphorylated within the 20 residue window surrounding P0. We

also tested substrates that were predicted to be phosphorylated at the specific sites that

were identified as being over-represented for the kinase being tested. We found that AurB

substrates were enriched in the GO terms “chromosome”, “nucleosome” and “nucleosome

assembly” (Table S-15). Interestingly, while the proteins phosphorylated by AurB at the P3

position were enriched in similar GO terms, the proteins phosphorylated at P2 returned no
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significant GO terms. While CDK2 substrates obtained the significant terms “chromosome”,

“cell cycle”, “nucleus” and “DNA repair”, none of its significant binding site positions were

found to be be associated with enriched GO terms (Table S-19).

We noticed that kinases with an over-representation of binding events at P4 consistently

obtained a number of significant GO terms for substrates phosphorylated at that site. In

addition to AurB mentioned above, PKA P4 substrates had 10 enriched GO terms (Table

S-20), Akt1 had 4 (Table S-21), AMPKA1 and p70S6K both had 11 (Table-S22 and Table

S-23, respectively) and p90RSK had 8 (Table S-24). We noticed that there was also some

repetition of enriched GO terms among these kinases at P4 – the term for “fibroblast growth

factor receptor (FGFR) signalling pathway” was the most significant P4 term for each of the

AGC kinases (PKA, Akt1, p70S6K and p90RSK), and was the second most significant for

AMPKA1 kinase. To determined whether phosphorylation at P4 in general was associated

with specific functions (such as the FGFR signalling pathway) we did a GO term enrichment

test with all substrates that were phosphorylated at that position, however no GO terms

were found to be significant (Table S-25). This would indicate that the phosphorylation of

the site at P4 does not by itself correspond to a particular function, rather this is dependent

on the kinase regulating the site.

Conclusions

The regulation of protein function through kinase-mediated phosphorylation is a complex

process involving numerous aspects of cellular behaviour on the systems biology level, and

the binding capacity of kinases to substrates on the molecular level. We have presented here

a novel method for probabilistically modelling the sequence features that determine kinase

binding at a molecular level. We have shown that PhosphoPICK is able to leverage these two

diverse types of information and seamlessly integrate them into a model that can identify

kinase substrates with high accuracy.
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A benefit of the integration of sequence and context data into a single probabilistic model

is the ability to take into account interdependance between these heterogeneous sources

of information; i.e. the likelihood of seeing certain amino acids or k-mers in a protein

may change depending on the context information, and similarly, the expectation of certain

protein interactions can be influenced by the protein sequence. Indeed, we have found

that the combined model can be used to query expected kinase binding sequence motifs

and generate corresponding sequence logos36 based on context information presented to the

model (see Methods S-1 for an example).

A counter-intuitive result seen as a part of the integration of sequence and context was

that the performance seen in the sequence was not necessarily reflected in the combined

model. The tyrosine kinases were a particularly interesting example; we found that while

the tyrosine sequence models (for both human and mouse) were the least accurate amongst

the sequence models, the mouse combined model benefited greatly from the incorporation of

sequence, with a near two-fold increase seen in the AUC50. This is an indication that while

the two individual systems – sequence and context – of predicting kinase binding events may

be limited by themselves, the integration of the two can result in a much more powerful

predictive model.

It was interesting to note that though the sequence model obtained the greatest accuracy

(for phosphorylation site prediction) on the human kinases, the yeast kinases in general saw

the highest increases in prediction accuracy (particularly as measured by AUC50) when the

sequence model was incorporated into the context model. While the availability of context

data (e.g. cell cycle data) is likely a factor in the observed differences in prediction perfor-

mance between organisms, a uni-cellular organism like yeast would be expected to require

less sophistication in the regulation of kinase activity than higher organisms. Consequently,

the use of context factors is no doubt more important for understanding kinase targets in

higher organisms.

For more complex organisms such as human and mouse, an additional realm of biology to
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consider in relation to phosphorylation and kinase activity is tissue and cell-type specificity.

Protein phosphorylation has the potential to change substantially depending on the cell type,

and the biological processes that kinases regulate can also vary depending on cell or tissue

type. While there is limited amounts of consolidated tissue-specific phosphorylation data,

there is growing amounts of tissue-specific protein expression data.37 In addition to protein

expression data, the FANTOM consortium has profiled vast cell-type specific gene expression

atlases.38 Such data resources could make it possible to infer more probable candidate kinases

based on which ones are available in the tissue or cell type of interest. While outside the

scope of the current study, this would certainly make for an interesting avenue of exploration

in future work.

A system-wide analysis of biological mechanisms has the potential to reveal functional

trends that may not otherwise be apparent. Our analysis of the overlap of NLSs and phos-

phorylation events has shown that there are several kinases that may be implicated in the

regulation of nuclear localisation through the phosphorylation of specific sites close to the

NLS. Phosphorylation is a well-documented mechanism of nuclear localisation.4,23,24,39–42 Be-

cause classical NLSs are positively charged, introduction of a negatively charged phosphate

group in the vicinity of the NLS would in general be expected to inhibit nuclear import, as

previously demonstrated for CDK1-mediated phosphorylation at positions “P0” and “P-1” 24

(interestingly, these sites correspond to our P−4 and P−5 positions, which saw the most sig-

nificant over-representation of CDK2 binding sites.). However, the effect will depend on the

specific position that is phosphorylated, and in some positions phosphorylation can stimulate

nuclear import.4,23,39,40,42,43

Several of the kinases identified in our study have previously been implicated in nuclear

import. For example, the import of sex-determining factor SOX9 is regulated by PKA,

whereby the phosphorylation of two phosphorylation sites (one next to the NLS) enhances

SOX9 binding to importin β.44 Adenomatus polyposis coli (APC) is another example of a

protein where nuclear import is regulated by phosphorylation.45 In this case, APC contains
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two identified NLSs and a putative PKA-mediated phosphorylation site is positioned imme-

diately after the second NLS, which leads to a reduction in APC nuclear localisation when

the site is active. As a key regulator during mitosis, AurB is involved in several processes

such as mitotic chromosome condensation,46 and it has also been shown to phosphorylate

residues within the vicinity of NLSs.47 The Akt kinase has been shown to be a regulator of

nuclear localisation,48 and phosphorylation by Akt is able to impair the nuclear import of p27

in vitro.49 Similarly, CDK2 is known to be a regulator of nuclear localisation.50 While these

studies confirm that these kinases are involved in nuclear localisation, our results shed light

on specific mechanisms whereby nuclear localisation is controlled by the phosphorylation of

key residues close to the NLS.

Availability

PhosphoPICK is freely available online as a web-server, and can be used in two ways. A

user can upload protein sequences, and select any number of kinases to obtain predictions

for potential phosphorylation sites on the proteins. Significance of predictions can be gauged

through the calculation of empirical P-values, and only results below a chosen level of sig-

nificance returned. Visualisation of results is also available through a “Protein Viewer” page

based on the BioJS51 package pViz.52 Secondly, the web-server allows for the construction of

downloadable proteome-wide sets of kinase-substrate predictions for any of the kinases and

species described in this paper. A more detailed description of the web-server workflow is

available in Methods S-2.
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Figure 1: PhosphoPICK Bayesian networks and workflow. (a) Sequence model. R nodes
represent positions in a motif surrounding the phosphorylation site, where R0 is the poten-
tial phosphorylation site. Kmer1 to Kmern represent the dimer and trimer configurations
incorporated into the model. (b) PhosphoPICK Bayesian network model incorporating both
context and sequence data. The bottom layer of nodes (P 1 to P k) represent protein inter-
actions incorporated into the model. These are conditioned on relevant kinases (K1 to Ki),
which are themselves conditioned on a latent node incorporating variables representing the
four cell cycle stages. The K1 binds “sequence” variable is conditioned on its corresponding
K1 “context” variable. (c) Diagram showing the workflow involved when a kinase is queried
for a protein submitted to the model. BioGRID and STRING are queried to identify what
proteins the substrate interacts with, and the protein-interaction variables are set accord-
ingly. If cell-cycle data is available, it is included also. The substrate sequence is used to
estimate what kinases in the model will not bind to the substrate, with the remainder left un-
specified. The model is then scanned across the sequence to identify the highest probability
of the kinase phosphorylating the substrate. Separately, the sequence model is used to score
all potential sites in the query substrate. The final prediction for a potential phosphorylation
site is the average of the substrate and site score.
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Figure 2: Sensitivity comparisons for predicting kinase-specific phosphorylation sites out of
all potential phosphorylation sites in the protein training set between PhosphoPICK and
alternative classification methods. Comparisons were made by performing cross-validation
across ten data-set splits for each of the kinases. Sensitivity was calculated for all methods
at two levels of specificity: 99.9% and 99%. Comparisons were made between PhosphoPICK
and the sequence method alone, and between PhosphoPICK and three alternative predictors:
GPS, NetPhorest and NetworKIN.
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Figure 3: Distribution of predicted kinase phosphorylation sites surrounding NLSs.
The locations of predicted NLSs were cross-referenced with phosphorylation sites from
PhosphoSitePlusr and PhosphoPICK was used to assign kinases to the sites. Count repre-
sents the number of times a kinase was predicted to phosphorylate a specific site relative to
the NLS. Over-representation of a kinase for a particular site was assessed using a Fisher’s
exact test with a Bonferroni multiple correction. (*) indicates an E-value < 0.05 and (**)
an E-value < 1.0E−10.
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Tables

Table 1: Performance comparisons between predicting kinase-specific phosphorylation sites
with a baseline model that only considers position-specific amino acid frequencies, and the
sequence model. Results were generated using ten-fold cross-validation repeated across ten
randomised data-set splits. Shown are the average and standard deviation of the AUC and
AUC50 values.

AUC AUC50
Family Baseline Sequence Baseline Sequence

Human
CMGC 0.80±0.013 0.84±0.014 0.08±0.013 0.21±0.026
AGC 0.76±0.017 0.79±0.018 0.15±0.028 0.21±0.029
TK 0.56±0.022 0.62±0.025 0.11±0.021 0.18±0.024
CAMK 0.73±0.023 0.77±0.024 0.11±0.014 0.19±0.027
Other 0.69±0.019 0.80±0.021 0.07±0.013 0.32±0.038
STE 0.71±0.031 0.79±0.052 0.23±0.049 0.38±0.053
CK1 0.75±0.020 0.86±0.025 0.12±0.019 0.30±0.031
Atypical 0.84±0.009 0.87±0.008 0.18±0.008 0.20±0.030

Mouse
CMGC 0.74±0.016 0.79±0.016 0.14±0.017 0.24±0.029
AGC 0.72±0.025 0.75±0.032 0.17±0.034 0.26±0.051
TK 0.60±0.025 0.63±0.029 0.26±0.032 0.31±0.026

Yeast
CMGC 0.67±0.028 0.76±0.028 0.11±0.007 0.32±0.030
AGC 0.79±0.020 0.85±0.025 0.24±0.027 0.46±0.034
CAMK 0.64±0.024 0.78±0.024 0.05±0.017 0.34±0.037
Other 0.74±0.017 0.84±0.023 0.10±0.010 0.35±0.035
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Table 2: Performance comparisons between predicting kinase substrates with the context
Bayesian network model, and with the combined sequence & context model. Results were
generated using ten-fold cross-validation repeated across ten randomised data-set splits.
Shown are the average and standard deviation of the AUC and AUC50 values.

AUC AUC50
Context Combined Context Combined

Human
CMGC 0.80±0.023 0.84±0.027 0.31±0.015 0.43±0.032
AGC 0.74±0.025 0.79±0.029 0.21±0.015 0.34±0.035
TK 0.81±0.027 0.82±0.026 0.31±0.020 0.39±0.039
CAMK 0.66±0.039 0.76±0.032 0.25±0.016 0.40±0.034
Other 0.80±0.034 0.81±0.037 0.36±0.029 0.47±0.044
STE 0.73±0.059 0.80±0.063 0.40±0.043 0.57±0.072
CK1 0.79±0.035 0.81±0.028 0.39±0.032 0.41±0.042
Atypical 0.85±0.015 0.89±0.014 0.36±0.005 0.45±0.015

Mouse
CMGC 0.73±0.011 0.79±0.020 0.38±0.009 0.45±0.035
AGC 0.48±0.033 0.63±0.043 0.20±0.015 0.31±0.056
TK 0.61±0.045 0.78±0.052 0.25±0.020 0.46±0.052

Yeast
CMGC 0.65±0.032 0.76±0.042 0.22±0.020 0.44±0.050
AGC 0.57±0.043 0.71±0.048 0.26±0.036 0.48±0.048
CAMK 0.64±0.036 0.70±0.020 0.15±0.029 0.33±0.037
Other 0.60±0.036 0.75±0.045 0.21±0.019 0.40±0.033
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Table 3: Prediction accuracy on hold-out set for predicting kinase-specific phosphorylation
sites (below a P-value threshold of 0.005) as measured by a variety of metrics – sensitivity,
specificity, balanced accuracy (BAC) and Matthews’ correlation coefficient (MCC). Results
were generated by training the model on the full training data set, and evaluating it on the
hold-out set. Results represent the ability of PhosphoPICK to correctly predict the known
kinase-specific phosphorylation sites out of all potential sites in the set of hold-out substrates.
In total there were 14,617 S/T sites and 2,324 Y sites.

Kinase Positives Sensitivity Specificity BAC MCC

CDK2 72 0.36 0.96 0.66 0.12
CDK1 39 0.51 0.93 0.72 0.09
ERK2 55 0.22 0.98 0.60 0.08
ERK1 56 0.29 0.98 0.63 0.12
PKACA 53 0.28 0.99 0.64 0.18
PKCA 40 0.15 0.97 0.56 0.04
Akt1 15 0.4 0.98 0.69 0.09
CK2A1 52 0.62 0.95 0.78 0.15
Src 34 0.03 0.99 0.51 0.02

Supporting Information Available

Table S-1

Sequence model accuracy across human kinases when different percentages of kinase-substrate

phosphorylation peptides were used to determine the set of k-mers added to the model. Ta-

ble shows median AUC and AUC50 values for classifying kinase phosphorylation sites with

the sequence model as determined by 10-fold cross-validation across 10 randomised data-set

splits. Kinases are grouped according to their family, with the average prediction accuracy

for each family shown.
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Table S-2

Sequence model accuracy across mouse kinases when different percentages of kinase-substrate

phosphorylation peptides were used to determine the set of k-mers added to the model. Table

shows median AUC and AUC50 values for classifying kinase phosphorylation sites with the

sequence model as determined by 10-fold cross-validation across 10 randomised data-set

splits. Kinases are grouped according to their family, with the average prediction accuracy

for each family shown.

Table S-3

Sequence model accuracy across yeast kinases when different percentages of kinase-substrate

phosphorylation peptides were used to determine the set of k-mers added to the model.

Table shows median AUC and AUC50 values for classifying kinase phosphorylation sites

with the sequence model as determined by 10-fold cross-validation across 10 randomised

data-set splits. Kinases are grouped according to their family, with the average prediction

accuracy for each family shown.

Table S-4

Sequence model accuracy for varying window sizes in human kinases. Table shows accuracy

values for classifying kinase phosphorylation sites with the sequence model as determined by

10-fold cross-validation across 10 randomised data-set splits. Prediction accuracy is shown

using median and standard deviation of the AUC and AUC50 across the data-set splits.

Varying window sizes were applied to determine the optimal window size on a kinase-specific

basis. The window size determined for a kinase is highlighted through bold text. Optimal

window size was determined primarily through AUC50 as a measure of the model’s accuracy

at low false-positive rates. If accuracy did not increase through increasing window size, the

lower window size was chosen. Kinases in the table are grouped according to family.
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Table S-5

Sequence model accuracy for varying window sizes in mouse kinases. Table shows accuracy

values for classifying kinase phosphorylation sites with the sequence model as determined by

10-fold cross-validation across 10 randomised data-set splits. Prediction accuracy is shown

using median and standard deviation of the AUC and AUC50 across the data-set splits.

Varying window sizes were applied to determine the optimal window size on a kinase-specific

basis. The window size determined for a kinase is highlighted through bold text. Optimal

window size was determined primarily through AUC50 as a measure of the model’s accuracy

at low false-positive rates. If accuracy did not increase through increasing window size, the

lower window size was chosen. Kinases in the table are grouped according to family.

Table S-6

Sequence model accuracy for varying window sizes in yeast kinases. Table shows accuracy

values for classifying kinase phosphorylation sites with the sequence model as determined by

10-fold cross-validation across 10 randomised data-set splits. Prediction accuracy is shown

using median and standard deviation of the AUC and AUC50 across the data-set splits.

Varying window sizes were applied to determine the optimal window size on a kinase-specific

basis. The window size determined for a kinase is highlighted through bold text. Optimal

window size was determined primarily through AUC50 as a measure of the model’s accuracy

at low false-positive rates. If accuracy did not increase through increasing window size, the

lower window size was chosen. Kinases in the table are grouped according to family.

Table S-7

Comparison of prediction accuracy across human kinases between sequence model and base-

line. Comparison of prediction accuracy across human kinases between predicting kinase-

specific phosphorylation sites with a baseline model that only considers position-specific
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amino acid frequencies, and the sequence model. Kinases are grouped according to their

family, with the average prediction accuracy for each family included. Results were gener-

ated using ten-fold cross-validation repeated across ten randomised data-set splits. Shown

are the average and standard deviation of the AUC and AUC50 values.

Table S-8

Comparison of prediction accuracy across mouse kinases between sequence model and base-

line. Comparison of prediction accuracy across mouse kinases between predicting kinase-

specific phosphorylation sites with a baseline model that only considers position-specific

amino acid frequencies, and the sequence model. Kinases are grouped according to their

family, with the average prediction accuracy for each family included. Results were gener-

ated using ten-fold cross-validation repeated across ten randomised data-set splits. Shown

are the average and standard deviation of the AUC and AUC50 values.

Table S-9

Comparison of prediction accuracy across yeast kinases between sequence model and baseline.

Comparison of prediction accuracy across yeast kinases between predicting kinase-specific

phosphorylation sites with a baseline model that only considers position-specific amino acid

frequencies, and the sequence model. Kinases are grouped according to their family, with the

average prediction accuracy for each family included. Results were generated using ten-fold

cross-validation repeated across ten randomised data-set splits. Shown are the average and

standard deviation of the AUC and AUC50 values.

Table S-10

Comparison of sequence model prediction accuracy across human kinases for training on

full versus similarity-reduced data-sets. Comparison of prediction accuracy across human
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kinases between predicting kinase-specific phosphorylation sites using the sequence model

trained on the full data-set, and when the model is trained on the similarity-reduced data-set.

Prediction accuracy is calculated on the similarity-reduced data-set. If a kinase could not be

trained on the reduced data-set due to too few positive training samples it was marked as

“N/A”. Kinases are grouped according to their family, with the average prediction accuracy

for each family included. Results were generated using ten-fold cross-validation repeated

across ten randomised data-set splits. Shown are the average and standard deviation of the

AUC and AUC50 values.

Table S-11

Comparison of sequence model prediction accuracy across mouse kinases for training on

full versus similarity-reduced data-sets. Comparison of prediction accuracy across mouse

kinases between predicting kinase-specific phosphorylation sites using the sequence model

trained on the full data-set, and when the model is trained on the similarity-reduced data-set.

Prediction accuracy is calculated on the similarity-reduced data-set. If a kinase could not be

trained on the reduced data-set due to too few positive training samples it was marked as

“N/A”. Kinases are grouped according to their family, with the average prediction accuracy

for each family included. Results were generated using ten-fold cross-validation repeated

across ten randomised data-set splits. Shown are the average and standard deviation of the

AUC and AUC50 values.

Table S-12

Comparison of sequence model prediction accuracy across yeast kinases for training on full

versus similarity-reduced data-sets. Comparison of prediction accuracy across mouse kinases

between predicting kinase-specific phosphorylation sites using the sequence model trained on

the full data-set, and when the model is trained on the similarity-reduced data-set. Prediction

accuracy is calculated on the similarity-reduced data-set. If a kinase could not be trained
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on the reduced data-set due to too few positive training samples it was marked as “N/A”.

Kinases are grouped according to their family, with the average prediction accuracy for each

family included. Results were generated using ten-fold cross-validation repeated across ten

randomised data-set splits. Shown are the average and standard deviation of the AUC and

AUC50 values.

Table S-13

Combined model accuracy across human kinases compared to the context only model. Com-

bined model accuracy across human kinases when compared to the context only model.

Kinases are grouped according to their family, with the average prediction accuracy for each

family included. Table shows accuracy values for classifying kinase substrates with both

models as determined by 10-fold cross-validation across 10 randomised data-set splits. Pre-

diction accuracy is shown using median and standard deviation of the AUC and AUC50

across the data-set splits.

Table S-14

Combined model accuracy across mouse kinases compared to the context only model. Com-

bined model accuracy across mouse kinases when compared to the context only model.

Kinases are grouped according to their family, with the average prediction accuracy for each

family included. Table shows accuracy values for classifying kinase substrates with both

models as determined by 10-fold cross-validation across 10 randomised data-set splits. Pre-

diction accuracy is shown using median and standard deviation of the AUC and AUC50

across the data-set splits.
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Table S-15

Combined model accuracy across yeast kinases compared to the context only model. Com-

bined model accuracy across yeast kinases when compared to the context only model. Kinases

are grouped according to their family, with the average prediction accuracy for each family

included. Table shows accuracy values for classifying kinase substrates with both models

as determined by 10-fold cross-validation across 10 randomised data-set splits. Prediction

accuracy is shown using median and standard deviation of the AUC and AUC50 across the

data-set splits.

Table S-16

Sensitivity differences for kinases at 99.9% specificity. Sensitivity differences for kinases at

99.9% specificity, where kinases are grouped according to their family, with the average sen-

sitivity difference for each family included. The sensitivity difference between PhosphoPICK

and each alternative method was measured for predicting kinase-specific phosphorylation

sites out of all potential phosphorylation sites in our set of substrates. If we were unable to

identify predictions for a kinase, it was marked as “N/A”.

Table S-17

Sensitivity differences for kinases at 99% specificity. Sensitivity differences for kinases at 99%

specificity, where kinases are grouped according to their family, with the average sensitivity

difference for each family included. The sensitivity difference between PhosphoPICK and

each alternative method was measured for predicting kinase-specific phosphorylation sites

out of all potential phosphorylation sites in our set of substrates. If we were unable to

identify predictions for a kinase, it was marked as “N/A”.
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Table S-18

Gene ontology (GO) term enrichment analysis for predicted AurB substrates. Shown are all

positions that the kinase was found to be significantly over-represented at.

Table S-19

Gene ontology (GO) term enrichment analysis for predicted CDK2 substrates. Shown are

all positions that the kinase was found to be significantly over-represented at.

Table S-20

Gene ontology (GO) term enrichment analysis for predicted PKA substrates. Shown are all

positions that the kinase was found to be significantly over-represented at.

Table S-21

Gene ontology (GO) term enrichment analysis for predicted Akt1 substrates. Shown are all

positions that the kinase was found to be significantly over-represented at.

Table-S22

Gene ontology (GO) term enrichment analysis for predicted AMPKA1 substrates. Shown

are all positions that the kinase was found to be significantly over-represented at.

Table S-23

Gene ontology (GO) term enrichment analysis for predicted p70S6K substrates. Shown are

all positions that the kinase was found to be significantly over-represented at.
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Table S-24

Gene ontology (GO) term enrichment analysis for predicted p90RSK substrates. Shown are

all positions that the kinase was found to be significantly over-represented at.

Table S-25

Gene ontology (GO) term enrichment analysis for substrates predicted to contain an NLS

and a phosphorylation site at the specific position relative to the NLS. Table shows GO

terms identified at each position in the 20-residue window surrounding the NLS.

Methods S-1

Identifying expected sequence motifs from context.

Methods S-2

Web-server workflow.

S1 Fig

Comparison of sequence logos for PKA kinase.

Data S1

Training data and model specification files for training the models presented in the paper.

This material is available free of charge via the Internet at http://pubs.acs.org/.
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